Skip to main content
Log in

Fundamentals of p-adic multiple L-functions and evaluation of their special values

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We construct p-adic multiple L-functions in several variables, which are generalizations of the classical Kubota–Leopoldt p-adic L-functions, by using a specific p-adic measure. Our construction is from the p-adic analytic side of view, and we establish various fundamental properties of these functions. (a) Evaluation at non-positive integers: We establish their intimate connection with the complex multiple zeta-functions by showing that the special values of the p-adic multiple L-functions at non-positive integers are expressed by the twisted multiple Bernoulli numbers, which are the special values of the complex multiple zeta-functions at non-positive integers. (b) Multiple Kummer congruences: We extend Kummer congruences for Bernoulli numbers to congruences for the twisted multiple Bernoulli numbers. (c) Functional relations with a parity condition: We extend the vanishing property of the Kubota–Leopoldt p-adic L-functions with odd characters to our p-adic multiple L-functions. (d) Evaluation at positive integers: We establish their close relationship with the p-adic twisted multiple star polylogarithms by showing that the special values of the p-adic multiple L-functions at positive integers are described by those of the p-adic twisted multiple star polylogarithms at roots of unity, which generalizes the result of Coleman in the single variable case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this paper, TMSPL stands for the twisted multiple star polylogarithm.

  2. We remind that TMSPL stands for the twisted multiple star polylogarithm (see §0).

  3. Here, we ignore the multiplicity.

  4. We note that it also follows from the fact that it is a rational function on w whose poles are all of the form \(w=\frac{1}{\zeta _p-1}\) with \(\zeta _p\in \mu _p\).

References

  1. Berthelot, P.: Cohomologie rigide et cohomologie rigide à support propre, Première partie, preprint, Université de Rennes (1996)

  2. Besser, A.: Syntomic regulators and p-adic integration II: K\(_2\) of curves. Israel J. Math. 120, 335–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322, 19–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besser, A., de Jeu, R.: The syntomic regulator for the K-theory of fields. Ann. Sci. École Norm. Sup. (4) 36, 867–924 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984)

    MATH  Google Scholar 

  6. Breuil, C.: Intégration sur les variétés \(p\)-adiques (d’aprés Coleman, Colmez, Séminaire Bourbaki, 1998/99, Astérisque No. 266, Exp. No. 860, 5, 319–350 (2000)

  7. Coleman, R.: Dilogarithms, regulators and \(p\)-adic \(L\)-functions. Invent. Math. 69, 171–208 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fresnel, J., van der Put, M.: Géométrie analytique rigide et applications. Progress in Mathematics 18. Birkhäuser, Boston (1981)

    MATH  Google Scholar 

  9. Furusho, H.: \(p\)-adic multiple zeta values. I. \(p\)-adic multiple polylogarithms and the \(p\)-adic KZ equation. Invent. Math. 155, 253–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Furusho, H.: \(p\)-adic multiple zeta values. II. Tannakian interpretations. Am. J. Math. 129, 1105–1144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furusho, H., Komori, Y., Matsumoto, K., Tsumura, H.: Desingularization of complex multiple zeta-functions, preprint (2015) (to appear in Am. J. Math.). arXiv:1508.06920

  12. Furusho, H., Komori, Y., Matsumoto, K., Tsumura, H.: Desingularization of multiple zeta-functions of generalized Hurwitz–Lerch type (to appear in RIMS Kokyuroku Bessatsu). arXiv:1404.4758

  13. Iwasawa, K.: On \(p\)-adic \(L\)-functions. Ann. Math. 89, 198–205 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwasawa, K.: Lectures on \(p\)-adic \(L\)-functions. Ann. Math. Stud. No. 74, Princeton University Press, Princeton (1972)

  15. Kashio, T.: On a \(p\)-adic analogue of Shintani’s formula. J. Math. Kyoto Univ. 45, 99–128 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Koblitz, N.: A new proof of certain formulas for \(p\)-adic \(L\)-functions. Duke Math. J. 46, 455–468 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koblitz, N.: \(p\)-adic Analysis: A Short Course on Recent Work, London Mathematical Society Lecture Note Series, 46. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  18. Komori, Y., Matsumoto, K., Tsumura, H.: Functional equations for double \(L\)-functions and values at non-positive integers. Int. J. Number Theory 7, 1441–1461 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kubota, T., Leopoldt, H.W.: Eine \(p\)-adische Theorie der Zetawerte I. Einführung der \(p\)-adischen Dirichletschen \(L\)-Funktionen. J. Reine Angew. Math. 214(215), 328–339 (1964)

    MATH  Google Scholar 

  20. Ohno, Y., Zudilin, W.: Zeta stars. Commun. Number Theory Phys. 2, 325–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Serre, J.-P.: Formes modulaires et functions zêta \(p\)-adiques. Lect. Notes Math. 350, 191–268 (1973)

    Article  Google Scholar 

  22. Tangedal, B.A., Young, P.T.: On p-adic multiple zeta and log gamma functions. J. Number Theory 131, 1240–1257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ulanskii, E.A.: Identities for generalized polylogarithms (Russian). Mat. Zametki 73, 613–624 (2003). translation in Math. Notes 73, 571–581 (2003)

  24. Unver, S.: Cyclotomic \(p\)-adic multi-zeta values in depth two, preprint (2013). arXiv:1302.6406

  25. Washington, L.C.: Introduction to Cyclotomic Fields, Second edition, Graduate Texts in Mathematics, 83. Springer, New York (1997)

    Book  Google Scholar 

  26. Yamashita, G.: Bounds for the dimensions of \(p\)-adic multiple \(L\)-value spaces. Doc. Math. Extra volume: Andrei A. Suslin sixtieth birthday, pp. 687–723 (2010)

Download references

Acknowledgments

The authors express their sincere gratitude to the referee for important suggestions and to Dr. Stefan Horocholyn for linguistic advice. Also they wish to express their thanks to the Isaac Newton Institute for Mathematical Sciences, Cambridge, and the Max Planck Institute for Mathematics, Bonn, where parts of this work were carried out in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Tsumura.

Additional information

Research of the authors supported by Grants-in-Aid for Science Research (No. 24684001 for HF, No. 25400026 for YK, No. 25287002 for KM, No. 15K04788 for HT, respectively), JSPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furusho, H., Komori, Y., Matsumoto, K. et al. Fundamentals of p-adic multiple L-functions and evaluation of their special values. Sel. Math. New Ser. 23, 39–100 (2017). https://doi.org/10.1007/s00029-016-0233-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0233-2

Keywords

Mathematics Subject Classification

Navigation