Skip to main content
Log in

Detection of Magnetically Susceptible Dyke Swarms in a Fresh Coastal Aquifer

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Groundwater constitutes the main source of freshwater in Shalatein, on the western coast of the Red Sea, in Egypt. The fresh aquifer of Shalatein is intensively dissected by shallow and deep faults associated with the occurrence of dykes and/or dyke swarms. In this context, synthesis of electrical resistivity, ground magnetics, and borehole data was implemented to investigate the freshwater aquifer condition, locate the intrusive dykes and/or dyke swarms, and demarcate the potential freshwater zones. Nine Schlumberger VES’s with maximum current electrode half-spacing (AB/2) of 682 m were conducted. The subsurface was successfully delineated by general four layers. The fresh aquifer of the Quaternary and Pre-Quaternary alluvium sediments was effectively demarcated with true resistivities ranged from 30 to 105 Ωm and thickness ranged between 20 and 60 m. A ground magnetic survey comprised 35 magnetic profiles, each 7 km in length. Magnetic data interpretation of the vertical derivatives (first and second order), downward continuation (100 m), apparent susceptibility (depth of 100 m), and wavelength filters (Butterworth high-pass of wavelengths <100 m and Band-Pass of wavelengths 30–100 m) successfully distinguished the near surface structure with five major clusters of dyke swarms, whereas filters of the upward continuation (300 m) and Butterworth low-pass (wavelengths >300 m) clearly reflected the deep-seated structure. The computed depth by the 3D Euler deconvolution for geological contacts and faults (SI = 0) ranged from 14 to 545 m, whereas for dyke and sill (SI = 1), it ranged from 10 to 1,095 m. The western part of the study area is recommended as a potential freshwater zone as it is characterized by depths >100 m to the top of the dykes, higher thickness of the fresh aquifer (45–60 m), depths to the top of the fresh aquifer ranging from 25 to 40 m, and higher resistivities reflecting better freshwater quality (70–105 Ωm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agha A., 1981. Structural map and plate reconstruction of the Gulf of Suez-Sinai area. Conoco Oil, Houston.

  • Akaad, M.K., Noweir, A., 1980. Geology and lithostratigraphy of Arabian Desert Orogenic belt of Egypt between Lat. 25 35` and 26 30` N. Bull. Inst. Applied Geol., King Abdul Aziz Univ., Jeddah, 3 (4), 127–135.

  • Akaad, M.K., El Ramly, M.F., 1961. Geological history and classification of the basement rocks of the Central Eastern Desert of Egypt. Egypt. Geol. Surv. Miner. Res. Dept. Paper 9, 24 pp.

  • Andreason, G.E., I., Zietz, 1962. Limiting parameters in the magnetic interpretation of a geologic structure: Geophysics, 27, 807–814.

  • Artzate, J.A., Flores, L., Chavez, R.E., Barba, L., Manzanilla, L., 1990. Magnetic prospecting for tunnel and caves in Teotihuacan, Mexico: Geophysical and Environmental Geophysics, Vol. 3. Soc. Explore. Geophys. Tulsa pp. 62–155.

  • Baranov, V., 1957. A new method for interpretation of aeromagnetic maps, pseudo-gravimetric anomalies: Geophysics, 22, 359–363.

  • Baranov, V., Naudy, H., 1964. Numerical calculation of the formula of reduction to the magnetic pole: Geophysics, 29, 67–79.

  • Barbosa, V. C. F., Silva, J. B. C., Medeiros, W. E., 1999. Stability analysis and improvement of structural index estimation in Euler deconvolution: Geophysics 64, 48–60.

  • Beiki, M., M. Bastani, L.B. Pedersen, 2010. Leveling HEM and aeromagnetic data using differential polynomial fitting: Geophysics, 75, no. 1, L13–L23, doi:10.1190/1.3279792.

  • Bhattacharyya, B.K., 1965. Two-dimensional harmonic analysis as a tool for magnetic interpretation: Geophysics, 30, 829–857.

  • Bhattacharyya, B.K., 1966. Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics, Vol. 31, pp. 197–212.

  • Blakely, R.J., Simpson, R.W., 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, V51, No 7, pp 1494–1498.

  • Blakely, R.J., 1995. Potential Theory in Gravity & Magnetic Applications, Cambridge University Press, Cambridge.

  • Bobachev, C., 2002. IPI2Win: A windows software for an automatic interpretation of resistivity sounding data, Ph.D, Moscow State University.

  • Boschetti, F., Hornby, P., Horowitz, F., 2001. Wavelet based inversion of gravity data: Exploration Geophysics, 32, 48–55.

  • Bott, M. H. P., 1973, Inverse methods in interpretation of gravity and magnetic anomalies. In Methods in Computational Physics, Vol. 13. Academic Press, New York, pp. 133–62.

  • Bournas, N., Galdeano, A., Hamoudi, M., Baker, H., 2003. Interpretation of the aeromagnetic map of Eastern Hoggar (Algeria) using the Euler deconvolution, analytic signal and local wavenumber methods. Journal of African Earth Sciences 37, 191–205.

  • Brigham, E.O., 1974. The Fast Fourier Transform. Prentice Hall, Englewood Cliffs, New Jersey.

  • Bromley J., Mannström B., Nisca D., Jamtlid A., 1994. Airborne geophysics: application to a ground-water study in Botswana. Ground Water, 32(1):79–90.

  • Cianciara, B., Marcak, H., 1976. Interpretation of gravity anomalies by means of local power spectrum. Geophysical Prospecting 24, 273–286.

  • Cooper, G.R.J., Cowan, D.R., 2006. Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32, 1585–1591.

  • Cordell, Lindrith, Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico in Hinze, W.J., ed., The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists, p. 181–197.

  • Dean, W.C., 1958. Frequency analysis for gravity and magnetic interpretation: Geophysics, 23, 97–127.

  • Descloitres, M., Ribolzi, O., Le Troquer, Y., Thiébaux, J.P., 2008. Study of water tension differences in heterogeneous sandy soils using surface ERT. Journal of Applied Geophysics 64, 83–98.

  • Duraiswami R.A., 2005. Dykes as potential groundwater reservoirs in semi-arid areas of Sakri Taluka, District Dhule of Maharashtra; Gond. Geol. Mag. 20(1) 1–9.

  • El Amawy, M.A., Wetait, M.A., El Alfy, Z.S., Shweel, A.S., 2000. Geology, geochemistry and structural evolution of Wadi Beida area, south Eastern Desert, Egypt. Egypt J. Geol. 44/1, 65–84.

  • El Shazly, E.M., 1977. The geology of the Egyptian region. In the Ocean Basins and Margins, (A.E.M. Nairn, W.H. Kanes, and F.G. Stehli Editors), Lenum Publ. Corp., 379–444.

  • El-Bayoumi, R.M.A., Greiling, R.O., 1984. Tectonic evolution of a Pan-African plate margin in Southeastern Egypt- A suture zone overprinted by low angle thrusting. In: Klerkx, J and Michot, J. (eds.) African Geology, Tervuren, 47–56.

  • Gass, I.G., 1981. Pan African (Upper Proterozoic) Plate Tectonics of the Arabian-Nubian Shield. In: Kroner, A. (ed.) Precambrian Plate Tectonics, Elsevier, Amsterdam, 387–405.

  • Geosoft Program (Oasis Montaj), 2007. Geosoft Mapping and Application System, Inc, Suit 500, Richmond St. West Toronto, ON Canada N5SIV6.

  • Grant, F.S., Dodds, J., 1972. MAGMAP FFT processing system development notes, Paterson Grant and Watson Limited.

  • Grauch, M. F., V. Lesur, A. B. Reid, J. D. Fairhead, 2004. Grid Euler deconvolution with constraints for 2D structures: Geophysics, 69, 489–496, doi:10.1190/1.1707069.

  • Grauch, V.J.S., Hudson, M.R., and Minor, S.A., 2001, Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico: Geophysics, 66, 707–720.

  • Greiling, R.O., Abdeen, M.M., Dardir, A.A., El Akhal, H., El-Ramly, M.F., Kamal El-Din, G.M., Osman, A.F., Rashwan, A.A., Rice, A.H.N., Sadek, M.F., 1994. A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geol. Rundschau, 83, 484–501.

  • Halihan, T., Paxton, S., Graham, I., Fenstemakerb, T., Rileya, M., 2005. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging. Journal of Environmental Monitoring 7, 283–287.

  • Hassan, M.A., Hashad, A.H., 1990. Precambrian of Egypt. In: Said, R. (ed.) the Geology of Egypt, Balkema, Rotterdam, 201–245.

  • Hinze, W.J., Zietz, I., 1985. The composite magnetic anomaly map of conterminous United State: in Hinze, W.J., Ed., The utility of regional gravity and magnetic anomaly maps, Soc. Explor. Geophys., 1–24.

  • Hood, P.J., Holroyd, M.T., McGrath, P.H., 1979. Magnetic method applied to base metal exploration, In Hood, P. J. (Ed.) Geophysics and Geochemistry in the search for metallic Ores, Ministry of Supply and Services Canada, Ottawa, Ontario, 77–104.

  • Hoover, D.B., Williams, B., 2007. Magnetic susceptibility for gemstone discrimination: Australian Gemmologist, V. 23, no. 4, 146–159.

  • Hoover, D.B., Williams, C, Williams, B., Mitchell, C., 2008. Magnetic susceptibility, a better approach to defining garnets: Journal gemmology V. 31, no. 3/4, 91–104.

  • Izuka, S.K., Gingerich, S.B., 1998. Ground water in the southern Lihue Basin, Kauai, Hawaii: U.S. Geological Survey Water-Resources Investigations Report 98-4031, 71 p.

  • Kara, I., Ozdemir, M., Kanli, A.I., 2003. Magnetic interpretation of horizontal cylinders using displacement of the maximum and minimum by upward continuation. Jour. of the Balkan Geophysical Society. V. 6, No. 1, P. 16–20.

  • Keller, G.R., Smith, R.A., Hinze, W.J., Aiken, C.L.V., 1985. Regional gravity and magnetic study of west Texas: In Hinze, W. J., Ed., the utility of regional gravity and magnetic anomaly maps. Soc. Explor. Geophys., 198–212.

  • Khalil, M.H., 2006. Geoelectric resistivity sounding for delineating salt water intrusion in the Abu Zenima area, west Sinai, Egypt: Journal of Geophysics and Engineering, Volume 3, Issue 3, 243–251.

  • Khalil, M.H., 2009. Hydrogeophysical Assessment of Wadi El-Sheikh Aquifer, Saint Katherine, South Sinai, Egypt: Journal of Environmental and Engineering Geophysics (JEEG), Volume 14, Issue 2, 77–86.

  • Khalil, M.H., 2010. Hydro-geophysical Configuration for the Quaternary Aquifer of Nuweiba Alluvial Fan: Journal of Environmental and Engineering Geophysics (JEEG), Volume 15, Issue 2, 77–90.

  • Khalil, M.H., 2012a. Reconnaissance of freshwater conditions in a coastal aquifer: synthesis of 1D geoelectric resistivity inversion and geohydrological analysis, Near Surface Geophysics, Volume 10, No. 5, pp. 427–441.

  • Khalil, M.H., 2012b. Magnetic, geo-electric, and groundwater and soil quality analysis over a landfill from a lead smelter, Cairo, Egypt, Elsevier, Journal of Applied Geophysics, Volume 86, pp. 146–159.

  • Khalil, M.H., Hanafy, S.M., Gamal, M.A., 2008. Preliminary seismic hazard assessment, shallow seismic refraction and resistivity sounding studies for future urban planning at Gebel Umm Baraqa area, Egypt, Journal of Geophysics and Engineering, Volume 5, Issue 4, pp. 371–386.

  • Kroner, A., Greiling, R.O., Reischmann, T., Hussein, I.M., Stern, R.J., Durr, S., Kruger, J., Zimmer, M., 1987. Pan-African crustal evolution in the Nubian segment of Northeast Africa. In: Kroner, A. (ed.) Proterozoic Lithosphere Evolution, American. Geophysical Union Geodynamics, V. 17, 235–257.

  • Leite, L.W.B., Leao, J.W.D., 1985. Ridge regression applied to the inversion of two-dimensional aeromagnetic anomalies: Geophysics, 50, 1294–1306.

  • Li Xiong, 2003. On the use of different methods for estimating magnetic depth. The Leading edge. P1090–1099.

  • Lidiak, E.G., Hinze, W.J., Keller, G.R., Reed, J.E., Braile, L.W., Johnson, R.W., 1985. Geologic significance of regional gravity and magnetic anomalies in the east-central midcontinent, in Hinze, W.J., Ed., The utility of regional gravity and magnetic anomaly maps: Soc. Expl. Geophys., 287–307.

  • McGrath, P.H., Hood P.J., Hood, 1970. The Dipping Dike Case: A computer Curve-matching Method of Magnetic Interpretation: Geophysics, 35, 831–848.

  • Meinzer, O.E., 1930, Ground water in the Hawaiian Islands in Geology and water resources of the Kau District, Hawaii: U.S. Geological Survey Water-Supply Paper 616, p. 1–28.

  • Mendonca, C.A., Silva, B.C., 1993. A stable truncated series approximation of the reduction-to-the-pole operator: Geophysics, 58, 1084–1090.

  • Murthy, I.V.R., Rao Viswesara, C., Krishna, G.G., 1980. A gradient method for interpreting magnetic anomalies due to horizontal circular cylinder, infinite dykes and vertical steps. Proc. Indian Acad. Sci. V. 89, P. 31–42.

  • Nano, L., Kontny, A., Sadek, M.F., Greiling, R.O., 2002. Structural evolution of metavolcanics in the surrounding of the gold-mineralization at El Beida, South Eastern Desert, Egypt. Ann. Geol. Surv. Egypt, XXV, 11–22.

  • Naudy, H., 1971, Automatic determination of depth on aeromagnetic profiles: Geophysics, 36, 717–722.

  • Oldenborger, G.A., Knoll, M.D., Routh, P.S., LaBrecque, D.J., 2007. Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics 72, F177–F187.

  • Paoletti V., Fedi M., Florio G., Rapolla A., 2007. Localized cultural de-noising of high-resolution aeromagnetic data, Geophysical Prospecting, 55, 412–432.

  • Patil S.K., Rao D.R.K., 2002. Palaeomagnetic and rock magnetic studies on the dykes of Goa, west coast of Indian Precambrian Shield; Phys. Earth Planet. Inter. 133 111–125.

  • Pesonen, L., Nevanlinna, H., leion, M.A.H., Ryno, J., 1994. The earth’s magnetic field maps of 1990: Geophysics, 30, 57–77.

  • Peter Furness, 2007. Modeling magnetic fields due to steel drum accumulations, Geophysical Prospecting: Volume 55, Issue 5, 737–748.

  • Peters, L.J., 1949. The direct approach to magnetic interpretation and its practical application: Geophysics, 14, 290–320.

  • Pilkington, M., Keating, P., 2004. Contact mapping from gridded magnetic data —a comparison of techniques. Exploration Geophysics, 35, 306–311.

  • Prasad J.N., Patil S.K., Saraf P.D., Venkateshwarlu M., Rao D.R.K., 1996. Palaeomagnetism of dyke swarm from the Deccan Volcanic Province of India; J. Geomag. Geoelectr. 48, 977–991.

  • Ravat, D., 1996. Analysis of the Euler method and its applicability in environmental magnetic investigations: J. Env. Eng. Geophys., 1, 229–38.

  • Reid, A.B., Allsop, J.M., Grasner, H., Millett, A.J., Somerton, I.W., 1990. Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55, 80–91.

  • Reynolds, John M., 1997. An introduction to applied environmental geophysics, west Sussex, England, John Wiley & Sons Ltd., 796.

  • Roberts, R.L., Hinze, W.J., Leap, D.I., 1989. A multi-technique geophysical approach to landfill investigations, in Proc. of the 3rd Nat. Outdoor Action Conf. on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods: Orlando, 797–811.

  • Roest, W.R., Pilkington, M., 1993. Identifying remnant magnetization effects in magnetic data: Geophysics, 58, 653–9.

  • Rose, T., Hambach, U., Krumsiek, K., 1996. Preliminary Results of high Resolution Magnetic Susceptibility Measurements on the Research Cores Kirchrode I and II: Milankovitch Forced Sedimentation during the Upper Albian.

  • Sabet, A.H., 1972. On the stratigraphy of the basement rocks of Egypt. Ann. Geol. Surv. Egypt, V.II, Cairo.

  • Sadek, M.F., 2004. Discrimination of basement rocks and alteration zones in Shalatein area, Southeastern Egypt using Landsat TM Imagery data. Egypt. J. Remote Sensing&Space Sci. 7, 89–98.

  • Sadek, M.F., Tolba, M.I., Youssef, M.M., Abdel Gawad, G.M., Salem, S.M., Atia, S.A., 1996. Geology of Wadi Kreiga-Gabal Korbiai area, South Eastern Desert, Egypt. Internal Report, Geol. Surv. Egypt, Cairo.

  • Silva, J.B.C., Hohmann, G.W., 1983. Nonlinear magnetic inversion using a random search method: Geophysics, 48, 1645–58.

  • Singhal B.B.S., Gupta R.P., 1999. Applied Hydrogeology of Fractured Rocks.

  • Spector, A., Grant, F.S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, Vol. 35, pp. 293–302.

  • Stavrev, P., 2006. Inversion of elongated magnetic anomalies using magnitude transforms: Geophysical Prospecting, 54: 3, 381–381.

  • Stefan, M., Vijay, D., 1996. Depth estimation from the scaling power spectrum of potential fields? Geophysics. J. Int. Vol. 124, 113–120.

  • Takasaki, K.J., Mink J.F., 1985. Evaluation of major dike-impounded ground-water reservoirs, island of Oahu: U.S. Geological Survey Water-Supply Paper 2217, 77 p.

  • Thompson, D.T., 1982. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data, Geophysics, 47, 31–37.

  • Urquhart, W.E.S., Strangway, D.W., 1985. Interpretation of part of an aeromagnetic survey in the Matagami area of Quebec, in Hinze, W. J., Ed., The utility of regional gravity and magnetic anomaly maps: Soc. Expl. Geophys., 426–438.

  • Verduzco, B., Fairhead, J.D., Green, C.M., MacKenzie, C., 2004. New insights to magnetic derivatives for structural mapping. Geophysics-The Leading Edge, 23, 116–119.

  • Vogt, P.R., P.T. Taylor, L.C. Kovacs, G.L. Johnson, 1982. The Canada Basin: aeromagnetic constraints on structure and evolution, Tectonophysics, 89, 295–336.

  • Whitehead, N., Musselman, C., 2008. Montaj Grav/Mag Interpretation: Processing, Analysis and Visualization System for 3D Inversion of Potential Field Data for Oasis montaj v6.3, Geosoft Incorporated, 85 Richmond St. W., Toronto, Ontario, M5H 2C9, Canada.

  • Wijns, C., Perez, C., Kowalczyk, P., 2005. Theta map: Edge detection in magnetic data. Geophysics, 70, L39-L43.

  • Yarger, H.L., 1985. Kansas basement study using spectrally filtered aeromagnetic data: in Hinze, W. J., Ed., The utility of regional gravity and magnetic anomaly maps, Soc. Explor. Geophys., 213–232.

  • Zurflueh, E.G., 1967. Application of two-dimensional linear wavelength filtering: Geophysics, 32, 1015–1035.

Download references

Acknowledgments

The author would like to express his sincere thanks and deep appreciation to the staff of the geophysical department, Cairo University. Sincere thanks are given to anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Khalil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, M.H. Detection of Magnetically Susceptible Dyke Swarms in a Fresh Coastal Aquifer. Pure Appl. Geophys. 171, 1829–1845 (2014). https://doi.org/10.1007/s00024-013-0696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0696-4

Keywords

Navigation