Skip to main content

Advertisement

Log in

Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following α-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  PubMed  CAS  Google Scholar 

  2. Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523

    Article  PubMed  CAS  Google Scholar 

  3. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    Article  PubMed  CAS  Google Scholar 

  4. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373

    Article  PubMed  CAS  Google Scholar 

  5. Gauss R, Jarosch E, Sommer T, Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849–854

    Article  PubMed  CAS  Google Scholar 

  6. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    Article  PubMed  CAS  Google Scholar 

  7. Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282

    Article  PubMed  CAS  Google Scholar 

  8. Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–591

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki T (2007) Cytoplasmic peptide:N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin Cell Dev Biol 18:762–769

    Article  PubMed  CAS  Google Scholar 

  10. Alonzi DS, Neville DC, Lachmann RH, Dwek RA, Butters TD (2008) Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition. Biochem J 409:571–580

    Article  PubMed  CAS  Google Scholar 

  11. Kukushkin NV, Alonzi DS, Dwek RA, Butters TD (2011) Demonstration that endoplasmic reticulum-associated degradation of glycoproteins can occur downstream of processing by endomannosidase. Biochem J 438:133–142

    Article  PubMed  CAS  Google Scholar 

  12. Mellor HR, Neville DC, Harvey DJ, Platt FM, Dwek RA, Butters TD (2004) Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides. Biochem J 381:867–875

    Article  PubMed  CAS  Google Scholar 

  13. Moore SE, Spiro RG (1994) Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem 269:12715–12721

    PubMed  CAS  Google Scholar 

  14. Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61:1025–1041

    Article  PubMed  CAS  Google Scholar 

  15. Moore SE (1999) Oligosaccharide transport: pumping waste from the ER into lysosomes. Trends Cell Biol 9:441–446

    Article  PubMed  CAS  Google Scholar 

  16. Bernon C, Carre Y, Kuokkanen E, Slomianny MC, Mir AM, Krzewinski F, Cacan R, Heikinheimo P, Morelle W, Michalski JC, Foulquier F, Duvet S (2011) Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology 21:363–375

    Article  PubMed  CAS  Google Scholar 

  17. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  PubMed  CAS  Google Scholar 

  18. Saint-Pol A, Bauvy C, Codogno P, Moore SE (1997) Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells. J Cell Biol 136:45–59

    Article  PubMed  CAS  Google Scholar 

  19. Saint-Pol A, Codogno P, Moore SE (1999) Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes. J Biol Chem 274:13547–13555

    Article  PubMed  CAS  Google Scholar 

  20. Gross V, Tran-Thi TA, Schwarz RT, Elbein AD, Decker K, Heinrich PC (1986) Different effects of the glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine on the glycosylation of rat alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein. Biochem J 236:853–860

    PubMed  CAS  Google Scholar 

  21. Lodish HF, Kong N (1984) Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol 98:1720–1729

    Article  PubMed  CAS  Google Scholar 

  22. Lubas WA, Spiro RG (1987) Golgi endo-alpha-d-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J Biol Chem 262:3775–3781

    PubMed  CAS  Google Scholar 

  23. Moore SE, Bauvy C, Codogno P (1995) Endoplasmic reticulum-to-cytosol transport of free polymannose oligosaccharides in permeabilized HepG2 cells. EMBO J 14:6034–6042

    PubMed  CAS  Google Scholar 

  24. Karaivanova VK, Luan P, Spiro RG (1998) Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity. Glycobiology 8:725–730

    Article  PubMed  CAS  Google Scholar 

  25. Neville DC, Coquard V, Priestman DA, Te Vruchte DJ, Sillence DJ, Dwek RA, Platt FM, Butters TD (2004) Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Anal Biochem 331:275–282

    Article  PubMed  CAS  Google Scholar 

  26. Olafson RW, Thomas JR, Ferguson MA, Dwek RA, Chaudhuri M, Chang KP, Rademacher TW (1990) Structures of the N-linked oligosaccharides of Gp63, the major surface glycoprotein, from Leishmania mexicana amazonensis. J Biol Chem 265:12240–12247

    PubMed  CAS  Google Scholar 

  27. Karlsson GB, Butters TD, Dwek RA, Platt FM (1993) Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem 268:570–576

    PubMed  CAS  Google Scholar 

  28. Gao N, Lehrman MA (2002) Analyses of dolichol pyrophosphate–linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology 12:353–360

    Article  PubMed  CAS  Google Scholar 

  29. Misaghi S, Pacold ME, Blom D, Ploegh HL, Korbel GA (2004) Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem Biol 11:1677–1687

    Article  PubMed  CAS  Google Scholar 

  30. Chantret I, Moore SE (2008) Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 18:210–224

    Article  PubMed  CAS  Google Scholar 

  31. Karaivanova VK, Spiro RG (2000) Effect of proteasome inhibitors on the release into the cytosol of free polymannose oligosaccharides from glycoproteins. Glycobiology 10:727–735

    Article  PubMed  CAS  Google Scholar 

  32. Kijima Y, Ogunbunmi E, Fleischer S (1991) Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum. J Biol Chem 266:22912–22918

    PubMed  CAS  Google Scholar 

  33. Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266:17067–17071

    PubMed  CAS  Google Scholar 

  34. Ying M, Sannerud R, Flatmark T, Saraste J (2002) Colocalization of Ca2+-ATPase and GRP94 with p58 and the effects of thapsigargin on protein recycling suggest the participation of the pre-Golgi intermediate compartment in intracellular Ca2+ storage. Eur J Cell Biol 81:469–483

    Article  PubMed  CAS  Google Scholar 

  35. Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070

    Article  PubMed  CAS  Google Scholar 

  36. Caldwell SR, Hill KJ, Cooper AA (2001) Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem 276:23296–23303

    Article  PubMed  CAS  Google Scholar 

  37. Ahner A, Brodsky JL (2004) Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol 14:474–478

    Article  PubMed  CAS  Google Scholar 

  38. Butters TD, Alonzi DS, Kukushkin NV, Ren Y, Bleriot Y (2009) Novel mannosidase inhibitors probe glycoprotein degradation pathways in cells. Glycoconj J 26:1109–1116

    Article  PubMed  CAS  Google Scholar 

  39. Durrant C, Moore SE (2002) Perturbation of free oligosaccharide trafficking in endoplasmic reticulum glucosidase I-deficient and castanospermine-treated cells. Biochem J 365:239–247

    Article  PubMed  CAS  Google Scholar 

  40. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stutz AE, Butters TD, Williams SJ, Davies GJ (2012) Structural and mechanistic insight into N-glycan processing by endo-alpha-mannosidase. Proc Natl Acad Sci USA 109:781–786

    Article  PubMed  CAS  Google Scholar 

  41. Ardron H, Butters TD, Platt FM, Wormald MR, Dwek RA, Fleet GWJ, Jacob GS (1993) Synthesis of 1,5-dideoxy-3-O-(alpha-d-mannoyranosyl)-1,5-imino-d-mannitol and 1,5-dideoxy-3-O-(alpha-d-glucopyranosyl)-1,5-imino-d-mannitol: powerful inhibitors of endomannosidase. Tetrahedron Asymmetry 4:2011–2024

    Article  CAS  Google Scholar 

  42. Marriott AC (2005) Complete genome sequences of Chandipura and Isfahan vesiculoviruses. Arch Virol 150:671–680

    Article  PubMed  CAS  Google Scholar 

  43. Lodish HF, Kong N, Snider M, Strous GJ (1983) Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304:80–83

    Article  PubMed  CAS  Google Scholar 

  44. Zilberstein A, Snider MD, Porter M, Lodish HF (1980) Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell 21:417–427

    Article  PubMed  CAS  Google Scholar 

  45. Reiterer V, Nyfeler B, Hauri HP (2010) Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Traffic 11:1044–1055

    Article  PubMed  CAS  Google Scholar 

  46. Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172

    Article  PubMed  CAS  Google Scholar 

  47. Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877

    Article  PubMed  CAS  Google Scholar 

  48. Hosokawa N, Wada I, Natsuka Y, Nagata K (2006) EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cells 11:465–476

    Article  PubMed  CAS  Google Scholar 

  49. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172:383–393

    Article  PubMed  CAS  Google Scholar 

  50. Ron E, Shenkman M, Groisman B, Izenshtein Y, Leitman J, Lederkremer GZ (2011) Bypass of glycan-dependent glycoprotein delivery to ERAD by upregulated EDEM1. Mol Biol Cell 22:3945–3954

    Article  PubMed  CAS  Google Scholar 

  51. Vashist S, Kim W, Belden WJ, Spear ED, Barlowe C, Ng DT (2001) Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 155:355–368

    Article  PubMed  CAS  Google Scholar 

  52. Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52

    Article  PubMed  CAS  Google Scholar 

  53. Arvan P, Zhao X, Ramos-Castaneda J, Chang A (2002) Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 3:771–780

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Pirkko Heikinheimo and Elina Kuokkanen, as well as Dr. John Christianson, for providing plasmids. Dr. Anthony Marriott is thanked for providing CHPV. Amicus Therapeutics are thanked for providing a chemical reagent. The authors would like to thank Oxford Glycobiology Institute and the Australian Research Council for financial support and Clarendon Fund/New College (Robert Lyns) for support of NVK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry D. Butters.

Additional information

D.S. Alonzi and N.V. Kukushkin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 498 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonzi, D.S., Kukushkin, N.V., Allman, S.A. et al. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell. Mol. Life Sci. 70, 2799–2814 (2013). https://doi.org/10.1007/s00018-013-1304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1304-6

Keywords

Navigation