Skip to main content

Advertisement

Log in

Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    PubMed  Google Scholar 

  2. Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030

    CAS  Google Scholar 

  3. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    CAS  PubMed  Google Scholar 

  4. Kawai M, Modder UI, Khosla S, Rosen CJ (2011) Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 10:141–156

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Marie PJ, Kassem M (2011) Osteoblasts in osteoporosis: past emerging and future anabolic targets. Eur J Endocrinol 165:1–10

    CAS  PubMed  Google Scholar 

  6. Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648

    CAS  PubMed  Google Scholar 

  7. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    CAS  PubMed  Google Scholar 

  8. Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38

    PubMed  Google Scholar 

  9. Bianco P, Sacchetti B, Riminucci M (2011) Stem cells in skeletal physiology and endocrine diseases of bone. Endocr Dev 21:91–101

    CAS  PubMed  Google Scholar 

  10. Karsenty G (2001) Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142:2731–2733

    CAS  PubMed  Google Scholar 

  11. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    CAS  PubMed  Google Scholar 

  12. Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473:98–105

    CAS  PubMed  Google Scholar 

  13. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Marie PJ (1999) Cellular and molecular alterations of osteoblasts in human disorders of bone formation. Histol Histopathol 14:525–538

    CAS  PubMed  Google Scholar 

  15. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  16. Marie PJ (1994) Human osteoblastic cells: a potential tool to assess the etiology of pathologic bone formation. J Bone Miner Res 9:1847–1850

    CAS  PubMed  Google Scholar 

  17. Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8:212–227

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Bradley EW, McGee-Lawrence ME, Westendorf JJ (2011) Hdac-mediated control of endochondral and intramembranous ossification. Crit Rev Eukaryot Gene Expr 21:101–113

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Canalis E (1983) The hormonal and local regulation of bone formation. Endocr Rev 4:62–77

    CAS  PubMed  Google Scholar 

  20. Marie PJ, Jones D, Vico L, Zallone A, Hinsenkamp M, Cancedda R (2000) Osteobiology strain and microgravity: part I. Studies at the cellular level. Calcif Tissue Int 67:2–9

    CAS  PubMed  Google Scholar 

  21. Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3:481

    PubMed Central  PubMed  Google Scholar 

  22. Marie PJ (2009) Bone cell-matrix protein interactions. Osteoporos Int 20:1037–1042

    CAS  PubMed  Google Scholar 

  23. Khosla S (2013) Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 38:1228–1235

    Google Scholar 

  24. Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21:369–374

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Ahdjoudj S, Fromigué O, Marie PJ (2004) Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol Histopathol 19:151–157

    CAS  PubMed  Google Scholar 

  26. Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10:191–197

    CAS  PubMed  Google Scholar 

  27. Marie PJ, Kassem M (2011) Extrinsic mechanisms involved in age-related defective bone formation. J Clin Endocrinol Metab 96:600–609

    CAS  PubMed  Google Scholar 

  28. Marie PJ (2014) Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 29:1311–1321

    CAS  PubMed  Google Scholar 

  29. Marie PJ (2001) The molecular genetics of bone formation: implications for therapeutic interventions in bone disorders. Am J Pharmacogenomics 1:175–187

    CAS  PubMed  Google Scholar 

  30. Canalis E (2010) New treatment modalities in osteoporosis. Endocr Pract 16:855–863

    PubMed Central  Google Scholar 

  31. Martin TJ (2014) Bone biology and anabolic therapies for bone: current status and future prospects. J Bone Metab 21:8–20

    PubMed Central  Google Scholar 

  32. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    PubMed Central  CAS  Google Scholar 

  33. Compston JE (2007) Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone 40:1447–1452

    CAS  PubMed  Google Scholar 

  34. Martin TJ (2005) Osteoblast-derived PTHrP is a physiological regulator of bone formation. J Clin Invest 115:2322–2324

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang H, Liu J, Yin Y, Wu J, Wang Z, Miao D, Sun W (2014) Recombinant human parathyroid hormone related protein 1–34 and 1–84 and their roles in osteoporosis treatment. PLoS One 9:e88237

    PubMed Central  PubMed  Google Scholar 

  36. Horwitz MJ, Augustine M, Khan L, Martin E, Oakley CC, Carneiro RM, Tedesco MB, Laslavic A, Sereika SM, Bisello A, Garcia-Ocana A, Gundberg CM, Cauley JA, Stewart AF (2013) A comparison of parathyroid hormone-related protein (1–36) and parathyroid hormone (1–34) on markers of bone turnover and bone density in postmenopausal women: the PrOP study. J Bone Miner Res 28:2266–2276

    PubMed Central  CAS  Google Scholar 

  37. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916

    CAS  PubMed  Google Scholar 

  38. Marie PJ (2012) Signaling pathways affecting skeletal health. Curr Osteoporos Rep 10:190–198

    PubMed  Google Scholar 

  39. Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7:51–65

    CAS  PubMed  Google Scholar 

  40. Simic P, Culej JB, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S (2006) Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281:25509–25521

    CAS  PubMed  Google Scholar 

  41. Fromigué O, Modrowski D, Marie PJ (2004) Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des 10:2593–2603

    PubMed  Google Scholar 

  42. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    CAS  PubMed  Google Scholar 

  43. Marie PJ (2012) Fibroblast growth factor signaling controlling bone formation: an update. Gene 498:1–4

    CAS  PubMed  Google Scholar 

  44. Kawai M, Rosen CJ (2012) The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin North Am 41:323–333

    PubMed Central  CAS  Google Scholar 

  45. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26:390–401

    CAS  PubMed  Google Scholar 

  48. Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG (2009) Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 15:208–216

    CAS  Google Scholar 

  49. Robling AG (2012) The interaction of biological factors with mechanical signals in bone adaptation: recent developments. Curr Osteoporos Rep 10:126–131

    PubMed  Google Scholar 

  50. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    CAS  PubMed  Google Scholar 

  51. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    CAS  Google Scholar 

  52. Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643

    CAS  PubMed  Google Scholar 

  53. Canalis E (2013) Wnt signaling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583

    CAS  PubMed  Google Scholar 

  54. Wagner ER, Zhu G, Zhang BQ, Luo Q, Shi Q, Huang E, Gao Y, Gao JL, Kim SH, Rastegar F, Yang K, He BC, Chen L, Zuo GW, Bi Y, Su Y, Luo J, Luo X, Huang J, Deng ZL, Reid RR, Luu HH, Haydon RC, He TC (2011) The therapeutic potential of the Wnt signaling pathway in bone disorders. Curr Mol Pharmacol 4:14–25

    CAS  PubMed  Google Scholar 

  55. van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowik CW (2005) SOST/sclerostin an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16:319–327

    PubMed  Google Scholar 

  56. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    CAS  PubMed  Google Scholar 

  57. Paszty C, Turner CH, Robinson MK (2010) Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 25:1897–1904

    CAS  PubMed  Google Scholar 

  58. McClung MR, Grauer A (2014) Romosozumab in postmenopausal women with osteopenia. N Engl J Med 370:1664–1665

    CAS  PubMed  Google Scholar 

  59. Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33:747–783

    CAS  PubMed  Google Scholar 

  60. Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssière B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934–945

    CAS  PubMed  Google Scholar 

  61. Bodine PV, Stauffer B, Ponce-de-Leon H, Bhat RA, Mangine A, Seestaller-Wehr LM, Moran RA, Billiard J, Fukayama S, Komm BS, Pitts K, Krishnamurthy G, Gopalsamy A, Shi M, Kern JC, Commons TJ, Woodworth RP, Wilson MA, Welmaker GS, Trybulski EJ, Moore WJ (2009) A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 44:1063–1068

    CAS  PubMed  Google Scholar 

  62. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26:1953–1963

    CAS  PubMed  Google Scholar 

  63. Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J (2014) MiR-27a targets sFRP1 in hFOB cells to regulate proliferation apoptosis and differentiation. PLoS One 9:e91354

    PubMed Central  PubMed  Google Scholar 

  65. Haÿ E, Laplantine E, Geoffroy V, Frain M, Kohler T, Müller R, Marie PJ (2009) N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling osteoblast function and bone formation. Mol Cell Biol 29:953–964

    PubMed Central  PubMed  Google Scholar 

  66. Haÿ E, Nouraud A, Marie PJ (2009) N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt ERK and PI3 K/Akt signaling. PLoS One 4:e8284

    PubMed Central  PubMed  Google Scholar 

  67. Haÿ E, Buczkowski T, Marty C, Da Nascimento S, Sonnet P, Marie PJ (2012) Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation. J Bone Miner Res 27:1852–1863

    Google Scholar 

  68. Haÿ E, Dieudonné FX, Saidak Z, Marty C, Brun J, Da Nascimento S, Sonnet P, Marie PJ (2014) N-Cadherin/Wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 229:1765–1775

    PubMed  Google Scholar 

  69. Revollo L, Kading J, Jeong SY, Li J, Salazar V, Mbalaviele G, Civitelli R (2014) N-cadherin restrains PTH activation of Lrp6/beta-catenin signaling and osteoanabolic action. J Bone Miner Res. doi:10.1002/jbmr2323

    Google Scholar 

  70. Marie PJ, Haÿ E, Saidak Z (2014) Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol Metab 925:567–575. doi:10.1016/jtem20140600

    Google Scholar 

  71. Gunther T, Poli C, Muller JM, Catala-Lehnen P, Schinke T, Yin N, Vomstein S, Amling M, Schüle R (2005) Fhl2 deficiency results in osteopenia due to decreased activity of osteoblasts. EMBO J 24:3049–3056

    PubMed Central  PubMed  Google Scholar 

  72. Govoni KE, Baylink DJ, Chen J, Mohan S (2006) Disruption of four-and-a-half LIM 2 decreases bone mineral content and bone mineral density in femur and tibia bones of female mice. Calcif Tissue Int 79:112–117

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Brun J, Dieudonné FX, Marty C, Muller J, Schüle R, Patino-Garcia A, Lecanda F, Fromigué O, Marie PJ (2013) FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo. PLoS One 8:e55034

    PubMed Central  CAS  Google Scholar 

  74. Brun J, Fromigué O, Dieudonné FX, Marty C, Chen J, Dahan J, Wei Y, Marie PJ (2013) The LIM-only protein FHL2 controls mesenchymal cell osteogenic differentiation and bone formation through Wnt5a and Wnt10b. Bone 53:6–12

    CAS  PubMed  Google Scholar 

  75. Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Simmons PJ, Dawid IB, Thomas DM (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119:837–851

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Krum SA, Chang J, Miranda-Carboni G, Wang CY (2010) Novel functions for NFkappaB: inhibition of bone formation. Nat Rev Rheumatol 6:607–611

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Novack DV (2011) Role of NF-kappaB in the skeleton. Cell Res 21:169–182

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C, Al Hezaimi K, Zou W, Chen X, Mooney DJ, Wang CY (2009) NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci USA 110:9469–9474

    Google Scholar 

  80. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, Guan K, Krebsbach PH, Wang CY (2009) Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med 15:682–689

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Yao Z, Li Y, Yin X, Dong Y, Xing L, Boyce BF (2014) NF-kappaB RelB negatively regulates osteoblast differentiation and bone formation. J Bone Miner Res 29:866–877

    CAS  PubMed  Google Scholar 

  82. Yu B, Chang J, Liu Y, Li J, Kevork K, Al-Hezaimi K, Graves DT, Park NH, Wang CY (2014) Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-kappaB. Nat Med 20:1009–1017

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Koutsokeras A, Purkayashta N, Rigby A, Subang MC, Sclanders M, Vessillier S, Mullen L, Chernajovsky Y, Gould D (2014) Generation of an efficiently secreted cell penetrating NF-kappaB inhibitor. FASEB J 28:373–381

    CAS  PubMed  Google Scholar 

  84. Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10:819–823

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R (2011) Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin a bone formation inhibitor. Endocrinology 152:4514–4524

    CAS  PubMed  Google Scholar 

  86. Simic P, Zainabadi K, Bell E, Sykes DB, Saez B, Lotinun S, Baron R, Scadden D, Schipani E, Guarente L (2013) SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med 5:430–440

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Edwards JR, Perrien DS, Fleming N, Nyman JS, Ono K, Connelly L, Moore MM, Lwin ST, Yull FE, Mundy GR, Elefteriou F (2013) Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling. J Bone Miner Res 28:960–969

    CAS  PubMed  Google Scholar 

  88. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    PubMed Central  PubMed  Google Scholar 

  89. Artsi H, Cohen-Kfir E, Gurt I, Shahar R, Bajayo A, Kalish N, Bellido TM, Gabet Y, Dresner-Pollak R (2014) The sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinology 155:3508–3515

    CAS  PubMed  Google Scholar 

  90. Ciechanover A (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ 12:1178–1190

    CAS  PubMed  Google Scholar 

  91. Sévère N, Dieudonné FX, Marie PJ (2013) E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis 4:e463

    PubMed Central  PubMed  Google Scholar 

  92. Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, Harris SE, Gallwitz W, Kim KB, Hu S, Crews CM, Mundy GR (2003) Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 111:1771–1782

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M, Mancini C, Martella E, Ferrari L, Tabilio A, Rizzoli V (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110:334–338

    CAS  PubMed  Google Scholar 

  94. Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118:491–504

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Khedgikar V, Kushwaha P, Gautam J, Verma A, Changkija B, Kumar A, Sharma S, Nagar GK, Singh D, Trivedi PK, Sangwan NS, Mishra PR, Trivedi R (2013) Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis 4:e778

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Xing L, Zhang M, Chen D (2010) Smurf control in bone cells. J Cell Biochem 110:554–563

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L, He Y, Yang Z, Pan X, Chow H, To K, Li Y, Li D, Wang X, Wang Y, Lee K, Hou Z, Dong N, Li G, Leung K, Hung L, He F, Zhang L, Qin L (2012) A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med 18:307–314

    PubMed  Google Scholar 

  98. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH (2006) Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312:1223–1227

    CAS  PubMed  Google Scholar 

  99. Glimcher LH, Jones DC, Wein MN (2007) Control of postnatal bone mass by the zinc finger adapter protein Schnurri-3. Ann N Y Acad Sci 1116:174–181

    CAS  PubMed  Google Scholar 

  100. Shu L, Zhang H, Boyce BF, Xing L (2013) Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res 28:1925–1935

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G (2001) Beyond the RING: CBL proteins as multivalent adapters. Oncogene 20:6382–6402

    CAS  PubMed  Google Scholar 

  102. Salingcarnboriboon RA, Pavasant P, Noda M (2010) Cbl-b enhances Runx2 protein stability and augments osteocalcin promoter activity in osteoblastic cell lines. J Cell Physiol 224:743–747

    CAS  PubMed  Google Scholar 

  103. Sanjay A, Horne WC, Baron R (2001) The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. Sci STKE 2001:40

    Google Scholar 

  104. Thien CB, Langdon WY (2005) Negative regulation of PTK signaling by Cbl proteins. Growth Factors 23:161–167

    CAS  PubMed  Google Scholar 

  105. Sévère N, Miraoui H, Marie PJ (2011) The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem 286:24443–24450

    PubMed Central  PubMed  Google Scholar 

  106. Dieudonné FX, Sévère N, Biosse-Duplan M, Weng JJ, Su Y, Marie PJ (2013) Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity. Stem Cells 31:1340–1349

    PubMed  Google Scholar 

  107. Brennan T, Adapala NS, Barbe MF, Yingling V, Sanjay A (2011) Abrogation of Cbl-PI3 K interaction increases bone formation and osteoblast prolifération. Calcif Tissue Int 89:396–410

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Aubin JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2:81–94

    CAS  PubMed  Google Scholar 

  109. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    CAS  PubMed  Google Scholar 

  110. Bianco P, Robey PG, Saggio I, Riminucci M (2010) “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature identity and significance in incurable skeletal disease. Hum Gene Ther 21:1057–1066

    CAS  PubMed  Google Scholar 

  111. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100:11917–11923

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Marie PJ, Fromigué O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1:539–548

    CAS  PubMed  Google Scholar 

  113. Vilquin JT, Rosset P (2006) Mesenchymal stem cells in bone and cartilage repair: current status. Regen Med 1:589–604

    CAS  PubMed  Google Scholar 

  114. Marie PJ (2013) Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol 9:288–295

    CAS  PubMed  Google Scholar 

  115. Hamidouche Z, Fromigué O, Ringe J, Haüpl T, Vaudin P, Pages JC, Srouji S, Livne E, Marie PJ (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106:18587–18591

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Kaabeche K, Guénou H, Bouvard D, Didelot N, Listrat A, Marie PJ (2005) Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 118:1223–1232

    CAS  PubMed  Google Scholar 

  117. Srouji S, Ben-David D, Fromigué O, Vaudin P, Kuhn G, Müller R, Livne E, Marie PJ (2012) Lentiviral-mediated integrin alpha5 expression in human adult mesenchymal stromal cells promotes bone repair in mouse cranial and long-bone defects. Hum Gene Ther 23:167–172

    CAS  PubMed  Google Scholar 

  118. Fromigué O, Brun J, Marty C, Da Nascimento S, Sonnet P, Marie PJ (2012) Peptide-based activation of alpha5 integrin for promoting osteogenesis. J Cell Biochem 113:3029–3038

    PubMed  Google Scholar 

  119. Kumar S, Ponnazhagan S (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 21:3917–3927

    CAS  PubMed  Google Scholar 

  120. Yao W, Guan M, Jia J, Dai W, Lay YA, Amugongo S, Liu R, Olivos D, Saunders M, Lam KS, Nolta J, Olvera D, Ritchie RO, Lane NE (2013) Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31:2003–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Zhang Y, Wei L, Miron RJ, Shi B, Bian Z (2014) Anabolic bone formation via a site specific bone targeting delivery system by interfering with semaphorin 4d expression. J Bone Miner Res. doi:10.1002/jbmr2322

    PubMed Central  Google Scholar 

  123. Wagner EF, Karsenty G (2001) Genetic control of skeletal development. Curr Opin Genet Dev 11:527–532

    CAS  PubMed  Google Scholar 

  124. Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662

    CAS  PubMed  Google Scholar 

  125. Janssens K, Van Hul W (2002) Molecular genetics of too much bone. Hum Mol Genet 11:2385–2393

    CAS  PubMed  Google Scholar 

  126. Shenker A, Chanson P, Weinstein LS, Chi P, Spiegel AM, Lomri A, Marie PJ (1995) Osteoblastic cells derived from isolated lesions of fibrous dysplasia contain activating somatic mutations of the Gs alpha gene. Hum Mol Genet 4:1675–1676

    CAS  PubMed  Google Scholar 

  127. Marie PJ (2001) Cellular and molecular basis of fibrous dysplasia. Histol Histopathol 16:981–988

    CAS  PubMed  Google Scholar 

  128. Riminucci M, Robey PG, Bianco P (2007) The pathology of fibrous dysplasia and the McCune-Albright syndrome. Pediatr Endocrinol Rev 4:401–411

    PubMed  Google Scholar 

  129. Marie PJ, de Pollak C, Chanson P, Lomri A (1997) Increased proliferation of osteoblastic cells expressing the activating Gs alpha mutation in monostotic and polyostotic fibrous dysplasia. Am J Pathol 150:1059–1069

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Riminucci M, Fisher LW, Shenker A, Spiegel AM, Bianco P, Gehron Robey P (1997) Fibrous dysplasia of bone in the McCune-Albright syndrome: abnormalities in bone formation. Am J Pathol 151:1587–1600

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Saggio I, Remoli C, Spica E, Cersosimo S, Sacchetti B, Robey PG, Holmbeck K, Cumano A, Boyde A, Bianco P, Riminucci M (2014) Constitutive expression of Gsalpha in mice produces a heritable direct replica of human fibrous dysplasia bone pathology and demonstrates its natural history. J Bone Miner Res. doi:10.1002/jbmr2267

    Google Scholar 

  132. Piersanti S, Remoli C, Saggio I, Funari A, Michienzi S, Sacchetti B, Robey PG, Riminucci M, Bianco P (2010) Transfer analysis and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. J Bone Miner Res 25:1103–1116

    CAS  PubMed  Google Scholar 

  133. Kronenberg HM (2010) Gs signaling in osteoblasts and hematopoietic stem cells. Ann NY Acad Sci 1192:327–329

    PubMed  Google Scholar 

  134. Sinha P, Aarnisalo P, Chubb R, Ono N, Fulzele K, Selig M, Saeed H, Chen M, Weinstein LS, Divieti Pajevic P, Kronenberg HM, Wu JY (2014) Loss of G alpha early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. J Bone Miner Res. doi:10.1002/jbm2270

    PubMed Central  Google Scholar 

  135. Wu JY, Aarnisalo P, Bastepe M, Sinha P, Fulzele K, Selig MK, Chen M, Poulton IJ, Purton LE, Sims NA, Weinstein LS, Kronenberg HM (2011) Gsalpha enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest 121:3492–3504

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Regard JB, Cherman N, Palmer D, Kuznetsov SA, Celi FS, Guettier JM, Chen M, Bhattacharyya N, Wess J, Coughlin SR, Weinstein LS, Collins MT, Robey PG, Yang Y (2011) Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci USA 108:20101–20106

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446–1465

    CAS  PubMed  Google Scholar 

  138. Lomri A, Lemonnier J, Hott M, de Parseval N, Lajeunie E, Munnich A, Renier D, Marie PJ (1998) Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. J Clin Invest 101:1310–1317

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Marie PJ, Kaabeche K, Guénou H (2008) Roles of FGFR2 and twist in human craniosynostosis: insights from genetic mutations in cranial osteoblasts. Front Oral Biol 12:144–159

    PubMed  Google Scholar 

  140. Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247

    CAS  PubMed  Google Scholar 

  141. Suzuki H, Suda N, Shiga M, Kobayashi Y, Nakamura M, Iseki S, Moriyama K (2012) Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts. J Cell Physiol 227:3267–3277

    CAS  PubMed  Google Scholar 

  142. Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE, Thesleff I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855

    CAS  PubMed  Google Scholar 

  143. Hajihosseini MK (2008) Fibroblast growth factor signaling in cranial suture development and pathogenesis. Front Oral Biol 12:160–177

    PubMed  Google Scholar 

  144. Marie PJ, Coffin JD, Hurley MM (2005) FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem 96:888–896

    CAS  PubMed  Google Scholar 

  145. Mansukhani A, Bellosta P, Sahni M, Basilico C (2000) Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 149:1297–1308

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C (2005) Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 168:1065–1076

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Wilkie AO (2007) Cancer drugs to treat birth defects. Nat Genet 39:1057–1059

    CAS  PubMed  Google Scholar 

  148. Melville H, Wang Y, Taub PJ, Jabs EW (2010) Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A 152A:3007–3015

    PubMed  Google Scholar 

  149. Eswarakumar VP, Ozcan F, Lew ED, Bae JH, Tome F, Booth CJ, Adams DJ, Lax I, Schlessinger J (2006) Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci USA 103:18603–18608

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX (2007) RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39:1145–1150

    CAS  PubMed  Google Scholar 

  151. Miraoui H, Ringe J, Haüpl T, Marie PJ (2010) Increased EGF- and PDGFα-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet 19:1678–1689

    CAS  PubMed  Google Scholar 

  152. Moenning A, Jager R, Egert A, Kress W, Wardelmann E, Schorle H (2009) Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 29:881–891

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Miraoui H, Marie PJ (2010) Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3:re9

    PubMed  Google Scholar 

  154. Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, Garcia Delgado C, Gonzalez-Ramos M, Kline AD, Jabs EW (1997) Mutations in TWIST a basic helix-loop-helix transcription factor in Saethre-Chotzen syndrome. Nat Genet 15:36–41

    PubMed  Google Scholar 

  155. El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (2000) Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 9:813–819

    PubMed  Google Scholar 

  156. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    CAS  PubMed  Google Scholar 

  157. Yousfi M, Lasmoles F, Lomri A, Delannoy P, Marie PJ (2001) Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. J Clin Invest 107:1153–1161

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Yousfi M, Lasmoles F, Marie PJ (2002) TWIST inactivation reduces CBFA1/RUNX2 expression and DNA binding to the osteocalcin promoter in osteoblasts. Biochem Biophys Res Commun 297:641–644

    CAS  PubMed  Google Scholar 

  159. Miraoui H, Marie PJ (2010) Pivotal role of Twist in skeletal biology and pathology. Gene 468:1–7

    CAS  PubMed  Google Scholar 

  160. Guénou H, Kaabeche K, le Mée SL, Marie PJ (2005) A role for fibroblast growth factor receptor-2 in the altered osteoblast phenotype induced by Twist haploinsufficiency in the Saethre-Chotzen syndrome. Hum Mol Genet 14:1429–1439

    PubMed  Google Scholar 

  161. Connerney J, Andreeva V, Leshem Y, Mercado MA, Dowell K, Yang X, Lindner V, Friesel RE, Spicer DB (2008) Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Dev Biol 318:323–334

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Miraoui H, Sévère N, Vaudin P, Pagès JC, Marie PJ (2010) Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: implication of FGFR2 signaling. J Cell Biochem 110:1147–1154

    CAS  PubMed  Google Scholar 

  163. Haworth CS, Webb AK, Elkin SL, Hodson ME, Compston JE, Selby PL (2000) Cystic fibrosis related low bone density. Arch Dis Child 83:369

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Elkin SL, Vedi S, Bord S, Garrahan NJ, Hodson ME, Compston JE (2002) Histomorphometric analysis of bone biopsies from the iliac crest of adults with cystic fibrosis. Am J Respir Crit Care Med 166:1470–1474

    PubMed  Google Scholar 

  165. Le Henaff C, Gimenez A, Haÿ E, Marty C, Marie PJ, Jacquot J (2012) The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am J Pathol 180:2068–2075

    PubMed  Google Scholar 

  166. Le Henaff C, Haÿ E, Velard F, Marty C, Tabary O, Marie PJ, Jacquot JP (2014) Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol 184:1132–1141

    PubMed  Google Scholar 

  167. Marie PJ, Fromigué O, Modrowski D (2014) Deregulation of osteoblast differentiation in primary bone cancers. In: Heymann D (ed) Bone cancer: primary bone cancers and bone metastases, 2nd edn. Elseiver, New York

    Google Scholar 

  168. Broadhead ML, Clark JC, Myers DE, Dass CR, Choong PF (2011) The molecular pathogenesis of osteosarcoma: a review. Sarcoma 2011:959248

    PubMed Central  PubMed  Google Scholar 

  169. Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, Hinds PW (2001) The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 8:303–316

    CAS  PubMed  Google Scholar 

  170. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    CAS  PubMed  Google Scholar 

  171. Dani N, Olivero M, Mareschi K, van Duist MM, Miretti S, Cuvertino S, Patane S, Calogero R, Ferracini R, Scotlandi K, Fagioli F, Di Renzo MF (2012) The MET oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteo-progenitors. J Bone Miner Res 27:1322–1334

    CAS  PubMed  Google Scholar 

  172. Martin JW, Zielenska M, Stein GS, van Wijnen AJ, Squire JA (2011) The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011:282745

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, Jia SF, Kleinerman ES (2005) Osterix a transcription factor for osteoblast differentiation mediates antitumor activity in murine osteosarcoma. Cancer Res 65:1124–1128

    CAS  PubMed  Google Scholar 

  174. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH, Mansukhani A, Basilico C (2012) Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 31:2270–2282

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Rettew AN, Getty PJ, Greenfield EM (2014) Receptor tyrosine kinases in osteosarcoma: not just the usual suspects. Adv Exp Med Biol 804:47–66

    PubMed  Google Scholar 

  176. Zhang H, Wu H, Zheng J, Yu P, Xu L, Jiang P, Gao J, Wang H, Zhang Y (2013) Transforming growth factor beta1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells in osteosarcoma. Stem Cells 31:433–446

    PubMed  Google Scholar 

  177. Rikhof B, de Jong S, Suurmeijer AJ, Meijer C, van der Graaf WT (2009) The insulin-like growth factor system and sarcomas. J Pathol 217:469–482

    CAS  PubMed  Google Scholar 

  178. Lee JA, Ko Y, Kim DH, Lim JS, Kong CB, Cho WH, Jeon DG, Lee SY, Koh JS (2012) Epidermal growth factor receptor: is it a feasible target for the treatment of osteosarcoma? Cancer Res Treat 44:202–209

    PubMed Central  PubMed  Google Scholar 

  179. Sévère N, Dieudonné FX, Marty C, Modrowski D, Patino-Garcia A, Lecanda F, Fromigué O, Marie PJ (2012) Targeting the E3 ubiquitin casitas B-lineage lymphoma decreases osteosarcoma cell growth and survival and reduces tumorigenesis. J Bone Miner Res 27:2108–2117

    PubMed  Google Scholar 

  180. Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R, Geller DS (2012) Cell surface receptor expression patterns in osteosarcoma. Cancer 118:740–749

    CAS  PubMed  Google Scholar 

  181. Jullien N, Dieudonné FX, Habel N, Marty C, Modrowski D, Patino A, Lecanda F, Sévère N, Marie PJ (2013) ErbB3 silencing reduces osteosarcoma cell proliferation and tumor growth in vivo. Gene 521:55–61

    CAS  PubMed  Google Scholar 

  182. Shapovalov Y, Benavidez D, Zuch D, Eliseev RA (2010) Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcoma. Int J Cancer 127:67–76

    CAS  PubMed  Google Scholar 

  183. Haydon RC, Deyrup A, Ishikawa A, Heck R, Jiang W, Zhou L, Feng T, King D, Cheng H, Breyer B, Peabody T, Simon MA, Montag AG, He TC (2002) Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer 102:338–342

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Hoang BH, Kubo T, Healey JH, Sowers R, Mazza B, Yang R, Huvos AG, Meyers PA, Gorlick R (2004) Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 109:106–111

    CAS  PubMed  Google Scholar 

  185. Dieudonné FX, Marion A, Haÿ E, Marie PJ, Modrowski D (2010) High Wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res 70:5399–5408

    PubMed  Google Scholar 

  186. McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH (2011) The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 11:1223–1232

    CAS  PubMed  Google Scholar 

  187. Guo Y, Rubin EM, Xie J, Zi X, Hoang BH (2008) Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466:2039–2045

    PubMed Central  PubMed  Google Scholar 

  188. Dieudonné FX, Marion A, Marie PJ, Modrowski D (2012) Targeted inhibition of T-cell factor activity promotes syndecan-2 expression and sensitization to doxorubicin in osteosarcoma cells and bone tumors in mice. J Bone Miner Res 27:2118–2129

    PubMed  Google Scholar 

  189. Rao-Bindal K, Kleinerman ES (2011) Epigenetic regulation of apoptosis and cell cycle in osteosarcoma. Sarcoma 2011:679457

    PubMed Central  PubMed  Google Scholar 

  190. Kresse SH, Rydbeck H, Skarn M, Namlos HM, Barragan-Polania AH, Cleton-Jansen AM, Serra M, Liestol K, Hogendoorn PC, Hovig E, Myklebost O, Meza-Zepeda LA (2012) Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS One 7:e48262

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Gordon JA, Montecino MA, Aqeilan RI, Stein JL, Stein GS, Lian JB (2014) Epigenetic pathways regulating bone homeostasis: potential targeting for intervention of skeletal disorders. Curr Osteoporos Rep 12:496–506

    PubMed Central  PubMed  Google Scholar 

  192. Cain JE, McCaw A, Jayasekara WS, Rossello FJ, Marini KD, Irving AT, Kansara M, Thomas DM, Ashley DM, Watkins DN (2013) Sustained low-dose treatment with the histone deacetylase inhibitor LBH589 induces terminal differentiation of osteosarcoma cells. Sarcoma 2013:608964

    PubMed Central  PubMed  Google Scholar 

  193. Nugent M (2014) MicroRNA function and dysregulation in bone tumors: the evidence to date. Cancer Manag Res 6:15–25

    PubMed Central  PubMed  Google Scholar 

  194. Miao J, Wu S, Peng Z, Tania M, Zhang C (2013) MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol 34:2093–2098

    CAS  PubMed  Google Scholar 

  195. Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu ZN, Nagano K, Baron R, Sacco A, Roccaro AM, Farokhzad OC, Ghobrial IM (2014) Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA 111:10287–10292

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Magnon C, Lucas D, Frenette PS (2011) Trafficking of stem cells. Methods Mol Biol 750:3–24

    CAS  PubMed  Google Scholar 

  197. Lo Celso C, Lin CP, Scadden DT (2011) In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Protoc 6:1–14

    PubMed Central  CAS  PubMed  Google Scholar 

  198. McGee-Lawrence ME, Westendorf JJ (2011) Histone deacetylases in skeletal development and bone mass maintenance. Gene 474:1–11

    PubMed Central  CAS  PubMed  Google Scholar 

  199. van Wijnen AJ, van de Peppel J, van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ, Oursler MJ, Im HJ, Taipaleenmaki H, Hesse E, Riester S, Kakar S (2013) MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 11:72–82

    PubMed Central  PubMed  Google Scholar 

  200. Askmyr M, Sims NA, Martin TJ, Purton LE (2009) What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab 20:303–309

    CAS  PubMed  Google Scholar 

  201. Wu JY, Scadden DT, Kronenberg HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24:759–764

    PubMed Central  PubMed  Google Scholar 

  202. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, Scadden DT (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Shiozawa Y, Taichman RS (2012) Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp Hematol 40:685–694

    PubMed Central  PubMed  Google Scholar 

  204. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, Khiabanian H, Lee A, Murty VV, Friedman R, Brum A, Park D, Galili N, Mukherjee S, Teruya-Feldstein J, Raza A, Rabadan R, Berman E, Kousteni S (2014) Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506:240–244

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Krevvata M, Silva BC, Manavalan JS, Galan-Diez M, Kode A, Matthews BG, Park D, Zhang CA, Galili N, Nickolas TL, Dempster DW, Dougall W, Teruya-Feldstein J, Economides AN, Kalajzic I, Raza A, Berman E, Mukherjee S, Bhagat G, Kousteni S (2014) Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood 124:2834–2846

Download references

Acknowledgments

The author thanks all members of his group Osteoblast Biology and Pathology who contributed to the work reviewed in this paper, and apologizes to the investigators whose work could not be cited due to space limitations. The author’s work was supported by Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Médicale (Inserm), University Paris Diderot, European Commission programs (FP76, FP7), European Calcified Tissue Society (ECTS), Agence Nationale de la Recherche (ANR), Centre National d’Etudes Spatiales (CNES), DIM Stem Pôle Ile de France, Fondation de l’Avenir pour la Recherche Appliquée, Association Recherche contre le Cancer (ARC), Fondation pour la Recherche Médicale (FRM), Société Française de Rhumatologie (SFR), Association Prévention et Traitement des Décalcifications (PTD) and Association Rhumatisme et Travail (Paris, France). Figures were produced using Servier Medical Art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Marie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marie, P.J. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell. Mol. Life Sci. 72, 1347–1361 (2015). https://doi.org/10.1007/s00018-014-1801-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1801-2

Keywords

Navigation