Skip to main content
Log in

Axler–Zheng Type Theorem on a Class of Domains in \({\mathbb{C}^n}\)

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

An Erratum to this article was published on 10 April 2014

Abstract

We prove a version of Axler–Zheng’s Theorem on smooth bounded pseudoconvex domains in \({\mathbb{C}^n}\) on which the \({\overline{\partial}}\) -Neumann operator is compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy J., Engliš M.: Iterates and the boundary behavior of the Berezin transform. Ann. Inst. Fourier (Grenoble) 51(4), 1101–1133 (2001)

    Google Scholar 

  2. Axler S., Conway J.B., McDonald G.: Toeplitz operators on Bergman spaces. Can. J. Math. 34(2), 466–483 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Axler S., Zheng D.: Compact operators via the Berezin transform. Indiana Univ. Math. J. 47(2), 387–400 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bell S.: Differentiability of the Bergman kernel and pseudolocal estimates. Math. Z. 192(3), 467–472 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boas H.P.: Extension of Kerzman’s theorem on differentiability of the Bergman kernel function. Indiana Univ. Math. J. 36(3), 495–499 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Catlin, D.W.: Global regularity of the \({\overline{\partial}}\) -Neumann problem. Complex Analysis of Several Variables (Madison, Wis., 1982). In: Proceeding of the Symposia in Pure Mathematics, vol. 41, pp. 39–49. American Mathematical Society, Providence, RI (1984)

  7. Chen S.-C., Shaw M.-C.: Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  8. Choe B.R., Koo H., Lee Y.J.: Finite sums of Toeplitz products on the polydisk. Potential Anal. 31(3), 227–255 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coburn, L.A.: Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ. Math. J. 23, 433–439 (1973/74)

    Google Scholar 

  10. Čučković Ž, Şahutoğlu S.: Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains. J. Funct. Anal. 256(11), 3730–3742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Engliš M.: Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integr. Equ. Oper. Theory 33(4), 426–455 (1999)

    Article  MATH  Google Scholar 

  12. Freeman M.: Local complex foliation of real submanifolds. Math. Ann. 209, 1–30 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fu S., Straube E.J.: Compactness of the \({\overline\partial}\) -Neumann problem on convex domains. J. Funct. Anal. 159(2), 629–641 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jarnicki M., Pflug P.: Invariant distances and metrics in complex analysis. De Gruyter Expositions in Mathematics, vol. 9. Walter de Gruyter & Co, Berlin (1993)

    Book  Google Scholar 

  15. Krantz S.G.: Compactness of the \({\overline\partial}\) -Neumann operator. Proc. Am. Math. Soc. 103(4), 1136–1138 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. McNeal J.D.: A sufficient condition for compactness of the \({\overline\partial}\) -Neumann operator. J. Funct. Anal. 195(1), 190–205 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mitkovski, M., Wick, B.D.: The essential norm of operators on \({A^p(\mathbb{D}_n)}\) , (2013, preprint)

  18. Mitkovski M., Suárez D., Wick B.D.: The essential norm of operators on \({A^p_\alpha(\mathbb{B}_n)}\) . Integr. Equ. Oper. Theory 75(2), 197–233 (2013)

    Article  MATH  Google Scholar 

  19. Pflug P.: Quadratintegrable holomorphe Funktionen und die Serre-Vermutung. Math. Ann. 216(3), 285–288 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raimondo R.: Toeplitz operators on the Bergman space of the unit ball. Bull. Aust. Math. Soc. 62(2), 273–285 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Şahutoğlu S., Straube E.J.: Analytic discs, plurisubharmonic hulls, and non-compactness of the \({\overline\partial}\) -Neumann operator. Math. Ann. 334(4), 809–820 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Salinas, N.: Noncompactness of the \({\overline\partial}\) -Neumann problem and Toeplitz C*-algebras. Several Complex Variables and Complex Geometry, Part 3 (Santa Cruz, CA, 1989). In: Proceeding of the Symposia in Pure Mathematics, vol. 52, pp. 329–334. American Mathematical Society, Providence, RI (1991)

  23. Straube E.J.: Lectures on the \({\mathcal{L}^{2}}\) -Sobolev theory of the \({\overline\partial}\) -Neumann problem. ESI Lectures in Mathematics and Physics, vol. 7. European Mathematical Society (EMS), Zürich (2010)

    Google Scholar 

  24. Suárez D.: The essential norm of operators in the Toeplitz algebra on \({A^p(\mathbb{B}_n)}\) . Indiana Univ. Math. J. 56(5), 2185–2232 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z̆eljko C̆uc̆ković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

C̆uc̆ković, Z., Şahutoğlu, S. Axler–Zheng Type Theorem on a Class of Domains in \({\mathbb{C}^n}\) . Integr. Equ. Oper. Theory 77, 397–405 (2013). https://doi.org/10.1007/s00020-013-2088-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-013-2088-7

Mathematics Subject Classification (2010)

Keywords

Navigation