Skip to main content

Advertisement

Log in

Induced pluripotent stem cells for cardiac repair

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CPCs:

Cardiac progenitor cells

EBs:

Embryoid bodies

ESCs:

Embryonic stem cells

hESCs:

Human embryonic stem cells

hiPSCs:

Human-induced pluripotent stem cells

hiPSCs-CMs:

Human-induced pluripotent stem cells-derived cardiomyocytes

hPSCs:

Human pluripotent stem cells

iPSCs:

Induced pluripotent stem cells

miPSCs:

Murine-induced pluripotent stem cells

miRNAs:

MicroRNAs

MSCs:

Mesenchymal stem cells

References

  1. Cohn JN, Bristow MR, Chien KR, Colucci WS, Frazier OH et al (1997) Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on Heart Failure Research. Circulation 95:766–770

    Article  PubMed  CAS  Google Scholar 

  2. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  3. Kajstura J, Gurusamy N, Ogorek B, Goichberg P, Clavo-Rondon C et al (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386

    Article  PubMed  CAS  Google Scholar 

  4. Parmacek MS, Epstein JA (2009) Cardiomyocyte renewal. N Engl J Med 361:86–88

    Article  PubMed  CAS  Google Scholar 

  5. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  PubMed  CAS  Google Scholar 

  6. Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109:941–961

    Article  PubMed  CAS  Google Scholar 

  7. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    PubMed  CAS  Google Scholar 

  8. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  PubMed  CAS  Google Scholar 

  9. Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453:322–329

    Article  PubMed  CAS  Google Scholar 

  10. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  PubMed  CAS  Google Scholar 

  11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  13. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  14. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  15. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  PubMed  CAS  Google Scholar 

  16. Barile L, Messina E, Giacomello A, Marban E (2007) Endogenous cardiac stem cells. Prog Cardiovasc Dis 50:31–48

    Article  PubMed  CAS  Google Scholar 

  17. Mohsin S, Siddiqi S, Collins B, Sussman MA (2011) Empowering adult stem cells for myocardial regeneration. Circ Res 109:1415–1428

    Article  PubMed  CAS  Google Scholar 

  18. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  19. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  20. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99:4391–4396

    Article  PubMed  CAS  Google Scholar 

  21. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125:87–99

    Article  PubMed  Google Scholar 

  22. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93:32–39

    Article  PubMed  CAS  Google Scholar 

  23. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    PubMed  CAS  Google Scholar 

  24. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  PubMed  CAS  Google Scholar 

  25. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  PubMed  CAS  Google Scholar 

  26. Tomescot A, Leschik J, Bellamy V, Dubois G, Messas E et al (2007) Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells 25:2200–2205

    Article  PubMed  CAS  Google Scholar 

  27. Xu C, Police S, Rao N, Carpenter MK (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  PubMed  CAS  Google Scholar 

  28. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    Article  PubMed  CAS  Google Scholar 

  29. Caspi O, Itzhaki I, Kehat I, Gepstein A, Arbel G et al (2009) In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev 18:161–172

    Article  PubMed  CAS  Google Scholar 

  30. Dick E, Rajamohan D, Ronksley J, Denning C (2010) Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 38:1037–1045

    Article  PubMed  CAS  Google Scholar 

  31. Gepstein L (2002) Derivation and potential applications of human embryonic stem cells. Circ Res 91:866–876

    Article  PubMed  CAS  Google Scholar 

  32. Kehat I, Gepstein L (2003) Human embryonic stem cells for myocardial regeneration. Heart Fail Rev 8:229–236

    Article  PubMed  Google Scholar 

  33. Shiba Y, Hauch KD, Laflamme MA (2009) Cardiac applications for human pluripotent stem cells. Curr Pharm Des 15:2791–2806

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  35. Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S et al (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5:434–441

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  PubMed  CAS  Google Scholar 

  37. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A et al (2009) Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120:1513–1523

    Article  PubMed  CAS  Google Scholar 

  38. Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812

    Article  PubMed  CAS  Google Scholar 

  39. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O et al (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229

    Article  PubMed  CAS  Google Scholar 

  40. Moretti A, Bellin M, Welling A, Jung CB, Lam JT et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  PubMed  CAS  Google Scholar 

  41. Amabile G, Meissner A (2009) Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 15:59–68

    Article  PubMed  CAS  Google Scholar 

  42. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ et al (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601

    Article  PubMed  CAS  Google Scholar 

  43. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  PubMed  CAS  Google Scholar 

  44. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  PubMed  CAS  Google Scholar 

  45. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264

    Article  PubMed  CAS  Google Scholar 

  46. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    Article  PubMed  CAS  Google Scholar 

  47. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  PubMed  CAS  Google Scholar 

  48. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  49. Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  PubMed  CAS  Google Scholar 

  50. Kim D, Kim CH, Moon JI, Chung YG, Chang MY et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  Google Scholar 

  51. Zhou H, Wu S, Joo JY, Zhu S, Han DW et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  PubMed  CAS  Google Scholar 

  52. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  PubMed  CAS  Google Scholar 

  53. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  PubMed  CAS  Google Scholar 

  54. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE et al (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503

    Article  PubMed  CAS  Google Scholar 

  55. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    Article  PubMed  Google Scholar 

  56. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506

    Article  PubMed  Google Scholar 

  57. Zwi-Dantsis L, Mizrahi I, Arbel G, Gepstein A, Gepstein L (2011) Scalable Production of Cardiomyocytes Derived from c-Myc Free Induced Pluripotent Stem Cells. Tissue Eng Part A 17:1027–1037

    Article  PubMed  CAS  Google Scholar 

  58. Martinez-Fernandez A, Nelson TJ, Yamada S, Reyes S, Alekseev AE et al (2009) iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ Res 105:648–656

    Article  PubMed  CAS  Google Scholar 

  59. Martinez-Fernandez A, Nelson TJ, Ikeda Y, Terzic A (2010) c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J Cardiovasc Transl Res 3:13–23

    Article  PubMed  Google Scholar 

  60. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301:H2006–H2017

    Article  PubMed  CAS  Google Scholar 

  61. Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L et al (2011) Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One 6:e18037

    Article  PubMed  CAS  Google Scholar 

  62. Zwi-Dantsis L, Huber I, Habib M, Winterstern A, Gepstein A, et al. (2012) Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J (in press)

  63. Lev S, Kehat I, Gepstein L (2005) Differentiation pathways in human embryonic stem cell-derived cardiomyocytes. Ann NY Acad Sci 1047:50–65

    Article  PubMed  CAS  Google Scholar 

  64. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  PubMed  CAS  Google Scholar 

  65. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  66. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    Article  PubMed  CAS  Google Scholar 

  67. Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370

    Article  PubMed  CAS  Google Scholar 

  68. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240

    Article  PubMed  CAS  Google Scholar 

  69. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  PubMed  CAS  Google Scholar 

  70. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K et al (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13:215–222

    Article  PubMed  CAS  Google Scholar 

  71. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  PubMed  CAS  Google Scholar 

  72. Song K, Nam YJ, Luo X, Qi X, Tan W et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    Article  PubMed  CAS  Google Scholar 

  73. Caspi O, Huber I, Kehat I, Habib M, Arbel G et al (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893

    Article  PubMed  Google Scholar 

  74. Dai W, Field LJ, Rubart M, Reuter S, Hale SL et al (2007) Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol 43:504–516

    Article  PubMed  CAS  Google Scholar 

  75. Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M et al (2007) Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 21:2551–2563

    Article  PubMed  CAS  Google Scholar 

  76. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R et al (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22:1282–1289

    Article  PubMed  CAS  Google Scholar 

  77. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E et al (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167:663–671

    Article  PubMed  CAS  Google Scholar 

  78. Kofidis T, Lebl DR, Swijnenburg RJ, Greeve JM, Klima U et al (2006) Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur J Cardiothorac Surg 29:50–55

    Article  PubMed  Google Scholar 

  79. Leor J, Gerecht S, Cohen S, Miller L, Holbova R et al (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93:1278–1284

    Article  PubMed  Google Scholar 

  80. van Laake LW, Passier R, Doevendans PA, Mummery CL (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010

    Article  PubMed  CAS  Google Scholar 

  81. van Laake LW, Passier R, Monshouwer-Kloots J, Nederhoff MG, Ward-van Oostwaard D et al (2007) Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat Protoc 2:2551–2567

    Article  PubMed  CAS  Google Scholar 

  82. Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T et al (2007) Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation. Circ Res 101:484–492

    Article  PubMed  CAS  Google Scholar 

  83. Rubart M, Pasumarthi KB, Nakajima H, Soonpaa MH, Nakajima HO et al (2003) Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res 92:1217–1224

    Article  PubMed  CAS  Google Scholar 

  84. Gepstein L, Ding C, Rehemedula D, Wilson EE, Yankelson L et al (2010) In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 28:2151–2161

    Article  PubMed  Google Scholar 

  85. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP et al (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111:11–20

    Article  PubMed  Google Scholar 

  86. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

  87. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505

    Article  PubMed  CAS  Google Scholar 

  88. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  89. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416

    Article  PubMed  Google Scholar 

  90. Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K et al (2012) Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 21:977–986

    Article  PubMed  CAS  Google Scholar 

  91. Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122:80–87

    Article  PubMed  Google Scholar 

  92. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277

    Article  PubMed  CAS  Google Scholar 

  93. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Google Scholar 

  94. Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM et al (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204:405–420

    Article  PubMed  CAS  Google Scholar 

  95. Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  PubMed  CAS  Google Scholar 

  96. Anderson D, Self T, Mellor IR, Goh G, Hill SJ et al (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15:2027–2036

    Article  PubMed  CAS  Google Scholar 

  97. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS et al (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66

    Article  PubMed  CAS  Google Scholar 

  98. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224

    Article  PubMed  CAS  Google Scholar 

  99. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R et al (2011) NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 8:1037–1040

    Article  PubMed  CAS  Google Scholar 

  100. van Laake LW, Qian L, Cheng P, Huang Y, Hsiao EC et al (2010) Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited gene expression variance. Circ Res 107:340–347

    Article  PubMed  CAS  Google Scholar 

  101. Van Hoof D, Dormeyer W, Braam SR, Passier R, Monshouwer-Kloots J et al (2010) Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res 9:1610–1618

    Article  PubMed  CAS  Google Scholar 

  102. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011–1018

    Article  PubMed  CAS  Google Scholar 

  103. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N et al (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657

    Article  PubMed  CAS  Google Scholar 

  104. Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B et al (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 107:776–786

    Article  PubMed  CAS  Google Scholar 

  105. Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E et al (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25:1136–1144

    Article  PubMed  CAS  Google Scholar 

  106. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59

    Article  PubMed  CAS  Google Scholar 

  107. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272

    Article  PubMed  CAS  Google Scholar 

  108. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193–202

    Article  PubMed  CAS  Google Scholar 

  109. Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581

    Article  PubMed  CAS  Google Scholar 

  110. Hu S, Huang M, Nguyen PK, Gong Y, Li Z et al (2011) Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124:S27–S34

    Article  PubMed  Google Scholar 

  111. Lesman A, Habib M, Caspi O, Gepstein A, Arbel G et al (2010) Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 16:115–125

    Google Scholar 

  112. Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M et al (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA 106:16568–16573

    Article  PubMed  CAS  Google Scholar 

  113. Wu SM, Chien KR, Mummery C (2008) Origins and fates of cardiovascular progenitor cells. Cell 132:537–543

    Article  PubMed  CAS  Google Scholar 

  114. Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    Article  PubMed  CAS  Google Scholar 

  115. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  PubMed  CAS  Google Scholar 

  116. Moretti A, Bellin M, Jung CB, Thies TM, Takashima Y et al (2010) Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J 24:700–711

    Article  PubMed  CAS  Google Scholar 

  117. Blin G, Nury D, Stefanovic S, Neri T, Guillevic O et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139

    Article  PubMed  CAS  Google Scholar 

  118. Habib M, Shapira-Schweitzer K, Caspi O, Gepstein A, Arbel G et al (2011) A combined cell therapy and in situ tissue-engineering approach for myocardial repair. Biomaterials 32:7514–7523

    Article  PubMed  CAS  Google Scholar 

  119. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  PubMed  CAS  Google Scholar 

  120. Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR (2008) Myocardial tissue engineering. Br Med Bull 87:31–47

    Article  PubMed  CAS  Google Scholar 

  121. Masuda S, Shimizu T, Yamato M, Okano T (2008) Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev 60:277–285

    Article  PubMed  CAS  Google Scholar 

  122. Segers VF, Lee RT (2011) Biomaterials to enhance stem cell function in the heart. Circ Res 109:910–922

    Article  PubMed  CAS  Google Scholar 

  123. Zimmermann WH (2011) Embryonic and embryonic-like stem cells in heart muscle engineering. J Mol Cell Cardiol 50:320–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to authors whose excellent works were not cited due to space restrictions. This work was supported in part by the Israel Science Foundation [1449/10], by the Israel Science Foundation and Legacy Heritage Foundation (No. 1225/09), by the Lorry Lokey research fund, and by the Nancy and Stephen Grand Philanthropic Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Gepstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwi-Dantsis, L., Gepstein, L. Induced pluripotent stem cells for cardiac repair. Cell. Mol. Life Sci. 69, 3285–3299 (2012). https://doi.org/10.1007/s00018-012-1078-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1078-2

Keywords

Navigation