Skip to main content
Log in

Maximal Dissipation and Well-posedness for the Compressible Euler System

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi to show various counterexamples to well-posedness. On the other hand, we conjecture that the principle of maximal dissipation should be retained as a possible criterion of uniqueness as it is violated by the oscillatory solutions obtained in the process of convex integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzoni-Gavage S., Serre D.: Multidimensional hyperbolic partial differential equations, First order systems and applications. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007)

    Google Scholar 

  2. Bressan A.: Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. 2012. Preprint

  4. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. (2012, submitted)

  5. Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Ann. I. H. Poincaré AN (2013). doi:10.1016/j.anihpc.2013.11.005

  6. Dafermos C.M.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differ. Equ. 14, 202–212 (1973)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Dafermos C.M.: Hyperbolic conservation laws in continuum physics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Dafermos C.M.: Maximal dissipation in equations of evolution. J. Differ. Equ. 252(1), 567–587 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dafermos C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. De Lellis, C., Székelyhidi, L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Google Scholar 

  11. De Lellis, C., Székelyhidi, L. Jr.: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.) 49(3), 347–375 (2012)

    Google Scholar 

  12. Ervedoza S., Glass O., Guerrero S., Puel J.-P.: Local exact controllability for the one-dimensional compressible Navier–Stokes equation. Arch. Ration. Mech. Anal. 206(1), 189–238 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krejčí P., Straškraba I.: A uniqueness criterion for the Riemann problem. Hiroshima Math. J. 27(2), 307–346 (1997)

    MATH  MathSciNet  Google Scholar 

  14. LeFloch, P.G.: Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves. In: Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2002)

  15. Müller S., Šverák V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2) 157(3), 715–742 (2003)

    Article  MATH  Google Scholar 

  16. Nersisyan H.: Controllability of the 3D compressible Euler system. Commun. Partial Differ. Equ. 36(9), 1544–1564 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Serre D.: Systems of conservations laws. Cambridge university Press, Cambridge (1999)

    Book  Google Scholar 

  19. Shnirelman, A.: Weak solutions of incompressible Euler equations. In: Handbook of mathematical fluid dynamics, vol. II, pp. 87–116. North-Holland, Amsterdam (2003)

  20. Székelyhidi L.: Weak solutions to the incompressible Euler equations with vortex sheet initial data. C. R. Math. Acad. Sci. Paris 349(19–20), 1063–1066 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

The research of E.F. leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E. Maximal Dissipation and Well-posedness for the Compressible Euler System. J. Math. Fluid Mech. 16, 447–461 (2014). https://doi.org/10.1007/s00021-014-0163-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0163-8

Mathematics Subject Classification (2010)

Keywords

Navigation