Skip to main content
Log in

Mammalian haploid stem cells: establishment, engineering and applications

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Haploid embryonic stem cells (haESCs) contain only one set of genomes inherited from the sperm or egg and are termed AG- or PG-haESCs, respectively. Mammalian haESCs show genome-wide hypomethylation and dysregulated imprinting, whereas they can sustain genome integrity during derivation and long-term propagation. In addition, haESCs exhibit similar pluripotency to traditional diploid ESCs but are unique because they function as gametes and have been used to produce semi-cloned animals. More strikingly, unisexual reproduction has been achieved in mice by using haESCs. In combination with a gene editing or screening system, haESCs represent a powerful tool for studies of underlying gene functions and explorations of mechanisms of genetic and epigenetic regulation not only at the cellular level in vitro but also at the animal level in vivo. More importantly, genetically edited AG-haESC lines may further serve as an ideal candidate for the establishment of a sperm bank, which is a highly cost-effective approach, and a wide range of engineered semi-cloned mice have been produced. Here, we review the historical development, characteristics, advantages and disadvantages of haESCs. Additionally, we present an in-depth discussion of the recent advances in haESCs and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Androgenetic

CB:

Cytochalasin B

CNV:

Copy number variation

CRISPR:

Clustered, regularly interspaced short palindromic repeats

DKO:

Double knock-out

DMR:

Differentially methylated region

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

EB:

Embryoid body

ENU:

N-ethyl-N-nitrosourea

ESC:

Embryonic stem cell

FACS:

Fluorescence-activated cell sorting

GFP:

Green fluorescent protein

haESC:

Haploid embryonic stem cell

HCG:

Human chorionic gonadotropin

IAP:

Intracisternal A particle

ICAI:

Intracytoplasmic AG-haESC injection

ICM:

Inner cell mass

ICPI:

Intracytoplasmic PG-haESC injection

ICR:

Imprinting control region

ICSI:

Intracytoplasmic sperm injection

IG DMR:

Intergenic germline-derived DMR

LINE-1:

Long interspersed nuclear element-1

LTR:

Long terminal repeat

PB:

PiggyBac

PG:

Parthenogenetic

PGC:

Primordial germ cells

RGNNV:

Red-spotted grouper nervous necrosis virus

RRBS:

Reduced representation bisulfite sequencing

SGIV:

Singapore grouper iridovirus

SINE:

Short interspersed nuclear element

SMGT:

Sperm-mediated gene transfer

SNPs:

Single nucleotide polymorphisms

SNVs:

Single-nucleotide variations

SVCV:

Spring viremia of carp virus

TET:

Tet methylcytosine dioxygenase

TKO:

Triple knock-out

UHPLC-MRM-QQQ:

Ultra-high-performance liquid chromatography-multiple reaction monitoring triple quadrupole

2i:

GSK3βi and MEKi

2n ESC:

Diploid ESC

5mC:

5-Methylcytosine

References

  1. Herrmann M, Trenzcek T, Fahrenhorst H, Engels W (2005) Characters that differ between diploid and haploid honey bee (Apis mellifera) drones. GMR 4(4):624–641

    CAS  PubMed  Google Scholar 

  2. Beukeboom LW, Kamping A, Louter M, Pijnacker LP, Katju V, Ferree PM, Werren JH (2007) Haploid females in the parasitic wasp Nasonia vitripennis. Science 315(5809):206. https://doi.org/10.1126/science.1133388

    Article  CAS  PubMed  Google Scholar 

  3. Glastad KM, Hunt BG, Yi SV, Goodisman MA (2014) Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects? Proc Biol Sci 281(1785):20140411. https://doi.org/10.1098/rspb.2014.0411

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weeks AR, Marec F, Breeuwer JA (2001) A mite species that consists entirely of haploid females. Science 292(5526):2479–2482. https://doi.org/10.1126/science.1060411

    Article  CAS  PubMed  Google Scholar 

  5. Wilkins JF, Haig D (2003) What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 4:359. https://doi.org/10.1038/nrg1062

    Article  CAS  PubMed  Google Scholar 

  6. Otto SP, Goldstein DB (1992) Recombination and the evolution of diploidy. Genetics 131(3):745–751

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 71(4):1250–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 101(28):10380–10385. https://doi.org/10.1073/pnas.0403954101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans M, Kaufman M (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  12. Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646. https://doi.org/10.1242/dev.02787

    Article  CAS  PubMed  Google Scholar 

  13. Li W, Shuai L, Wan H, Dong M, Wang M, Sang L, Feng C, Luo GZ, Li T, Li X, Wang L, Zheng QY, Sheng C, Wu HJ, Liu Z, Liu L, Wang XJ, Zhao XY, Zhou Q (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490(7420):407–411. https://doi.org/10.1038/nature11435

    Article  CAS  PubMed  Google Scholar 

  14. Yang H, Shi L, Wang B-A, Liang D, Zhong C, Liu W, Nie Y, Liu J, Zhao J, Gao X, Li D, Xu G-L, Li J (2012) Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149(3):605–617. https://doi.org/10.1016/j.cell.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  15. Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479(7371):131–134. https://doi.org/10.1038/nature10448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Freed JJ, Mezger-Freed L (1970) Stable haploid cultured cell lines from frog embryos. Proc Natl Acad Sci USA 65(2):337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Debec A (1978) Haploid cell cultures of Drosophila melanogaster. Nature 274(5668):255–256

    Article  CAS  PubMed  Google Scholar 

  18. Debec A (1984) Evolution of karyotype in haploid cell lines of Drosophila melanogaster. Exp Cell Res 151(1):236–246

    Article  CAS  PubMed  Google Scholar 

  19. Kotecki M, Reddy PS, Cochran BH (1999) Isolation and characterization of a near-haploid human cell line. Exp Cell Res 252(2):273–280. https://doi.org/10.1006/excr.1999.4656

    Article  CAS  PubMed  Google Scholar 

  20. Elling U, Taubenschmid J, Wirnsberger G, O’Malley R, Demers S-P, Vanhaelen Q, Shukalyuk AI, Schmauss G, Schramek D, Schnuetgen F (2011) Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9(6):563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wan H, He Z, Dong M, Gu T, Luo GZ, Teng F, Xia B, Li W, Feng C, Li X, Li T, Shuai L, Fu R, Wang L, Wang XJ, Zhao XY, Zhou Q (2013) Parthenogenetic haploid embryonic stem cells produce fertile mice. Cell Res 23(11):1330–1333. https://doi.org/10.1038/cr.2013.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhong C, Xie Z, Yin Q, Dong R, Yang S, Wu Y, Yang L, Li J (2016) Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Res 26(1):131–134. https://doi.org/10.1038/cr.2015.132

    Article  PubMed  Google Scholar 

  23. Li W, Li X, Li T, Jiang MG, Wan H, Luo GZ, Feng C, Cui X, Teng F, Yuan Y, Zhou Q, Gu Q, Shuai L, Sha J, Xiao Y, Wang L, Liu Z, Wang XJ, Zhao XY, Zhou Q (2014) Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14(3):404–414. https://doi.org/10.1016/j.stem.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  24. Hirabayashi M, Hara H, Goto T, Takizawa A, Dwinell MR, Yamanaka T, Hochi S, Nakauchi H (2017) Haploid embryonic stem cell lines derived from androgenetic and parthenogenetic rat blastocysts. J Reprod Dev 63(6):611–616. https://doi.org/10.1262/jrd.2017-074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J (2013) Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 23(10):1187–1200. https://doi.org/10.1038/cr.2013.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532(7597):107–111. https://doi.org/10.1038/nature17408

    Article  CAS  PubMed  Google Scholar 

  27. Zhong C, Zhang M, Yin Q, Zhao H, Wang Y, Huang S, Tao W, Wu K, Chen Z-J, Li J (2016) Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus. Cell Res 26(6):743–746. https://doi.org/10.1038/cr.2016.59

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li X, Cui XL, Wang JQ, Wang YK, Li YF, Wang LY, Wan HF, Li TD, Feng GH, Shuai L, Li ZK, Gu Q, Hao J, Wang L, Zhao XY, Liu ZH, Wang XJ, Li W, Zhou Q (2016) Generation and application of mouse-rat allodiploid embryonic stem cells. Cell 164(1–2):279–292. https://doi.org/10.1016/j.cell.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  29. Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326(5951):430–433

    Article  CAS  PubMed  Google Scholar 

  30. Tarkowski AK (1977) In vitro development of haploid mouse embryos produced by bisection of one-cell fertilized eggs. J Embryol Exp Morphol 38(1):187–202

    Google Scholar 

  31. Liu L, Trimarchi JR, Keefe DL (2002) Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos. Biol Reprod 66(1):204–210

    Article  CAS  PubMed  Google Scholar 

  32. Simopoulou M, Sfakianoudis K, Rapani A, Giannelou P, Anifandis G, Bolaris S, Pantou A, Lambropoulou M, Pappas A, Deligeoroglou E, Pantos K, Koutsilieris M (2018) Considerations regarding embryo culture conditions: from media to epigenetics. In Vivo (Athens, Greece) 32(3):451–460. https://doi.org/10.21873/invivo.11261

    Article  CAS  Google Scholar 

  33. Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, Wang Y, Le R, Wang H, Duan T, Zhang Y, Gao S (2018) Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20(5):620–631. https://doi.org/10.1038/s41556-018-0093-4

    Article  CAS  PubMed  Google Scholar 

  34. Yagi M, Kishigami S, Tanaka A, Semi K, Mizutani E, Wakayama S, Wakayama T, Yamamoto T, Yamada Y (2017) Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548(7666):224–227. https://doi.org/10.1038/nature23286

    Article  CAS  PubMed  Google Scholar 

  35. Choi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, Gu H, Di Stefano B, Brumbaugh J, Kim SY, Sharif J, Rose CM, Mohammad A, Odajima J, Charron J, Shioda T, Gnirke A, Gygi S, Koseki H, Sadreyev RI, Xiao A, Meissner A, Hochedlinger K (2017) Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548(7666):219–223. https://doi.org/10.1038/nature23274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He W, Zhang X, Zhang Y, Zheng W, Xiong Z, Hu X, Wang M, Zhang L, Zhao K, Qiao Z, Lai W, Lv C, Kou X, Zhao Y, Yin J, Liu W, Jiang Y, Chen M, Xu R, Le R, Li C, Wang H, Wan X, Wang H, Han Z, Jiang C, Gao S, Chen J (2018) Reduced self-diploidization and improved survival of semi-cloned mice produced from androgenetic haploid embryonic stem cells through overexpression of Dnmt3b. Stem cell reports 10(2):477–493. https://doi.org/10.1016/j.stemcr.2017.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olbrich T, Mayor-Ruiz C, Vega-Sendino M, Gomez C, Ortega S, Ruiz S, Fernandez-Capetillo O (2017) A p53-dependent response limits the viability of mammalian haploid cells. Proc Natl Acad Sci USA 114(35):9367–9372. https://doi.org/10.1073/pnas.1705133114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131(3):437–440. https://doi.org/10.1016/j.cell.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  39. Santaguida S, Amon A (2015) Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16(8):473–485. https://doi.org/10.1038/nrm4025

    Article  CAS  PubMed  Google Scholar 

  40. Zhong C, Yin Q, Xie Z, Bai M, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL, Bartolomei MS, Ferguson-Smith A, Li D, Yang L, Wu Y, Li J (2015) CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17(2):221–232. https://doi.org/10.1016/j.stem.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  41. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492. https://doi.org/10.1016/j.stem.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  43. Hackett JA, Surani MA (2014) Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15(4):416–430. https://doi.org/10.1016/j.stem.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Wan H, Feng G, Wang L, He Z, Wang Y, Wang XJ, Li W, Zhou Q, Hu B (2016) Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res 26(1):135–138. https://doi.org/10.1038/cr.2015.151

    Article  PubMed  Google Scholar 

  45. Zuo E, Huo X, Yao X, Hu X, Sun Y, Yin J, He B, Wang X, Shi L, Ping J, Wei Y, Ying W, Wei W, Liu W, Tang C, Li Y, Hu J, Yang H (2017) CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol 18(1):224. https://doi.org/10.1186/s13059-017-1354-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A (2012) Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 139(18):3301–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shuai L, Wang Y, Dong M, Wang X, Sang L, Wang M, Wan H, Luo G, Gu T, Yuan Y, Feng C, Teng F, Li W, Liu X, Li T, Wang L, Wang XJ, Zhao XY, Zhou Q (2015) Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cells in vitro. J Mol Cell Biol 7(4):326–337. https://doi.org/10.1093/jmcb/mjv044

    Article  PubMed  Google Scholar 

  48. Xu H, Yue C, Zhang T, Li Y, Guo A, Liao J, Pei G, Li J, Jing N (2017) Derivation of haploid neurons from mouse androgenetic haploid embryonic stem cells. Neurosci Bull 33(3):361–364. https://doi.org/10.1007/s12264-017-0110-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He ZQ, Xia BL, Wang YK, Li J, Feng GH, Zhang LL, Li YH, Wan HF, Li TD, Xu K, Yuan XW, Li YF, Zhang XX, Zhang Y, Wang L, Li W, Zhou Q (2017) Generation of mouse haploid somatic cells by small molecules for genome-wide genetic screening. Cell Rep 20(9):2227–2237. https://doi.org/10.1016/j.celrep.2017.07.081

    Article  CAS  PubMed  Google Scholar 

  50. Kaufman MH, Robertson EJ, Handyside AH, Evans MJ (1983) Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73(1):249–261

    CAS  PubMed  Google Scholar 

  51. Leng L, Ouyang Q, Kong X, Gong F, Lu C, Zhao L, Shi Y, Cheng D, Hu L, Lu G, Lin G (2017) Self-diploidization of human haploid parthenogenetic embryos through the Rho pathway regulates endomitosis and failed cytokinesis. Sci Rep 7(1):4242. https://doi.org/10.1038/s41598-017-04602-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qu C, Yan M, Yang S, Wang L, Yin Q, Liu Y, Chen Y, Li J (2018) Haploid embryonic stem cells can be enriched and maintained by simple filtration. J Biol Chem 293(14):5230–5235. https://doi.org/10.1074/jbc.RA118.002029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Freimann R, Wutz A (2017) A fast and efficient size separation method for haploid embryonic stem cells. Biomicrofluidics 11(5):054117. https://doi.org/10.1063/1.5006326

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo A, Huang S, Yu J, Wang H, Li H, Pei G, Shen L (2017) Single-cell dynamic analysis of mitosis in haploid embryonic stem cells shows the prolonged metaphase and its association with self-diploidization. Stem Cell Rep 8(5):1124–1134. https://doi.org/10.1016/j.stemcr.2017.03.025

    Article  CAS  Google Scholar 

  55. Takahashi S, Lee J, Kohda T, Matsuzawa A, Kawasumi M, Kanai-Azuma M, Kaneko-Ishino T, Ishino F (2014) Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development 141(20):3842–3847. https://doi.org/10.1242/dev.110726

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Guo A, Xie Z, Tu W, Yu J, Wang H, Zhao J, Zhong C, Kang J, Li J, Huang S, Shen L (2017) Stabilization of mouse haploid embryonic stem cells with combined kinase and signal modulation. Sci Rep 7(1):13222. https://doi.org/10.1038/s41598-017-13471-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao H, Yang L, Cui H (2015) SIRT1 regulates autophagy and diploidization in parthenogenetic haploid embryonic stem cells. Biochem Biophys Res Commun 464(4):1163–1170. https://doi.org/10.1016/j.bbrc.2015.07.098

    Article  CAS  PubMed  Google Scholar 

  58. Yaguchi K, Yamamoto T, Matsui R, Tsukada Y, Shibanuma A, Kamimura K, Koda T, Uehara R (2018) Uncoordinated centrosome cycle underlies the instability of non-diploid somatic cells in mammals. J Cell Biol 217(7):2463–2483. https://doi.org/10.1083/jcb.201701151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. https://doi.org/10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  60. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093. https://doi.org/10.1126/science.1063443

    Article  CAS  PubMed  Google Scholar 

  61. Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118(1–2):187–190

    Article  CAS  PubMed  Google Scholar 

  62. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  63. Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22(12):1607–1616. https://doi.org/10.1101/gad.1667008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12(7):647–656. https://doi.org/10.1038/embor.2011.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Z-K, Wang L-Y, Wang L-B, Feng G-H, Yuan X-W, Liu C, Xu K, Li Y-H, Wan H-F, Zhang Y, Li Y-F, Li X, Li W, Zhou Q, Hu B-Y (2018) Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions. Cell Stem Cell. https://doi.org/10.1016/j.stem.2018.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  66. Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308(5959):548–550

    Article  CAS  PubMed  Google Scholar 

  67. Hu M, Zhao Z, TuanMu LC, Wei H, Gao F, Li L, Ying J, Zhang S (2015) Analysis of imprinted gene expression and implantation in haploid androgenetic mouse embryos. Andrologia 47(1):102–108. https://doi.org/10.1111/and.12222

    Article  CAS  PubMed  Google Scholar 

  68. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813

    Article  CAS  PubMed  Google Scholar 

  69. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374. https://doi.org/10.1038/28615

    Article  CAS  PubMed  Google Scholar 

  70. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y (1998) Eight calves cloned from somatic cells of a single adult. Science 282(5396):2095–2098

    Article  CAS  PubMed  Google Scholar 

  71. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461. https://doi.org/10.1038/8632

    Article  CAS  PubMed  Google Scholar 

  72. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289(5482):1188–1190

    Article  CAS  PubMed  Google Scholar 

  73. Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M (2002) A cat cloned by nuclear transplantation. Nature 415(6874):859. https://doi.org/10.1038/nature723

    Article  CAS  PubMed  Google Scholar 

  74. Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20(4):366–369. https://doi.org/10.1038/nbt0402-366

    Article  CAS  PubMed  Google Scholar 

  75. Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302(5648):1179. https://doi.org/10.1126/science.1088313

    Article  CAS  PubMed  Google Scholar 

  76. Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hossein MS, Kim JJ, Kang SK, Schatten G, Hwang WS (2005) Dogs cloned from adult somatic cells. Nature 436(7051):641. https://doi.org/10.1038/436641a

    Article  CAS  PubMed  Google Scholar 

  77. Li Z, Sun X, Chen J, Liu X, Wisely SM, Zhou Q, Renard JP, Leno GH, Engelhardt JF (2006) Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol 293(2):439–448. https://doi.org/10.1016/j.ydbio.2006.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hwang WS, Hossein MS, Kim JJ, Shin NS, Kang SK, Lee BC (2007) Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9(1):130–137. https://doi.org/10.1089/clo.2006.0034

    Article  CAS  PubMed  Google Scholar 

  79. Shi D, Lu F, Wei Y, Cui K, Yang S, Wei J, Liu Q (2007) Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol Reprod 77(2):285–291. https://doi.org/10.1095/biolreprod.107.060210

    Article  CAS  PubMed  Google Scholar 

  80. Wani NA, Wernery U, Hassan FA, Wernery R, Skidmore JA (2010) Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod 82(2):373–379. https://doi.org/10.1095/biolreprod.109.081083

    Article  CAS  PubMed  Google Scholar 

  81. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M, Sun Q (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell. https://doi.org/10.1016/j.cell.2018.01.020

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lacham-Kaplan O, Daniels R, Trounson A (2001) Fertilization of mouse oocytes using somatic cells as male germ cells. Reprod Biomed Online 3(3):205–211

    Article  PubMed  Google Scholar 

  83. Kimura Y, Yanagimachi R (1995) Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol Reprod 53(4):855–862

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki S, Sato K (2003) The fertilising ability of spermatogenic cells derived from cultured mouse immature testicular tissue. Zygote 11(4):307–316

    Article  CAS  PubMed  Google Scholar 

  85. Chen SU, Chang CY, Lu CC, Hsieh FJ, Ho HN, Yang YS (2004) Microtubular spindle dynamics and chromosome complements from somatic cell nuclei haploidization in mature mouse oocytes and developmental potential of the derived embryos. Hum Reprod 19(5):1181–1188. https://doi.org/10.1093/humrep/deh168

    Article  PubMed  Google Scholar 

  86. Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142(6):1083–1088. https://doi.org/10.1242/dev.122184

    Article  CAS  PubMed  Google Scholar 

  87. Vidal VPI, Chaboissier M-C, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216. https://doi.org/10.1038/90046

    Article  CAS  PubMed  Google Scholar 

  88. Gonen N, Futtner CR, Wood S, Garcia-Moreno SA, Salamone IM, Samson SC, Sekido R, Poulat F, Maatouk DM, Lovell-Badge R (2018) Sex reversal following deletion of a single distal enhancer of Sox9. Science. https://doi.org/10.1126/science.aas9408

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yamauchi Y, Riel JM, Ruthig V, Ward MA (2015) Mouse Y-encoded transcription factor Zfy2 is essential for sperm formation and function in assisted fertilization. PLoS Genet 11(12):e1005476. https://doi.org/10.1371/journal.pgen.1005476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nagashima H, Giannakis C, Ashman RJ, Nottle MB (2004) Sex differentiation and germ cell production in chimeric pigs produced by inner cell mass injection into blastocysts. Biol Reprod 70(3):702–707. https://doi.org/10.1095/biolreprod.103.022681

    Article  CAS  PubMed  Google Scholar 

  91. Isotani A, Nakanishi T, Kobayashi S, Lee J, Chuma S, Nakatsuji N, Ishino F, Okabe M (2005) Genomic imprinting of XX spermatogonia and XX oocytes recovered from XX < – > XY chimeric testes. Proc Natl Acad Sci USA 102(11):4039–4044. https://doi.org/10.1073/pnas.0406769102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Elling U, Wimmer RA, Leibbrandt A, Burkard T, Michlits G, Leopoldi A, Micheler T, Abdeen D, Zhuk S, Aspalter IM, Handl C, Liebergesell J, Hubmann M, Husa A-M, Kinzer M, Schuller N, Wetzel E, van de Loo N, Martinez JAZ, Estoppey D, Riedl R, Yang F, Fu B, Dechat T, Ivics Z, Agu CA, Bell O, Blaas D, Gerhardt H, Hoepfner D, Stark A, Penninger JM (2017) A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature 550(7674):114–118. https://doi.org/10.1038/nature24027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Forment JV, Herzog M, Coates J, Konopka T, Gapp BV, Nijman SM, Adams DJ, Keane TM, Jackson SP (2017) Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nat Chem Biol 13(1):12–14. https://doi.org/10.1038/nchembio.2226

    Article  CAS  PubMed  Google Scholar 

  94. Zuo E, Cai YJ, Li K, Wei Y, Wang BA, Sun Y, Liu Z, Liu J, Hu X, Wei W, Huo X, Shi L, Tang C, Liang D, Wang Y, Nie YH, Zhang CC, Yao X, Wang X, Zhou C, Ying W, Wang Q, Chen RC, Shen Q, Xu GL, Li J, Sun Q, Xiong ZQ, Yang H (2017) One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 27(7):933–945. https://doi.org/10.1038/cr.2017.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gandolfi F (2000) Sperm-mediated transgenesis. Theriogenology 53(1):127–137

    Article  CAS  PubMed  Google Scholar 

  96. Spadafora C (2008) Sperm-mediated ‘reverse’ gene transfer: a role of reverse transcriptase in the generation of new genetic information. Hum Reprod 23(4):735–740. https://doi.org/10.1093/humrep/dem425

    Article  CAS  PubMed  Google Scholar 

  97. Smith K, Spadafora C (2005) Sperm-mediated gene transfer: applications and implications. BioEssays 27(5):551–562. https://doi.org/10.1002/bies.20211

    Article  CAS  PubMed  Google Scholar 

  98. Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5):717–723

    Article  CAS  PubMed  Google Scholar 

  99. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233.e217–247.e217. https://doi.org/10.1016/j.cell.2016.08.056

    Article  CAS  Google Scholar 

  100. Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, Polo JM, Ford E, Lister R (2018) A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res 28(8):1193–1206. https://doi.org/10.1101/gr.233049.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35(1):97–102. https://doi.org/10.1038/ng1233

    Article  CAS  PubMed  Google Scholar 

  102. Matoba S, Zhang Y (2018) Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell. https://doi.org/10.1016/j.stem.2018.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu W, Liu X, Wang C, Gao Y, Gao R, Kou X, Zhao Y, Li J, Wu Y, Xiu W, Wang S, Yin J, Liu W, Cai T, Wang H, Zhang Y, Gao S (2016) Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell discovery 2:16010. https://doi.org/10.1038/celldisc.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gao R, Wang C, Gao Y, Xiu W, Chen J, Kou X, Zhao Y, Liao Y, Bai D, Qiao Z, Yang L, Wang M, Zang R, Liu X, Jia Y, Li Y, Zhang Y, Yin J, Wang H, Wan X, Liu W, Zhang Y, Gao S (2018) Inhibition of aberrant DNA Re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell 23(3):426.e425–435.e425. https://doi.org/10.1016/j.stem.2018.07.017

    Article  CAS  Google Scholar 

  105. Yuan Y, Huang X, Zhang L, Zhu Y, Huang Y, Qin Q, Hong Y (2013) Medaka haploid embryonic stem cells are susceptible to Singapore grouper iridovirus as well as to other viruses of aquaculture fish species. J Gen Virol 94(Pt 10):2352–2359. https://doi.org/10.1099/vir.0.054460-0

    Article  CAS  PubMed  Google Scholar 

  106. Yilmaz A, Peretz M, Aharony A, Sagi I, Benvenisty N (2018) Defining essential genes for human pluripotent stem cells by CRISPR–Cas9 screening in haploid cells. Nat Cell Biol. https://doi.org/10.1038/s41556-018-0088-1

    Article  PubMed  Google Scholar 

  107. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  108. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267–273. https://doi.org/10.1038/nbt.2800

    Article  CAS  PubMed  Google Scholar 

  110. Tu CF, Yan YT, Wu SY, Djoko B, Tsai MT, Cheng CJ, Yang RB (2008) Domain and functional analysis of a novel platelet-endothelial cell surface protein, SCUBE1. J Biol Chem 283(18):12478–12488. https://doi.org/10.1074/jbc.M705872200

    Article  CAS  PubMed  Google Scholar 

  111. Li Q, Li Y, Yang S, Huang S, Yan M, Ding Y, Tang W, Lou X, Yin Q, Sun Z, Lu L, Shi H, Wang H, Chen Y, Li J (2018) CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat Cell Biol. https://doi.org/10.1038/s41556-018-0202-4

    Article  PubMed  PubMed Central  Google Scholar 

  112. Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR (2015) Gene essentiality and synthetic lethality in haploid human cells. Science 350(6264):1092–1096. https://doi.org/10.1126/science.aac7557

    Article  CAS  PubMed  Google Scholar 

  113. Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM (2015) Identification and characterization of essential genes in the human genome. Science 350(6264):1096–1101. https://doi.org/10.1126/science.aac7041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A (2015) Identification of spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 12(4):554–561. https://doi.org/10.1016/j.celrep.2015.06.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Winter GE, Radic B, Mayor-Ruiz C, Blomen VA, Trefzer C, Kandasamy RK, Huber KVM, Gridling M, Chen D, Klampfl T, Kralovics R, Kubicek S, Fernandez-Capetillo O, Brummelkamp TR, Superti-Furga G (2014) The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nat Chem Biol 10(9):768–773. https://doi.org/10.1038/nchembio.1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, Jae LT, Wosen JE, Nagamine CM, Chapman MS, Carette JE (2016) An essential receptor for adeno-associated virus infection. Nature 530(7588):108–112. https://doi.org/10.1038/nature16465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Timms RT, Menzies SA, Tchasovnikarova IA, Christensen LC, Williamson JC, Antrobus R, Dougan G, Ellgaard L, Lehner PJ (2016) Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nat Commun 7:11786. https://doi.org/10.1038/ncomms11786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu J, Ciaudo C (2017) Vector integration sites identification for gene-trap screening in mammalian haploid cells. Sci Rep 7:44736. https://doi.org/10.1038/srep44736

    Article  PubMed  PubMed Central  Google Scholar 

  119. Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M, Sun C, Bell G, Yuan B, Muellner MK, Nijman SM, Ploegh HL, Brummelkamp TR (2011) Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 29(6):542–546. https://doi.org/10.1038/nbt.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven RM, Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van Bokhoven H, Brummelkamp TR (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340(6131):479–483. https://doi.org/10.1126/science.1233675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pettitt SJ, Krastev DB, Pemberton HN, Fontebasso Y, Frankum J, Rehman FL, Brough R, Song F, Bajrami I, Rafiq R, Wallberg F, Kozarewa I, Fenwick K, Armisen-Garrido J, Swain A, Gulati A, Campbell J, Ashworth A, Lord CJ (2017) Genome-wide barcoded transposon screen for cancer drug sensitivity in haploid mouse embryonic stem cells. Sci Data 4:170020. https://doi.org/10.1038/sdata.2017.20

    Article  PubMed  PubMed Central  Google Scholar 

  122. Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014) Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 14(3):385–393. https://doi.org/10.1016/j.stem.2013.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Ling Jin for the assistance in the schematics. This study was supported by grants from the National Key R&D Program of China (2016YFA0100400), the National Natural Science Foundation of China (31721003, 31871446 and 31801206), the Shanghai Rising-Star Program (19QA1409600) and China Postdoctoral Science Foundation (2018M640420).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayu Chen or Shaorong Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Chen, J. & Gao, S. Mammalian haploid stem cells: establishment, engineering and applications. Cell. Mol. Life Sci. 76, 2349–2367 (2019). https://doi.org/10.1007/s00018-019-03069-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03069-6

Keywords

Navigation