Skip to main content
Log in

The long journey of actin and actin-associated proteins from genes to polysomes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During gene expression, multiple regulatory steps make sure that alterations of chromatin structure are synchronized with RNA synthesis, co-transcriptional assembly of ribonucleoprotein complexes, transport to the cytoplasm and localized translation. These events are controlled by large multiprotein complexes commonly referred to as molecular machines, which are specialized and at the same time display a highly dynamic protein composition. The crosstalk between these molecular machines is essential for efficient RNA biogenesis. Actin has been recently proposed to be an important factor throughout the entire RNA biogenesis pathway as a component of chromatin remodeling complexes, associated with all eukaryotic RNA polymerases as well as precursor and mature ribonucleoprotein complexes. The aim of this review is to present evidence on the involvement of actin and actin-associated proteins in RNA biogenesis and propose integrative models supporting the view that actin facilitates coordination of the different steps in gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043

    PubMed  CAS  Google Scholar 

  2. Sexton T, Umlauf D, Kurukuti S, Fraser P (2007) The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol 18:691–697

    PubMed  CAS  Google Scholar 

  3. Carter DRF, Eskiw C, Cook P (2008) Transcription factories. Biochem Soc Trans 36:585–589

    PubMed  CAS  Google Scholar 

  4. Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    PubMed  CAS  Google Scholar 

  5. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    PubMed  CAS  Google Scholar 

  6. Howe KJ (2002) RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 1577:308–324

    PubMed  CAS  Google Scholar 

  7. Allemand E, Batsché E, Muchardt C (2008) Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev 18:145–151

    PubMed  CAS  Google Scholar 

  8. Batsché E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13:22–29

    PubMed  Google Scholar 

  9. Wetterberg I, Zhao J, Masich S, Wieslander L, Skoglund U (2001) In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J 20:2564–2574

    PubMed  CAS  Google Scholar 

  10. Kornblihtt AR (2007) Coupling transcription and alternative splicing. Adv Exp Med Biol 623:175–189

    Article  PubMed  Google Scholar 

  11. Neugebauer KM (2002) On the importance of being co-transcriptional. J Cell Sci 115:3865–3871

    PubMed  CAS  Google Scholar 

  12. Aguilera A (2005) Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol 17:242–250

    PubMed  CAS  Google Scholar 

  13. Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17:251–256

    PubMed  CAS  Google Scholar 

  14. Hirose Y, Manley JL (2000) RNA polymerase II and the integration of nuclear events. Genes Dev 14:1415–1429

    PubMed  CAS  Google Scholar 

  15. Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499–506

    PubMed  CAS  Google Scholar 

  16. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512

    PubMed  CAS  Google Scholar 

  17. Zorio DA, Bentley DL (2004) The link between mRNA processing and transcription: communication works both ways. Exp Cell Res 296:91–97

    PubMed  CAS  Google Scholar 

  18. Granneman S, Baserga SJ (2005) Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing. Curr Opin Cell Biol 17:281–286

    PubMed  CAS  Google Scholar 

  19. Shav-Tal Y, Singer RH (2005) RNA localization. J Cell Sci 118:4077–4081

    PubMed  CAS  Google Scholar 

  20. Fomproix N, Percipalle P (2004) An actin–myosin complex on actively transcribing genes. Exp Cell Res 294:140–148

    PubMed  CAS  Google Scholar 

  21. Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL (2004) Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 15:3876–3890

    PubMed  CAS  Google Scholar 

  22. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825–831

    PubMed  CAS  Google Scholar 

  23. Dundr M, Ospina JK, Sung M-H, John S, Upender M, Reid T, Hager GL, Matera AG (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:1095–1103

    PubMed  CAS  Google Scholar 

  24. Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    PubMed  CAS  Google Scholar 

  25. Percipalle P, Fomproix N, Kylberg K, Miralles F, Bjorkroth B, Daneholt B, Visa N (2003) An actin–ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc Natl Acad Sci USA 100:6475–6480

    PubMed  CAS  Google Scholar 

  26. Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, Kysela K, Goodrich JA, Lessard JL, Hope TJ, Hozak P, de Lanerolle P (2004) Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6:1094–1101

    PubMed  CAS  Google Scholar 

  27. Hu P, Wu S, Hernandez N (2004) A role for beta-actin in RNA polymerase III transcription. Genes Dev 18:3010–3015

    PubMed  CAS  Google Scholar 

  28. Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozak P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6:1165–1171

    PubMed  CAS  Google Scholar 

  29. Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P (2005) Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12:238–244

    PubMed  CAS  Google Scholar 

  30. Percipalle P, Zhao J, Pope B, Weeds A, Lindberg U, Daneholt B (2001) Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J Cell Biol 153:229–236

    PubMed  CAS  Google Scholar 

  31. Percipalle P, Jonsson A, Nashchekin D, Karlsson C, Bergman T, Guialis A, Daneholt B (2002) Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res 30:1725–1734

    PubMed  CAS  Google Scholar 

  32. Hofmann WA, Reichart B, Ewald A, Muller E, Schmitt I, Stauber RH, Lottspeich F, Jockusch BM, Scheer U, Hauber J, Dabauvalle MC (2001) Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 152:895–910

    PubMed  CAS  Google Scholar 

  33. Östlund Farrants A-K (2008) Chromatin remodelling and actin organization. FEBS Lett 582:2041–2050

    Google Scholar 

  34. Louvet E, Percipalle P (2009) Actin and myosin in gene transcription. Int Rev Cell Mol Biol 272:107–147

    PubMed  CAS  Google Scholar 

  35. Scheer U, Hinssen H, Franke WW, Jockusch BM (1984) Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39:111–122

    PubMed  CAS  Google Scholar 

  36. Egly JM, Miyamoto NG, Moncollin V, Chambon P (1984) Is actin a transcription initiation factor for RNA polymerase B? EMBO J 3:2363–2371

    PubMed  CAS  Google Scholar 

  37. Percipalle P, Visa N (2006) Molecular functions of nuclear actin in transcription. J Cell Biol 172:967–971

    PubMed  CAS  Google Scholar 

  38. Grummt I (2006) Actin and myosin as transcription factors. Curr Opin Genet Dev 16:191–196

    PubMed  CAS  Google Scholar 

  39. Obrdlik A, Kukalev A, Louvet E, Farrants AK, Caputo L, Percipalle P (2008) The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol Cell Biol 28:6342–6357

    PubMed  CAS  Google Scholar 

  40. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    PubMed  CAS  Google Scholar 

  41. Sjölinder M, Björk P, Soderberg E, Sabri N, Östlund Farrants A-K, Visa N (2005) The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 19:1871–1884

    PubMed  Google Scholar 

  42. Comings DE, Okada TA (1976) Fine structure of the heterochromatin of the kangaroo rat Dipodomys ordii, and examination of the possible role of actin and myosin in heterochromatin condensation. J Cell Sci 21:465–477

    PubMed  CAS  Google Scholar 

  43. Schindler M, Jiang L-W (1986) Nuclear actin and myosin as control elements in nucleocytoplasmic transport. J Cell Biol 102:859–862

    PubMed  CAS  Google Scholar 

  44. Nowak G, Pestic-Dragovich L, Hozák P, Philimonenko A, Simerly C, Schatten G, de Lanerolle P (1997) Evidence for the presence of myosin I in the nucleus. J Biol Chem 272:17176–17181

    PubMed  CAS  Google Scholar 

  45. Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozak P, de Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290:337–341

    PubMed  CAS  Google Scholar 

  46. Kahle M, Pridalova J, Spacek M, Dzijak R, Hozak P (2007) Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates. Histochem Cell Biol 127:139–148

    PubMed  CAS  Google Scholar 

  47. Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio PC, Crippa MP, Bussi M, Biffo S (2006) Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell 23:749–755

    PubMed  CAS  Google Scholar 

  48. Cameron RS, Liu C, Mixon AS, Pihkala JP, Rahn RJ, Cameron PL (2007) Myosin16b: the COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil Cytoskeleton 64:19–48

    PubMed  CAS  Google Scholar 

  49. Pranchevicius MCS, Baqui MMA, Ishikawa-Ankerhold HC, Lourenço EV, Leão RM, Banzi SR, Tavares dos Santos C, Barreira MCR, Espreafico EM, Larson RE (2008) Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil Cytoskeleton 65:441–456

    PubMed  CAS  Google Scholar 

  50. Hofmann WA, Vargas GM, Ramchandran R, Stojiljkovic L, Goodrich JA, de Lanerolle P (2006) Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J Cell Biochem 99:1001–1009

    PubMed  CAS  Google Scholar 

  51. Percipalle P, Fomproix N, Cavellán E, Voit R, Reimer G, Krüger T, Thyberg J, Scheer U, Grummt I, Farrants AK (2006) The chromatin remodelling complex WSTF–SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep 7:525–530

    PubMed  CAS  Google Scholar 

  52. Ye J, Zhao J, Hoffmann-Rohrer U, Grummt I (2008) Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev 22:322–330

    PubMed  CAS  Google Scholar 

  53. Percipalle P, Östlund Farrants AK (2006) Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr Opin Cell Biol 18:267–274

    PubMed  CAS  Google Scholar 

  54. Kiesler E, Visa N (2004) Intranuclear pre-mRNA trafficking in an insect model system. Prog Mol Subcell Biol 35:99–118

    PubMed  Google Scholar 

  55. Daneholt B (1997) A look at messenger RNP moving through the nuclear pore. Cell 88:585–588

    PubMed  CAS  Google Scholar 

  56. Daneholt B (2001) Assembly and transport of a premessenger RNP particle. Proc Nat Acad Sci USA 98:7012–7017

    PubMed  CAS  Google Scholar 

  57. Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    PubMed  CAS  Google Scholar 

  58. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    PubMed  CAS  Google Scholar 

  59. Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11:363–371

    PubMed  CAS  Google Scholar 

  60. Nakielny S, Dreyfuss G (1996) The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J Cell Biol 134:1365–1373

    PubMed  CAS  Google Scholar 

  61. Piñol-Roma S, Dreyfuss G (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355:730–732

    PubMed  Google Scholar 

  62. Visa N, Alzhanova-Ericsson AT, Sun X, Kiseleva E, Björkroth B, Wurtz T, Daneholt B (1996) A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84:253–264

    PubMed  CAS  Google Scholar 

  63. Michael WM, Choi M, Dreyfuss G (1995) A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83:415–422

    PubMed  CAS  Google Scholar 

  64. Michael WM, Eder PS, Dreyfuss G (1997) The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 16:3587–3598

    PubMed  CAS  Google Scholar 

  65. Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690

    PubMed  CAS  Google Scholar 

  66. Svitkin YV, Ovchinnikov LP, Dreyfuss G, Sonenberg N (1996) General RNA binding proteins render translation cap dependent. EMBO J 15:7147–7155

    PubMed  CAS  Google Scholar 

  67. Zaidi S, Malter JS (1995) Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3′-untranslated region of amyloid protein precursor mRNA. J Biol Chem 270:17292–17298

    PubMed  CAS  Google Scholar 

  68. Kiledjian M, DeMaria CT, Brewer G, Novick K (1997) Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the α-globin mRNA stability complex. Mol Cell Biol 17:4870–4876

    PubMed  CAS  Google Scholar 

  69. Loflin P, Chen C-YA, Shyu A-B (1999) Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev 13:1884–1897

    PubMed  CAS  Google Scholar 

  70. Kelley RL (1993) Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev 7:948–960

    PubMed  CAS  Google Scholar 

  71. Matunis EL, Kelley RL, Dreyfuss G (1994) Essential role for a heterogeneous ribonucleoprotein (hnRNP) in oogenesis: hrp40 is absent form the germ line in the dorso-ventral mutant squid. Proc Natl Acad Sci USA 91:2781–2784

    PubMed  CAS  Google Scholar 

  72. Neuman-Silberberg FS, Schüpbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein. Cell 75:165–174

    PubMed  CAS  Google Scholar 

  73. Lall S, Francis-Lang H, Flament A, Norvell A, Schüpbach T, Ish-Horowicz D (1999) Squid hnRNP protein promotes apical cytoplasmic transport and localization of Drosophila pair-rule transcripts. Cell 98:171–180

    PubMed  CAS  Google Scholar 

  74. Hoek KS, Kidd GJ, Carson JH, Smith R (1998) hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37:7021–7029

    PubMed  CAS  Google Scholar 

  75. Kwon S, Barbarese E, Carson JH (1999) The cis-acting RNA trafficking signal from myelin basic protein mRNA and its cognate trans-acting ligand hnRNP A2 enhance cap-dependent translation. J Cell Biol 147:247–256

    PubMed  CAS  Google Scholar 

  76. Raju CS, Göritz C, Nord Y, Hermanson O, Lopez-Iglesias C, Visa N, Castelo-Branco G, Percipalle P (2008) In cultured oligodendrocytes the A/B-type hnRNP CBF-A accompanies MBP mRNA bound to mRNA trafficking sequences. Mol Biol Cell 19:3008–3018

    PubMed  CAS  Google Scholar 

  77. Elvira G, Wasiak S, Blandford V, Tong XK, Serrano A, Fan X, del Rayo Sánchez-Carbente M, Servant F, Bell AW, Boismenu D, Lacaille JC, McPherson PS, DesGroseillers L, Sossin WS (2006) Characterization of an RNA granule from developing brain. Mol Cell Proteomics 5:635–651

    PubMed  CAS  Google Scholar 

  78. Stapulionis R, Kolli S, Deutscher MP (1997) Efficient mammalian protein synthesis requires an intact F-actin system. J Biol Chem 272:24980–24986

    PubMed  CAS  Google Scholar 

  79. Rodriguez AJ, Czaplinski K, Condeelis JS, Singer RH (2008) Mechanisms and cellular roles of local protein synthesis in mammalian cells. Curr Opin Cell Biol 20:144–149

    PubMed  CAS  Google Scholar 

  80. Ruzanov PV, Evdokimova VM, Korneeva NL, Hershey JWB, Ovchinnikov LP (1999) Interaction of the universal mRNA-binding protein, p50, with actin: a possible link between mRNA and microfilaments. J Cell Sci 112:3487–3496

    PubMed  CAS  Google Scholar 

  81. Cavellan E, Asp P, Percipalle P, Östlund Farrants AK (2006) The chromatin remodelling complex WSTF–SNF2h interacts with several nuclear proteins in transcription. J Biol Chem 281:16264–16271

    PubMed  CAS  Google Scholar 

  82. Kyselá K, Philimonenko AA, Philimonenko VV, Janácek J, Kahle M, Hozák P (2005) Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem Cell Biol 124:347–358

    PubMed  Google Scholar 

  83. Fuller-Pace FV (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34:4206–4215

    PubMed  CAS  Google Scholar 

  84. Yang H, Zhou J, Ochs RL, Henning D, Jin R, Valdez BC (2003) Down-regulation of RNA helicase II/GU results in the depletion of 18S and 28S rRNAs in Xenopus oocyte. J Biol Chem 278:38847–38859

    PubMed  CAS  Google Scholar 

  85. Henning D, So RB, Jin R, Lau LF, Valdez BC (2003) Silencing of RNA helicase II/Gualpha inhibits mammalian ribosomal RNA production. J Biol Chem 278:52307–52314

    PubMed  CAS  Google Scholar 

  86. Cisterna B, Necchi D, Prosperi E, Biggiogera M (2006) Small ribosomal subunits associate with nuclear myosin and actin in transit to the nuclear pores. FASEB J 20:1901–1903

    PubMed  CAS  Google Scholar 

  87. Holaska JM, Wilson KL (2007) An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46:8897–8908

    PubMed  CAS  Google Scholar 

  88. Berrios M, Fisher PA (1986) A myosin heavy chain-like polypeptide is associated with the nuclear envelope in higher eukaryotic cells. J Cell Biol 103:711–724

    PubMed  CAS  Google Scholar 

  89. Berrios M, Fisher PA, Matz EC (1991) Localization of a myosin heavy chain-like polypeptide to Drosophila nuclear pore complex. Proc Natl Acad Sci USA 88:219–223

    PubMed  CAS  Google Scholar 

  90. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73

    PubMed  CAS  Google Scholar 

  91. Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F (2005) Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 24:813–823

    PubMed  CAS  Google Scholar 

  92. Tekotte H, Davis I (2002) Intracellular mRNA localization: motors move messages. Trends Genet 18:636–642

    PubMed  CAS  Google Scholar 

  93. Zhang S, Buder K, Burkhardt C, Schlott B, Görlach M, Grosse F (2002) Nuclear DNA helicase II/RNA helicase A binds to filamentous actin. J Biol Chem 277:843–853

    PubMed  CAS  Google Scholar 

  94. Zhang S, Köhler C, Hemmerich P, Grosse F (2004) Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus. Exp Cell Res 293:248–258

    PubMed  CAS  Google Scholar 

  95. Kiseleva E, Drummond SP, Goldberg MW, Rutherford SA, Allen TD, Wilson KL (2004) Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J Cell Sci 117:2481–2490

    PubMed  CAS  Google Scholar 

  96. Singh OP, Björkroth B, Masich S, Wieslander L, Daneholt B (1999) The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp Cell Res 251:135–146

    PubMed  CAS  Google Scholar 

  97. Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800

    PubMed  CAS  Google Scholar 

  98. Politz JC, Tuft RA, Pederson T (2003) Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 14:4805–4812

    PubMed  CAS  Google Scholar 

  99. Obrdlik A, Kukalev A, Percipalle P (2007) The function of actin in gene transcription. Histol Histopathol 22:1051–1055

    PubMed  CAS  Google Scholar 

  100. Pederson T (2008) As functional actin comes into view, is it globular, filamentous, or both? J Cell Biol 180:1061–1064

    PubMed  CAS  Google Scholar 

  101. McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172:541–552

    PubMed  CAS  Google Scholar 

  102. Skare P, Kreivi JP, Bergström A, Karlsson R (2003) Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res 286:12–21

    PubMed  CAS  Google Scholar 

  103. Pendleton A, Pope B, Weeds A, Koffer A (2003) Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J Biol Chem 278:14394–14400

    PubMed  CAS  Google Scholar 

  104. Huff T, Rosorius O, Otto AM, Muller CS, Ballweber E, Hannappel E, Mannherz HG (2004) Nuclear localisation of the G-actin sequestering peptide thymosin beta4. J Cell Sci 117:5333–5341

    PubMed  CAS  Google Scholar 

  105. Ankenbauer T, Kleinschmidt JA, Walsh MJ, Weiner OH, Franke WW (1989) Identification of a widespread nuclear actin binding protein. Nature 342:822–825

    PubMed  CAS  Google Scholar 

  106. Davy DA, Campbell HD, Fountain S, de Jong D, Crouch MF (2001) The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases. J Cell Sci 114:549–562

    PubMed  CAS  Google Scholar 

  107. Seward ME, Easley CA 4th, McLeod JJ, Myers AL, Tombes RM (2008) Flightless-I, a gelsolin family member and transcriptional regulator, preferentially binds directly to activated cytosolic CaMK-II. FEBS Lett 582:2489–2495

    Google Scholar 

  108. Prendergast GC, Ziff EB (1991) Mbh 1: a novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo. EMBO J 10:757–766

    PubMed  CAS  Google Scholar 

  109. Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald HR, Mannherz HG, Tschopp J (1993) Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 12:371–377

    PubMed  CAS  Google Scholar 

  110. Onoda K, Yu FX, Yin HL (1993) gCap39 is a nuclear and cytoplasmic protein. Cell Motil Cytoskeleton 26:227–338

    PubMed  CAS  Google Scholar 

  111. De Corte V, Van Impe K, Bruyneel E, Boucherie C, Mareel M, Vandekerckhove J, Gettemans J (2004) Increased importin-beta-dependent nuclear import of the actin modulating protein CapG promotes cell invasion. J Cell Sci 117:5283–5292

    PubMed  Google Scholar 

  112. Renz M, Langowski J (2008) Dynamics of the CapG actin-binding protein in the cell nucleus studied by FRAP and FCS. Chromosome Res 16:427–437

    PubMed  CAS  Google Scholar 

  113. Pestonjamasp KN, Pope RK, Wulfkuhle JD, Luna EJ (1997) Supervillin (p205): a novel membrane-associated, F-actin-binding protein in the villin/gelsolin superfamily. J Cell Biol 139:1255–1269

    PubMed  CAS  Google Scholar 

  114. Wulfkuhle JD, Donina IE, Stark NH, Pope RK, Pestonjamasp KN, Niswonger ML, Luna EJ (1999) Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J Cell Sci 112:2125–2136

    PubMed  CAS  Google Scholar 

  115. Wu X, Yoo Y, Okuhama NN, Tucker PW, Liu G, Guan JL (2006) Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat Cell Biol 8:756–763

    PubMed  Google Scholar 

  116. Yoo Y, Wu X, Guan JL (2007) A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem 282:7616–7623

    PubMed  CAS  Google Scholar 

  117. Chan DC, Leder P (1996) Genetic evidence that formins function within the nucleus. J Biol Chem 271:23472–23477

    PubMed  CAS  Google Scholar 

  118. Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752

    PubMed  CAS  Google Scholar 

  119. Carlier MF, Laurent V, Santoloni J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1323

    PubMed  CAS  Google Scholar 

  120. Ichetovkin I, Han J, Pang KM, Knecht DA, Condeelis JS (2000) Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motil Cytoskeleton 45:293–306

    PubMed  CAS  Google Scholar 

  121. Wallar BJ, Alberts AS (2003) The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 13:435–446

    PubMed  CAS  Google Scholar 

  122. García-Mata R, Dubash AD, Sharek L, Carr HS, Frost JA, Burridge K (2007) The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 27:8683–8697

    PubMed  Google Scholar 

  123. Tao Y, Chen YC, Li YY, Yang SQ, Xu WR (2008) Localization and translocation of RhoA protein in the human gastric cancer cell line SGC-7901. World J Gastroenterol 14:1175–1181

    PubMed  CAS  Google Scholar 

  124. Szerlong H, Hinata K, Viswanathan R, Erdjument-Bromage H, Tempst P, Cairns BR (2008) The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat Struct Mol Biol 15:469–476

    PubMed  CAS  Google Scholar 

  125. Gottschalk AJ, Conaway RC, Conaway JW (2008) New clues to actin function in chromatin regulation. Nat Struct Mol Biol 15:432–433

    PubMed  CAS  Google Scholar 

  126. McMahon LW, Walsh CE, Lambert MW (1999) Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J Biol Chem 274:32904–32908

    PubMed  CAS  Google Scholar 

  127. McMahon LW, Sangerman J, Goodman SR, Kumaresan K, Lambert MW (2001) Human alpha spectrin II and the FANCA, FANCC, and FANCG proteins bind to DNA containing psoralen interstrand cross-links. Biochemistry 40:7025–7034

    PubMed  CAS  Google Scholar 

  128. Sridharan D, Brown M, Lambert WC, McMahon LW, Lambert MW (2003) Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J Cell Sci 116:823–835

    PubMed  CAS  Google Scholar 

  129. Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L (2003) Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299:574–577

    PubMed  CAS  Google Scholar 

  130. Tse WT, Tang J, Jin O, Korsgren C, John KM, Kung AL, Gwynn B, Peters LL, Lux SE (2001) A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem 276:23974–23985

    PubMed  CAS  Google Scholar 

  131. Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM (2002) Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett 525:135–140

    PubMed  CAS  Google Scholar 

  132. Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophinand Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995

    PubMed  CAS  Google Scholar 

  133. Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222

    PubMed  CAS  Google Scholar 

  134. Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I, Korenbaum E (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295:330–339

    PubMed  CAS  Google Scholar 

  135. Young KG, Pool M, Kothary R (2003) Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus. J Cell Sci 116:4543–4555

    PubMed  CAS  Google Scholar 

  136. Kapiloff MS, Schillace RV, Westphal AM, Scott JD (1999) mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J Cell Sci 112:2725–2736

    PubMed  CAS  Google Scholar 

  137. Kapiloff MS, Jackson N, Airhart N (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114:3167–3176

    PubMed  CAS  Google Scholar 

  138. Young KG, Kothary R (2005) Spectrin repeat proteins in the nucleus. BioEssays 27:144–152

    PubMed  CAS  Google Scholar 

  139. Wada A, Fukuda M, Mishima M, And Nishida E (1998) Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J 17:1635–1641

    PubMed  CAS  Google Scholar 

  140. Stüven T, Hartmann E, Görlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22:5928–5940

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Research Council (Vetenskapsrådet) and the Swedish Cancer Society (Cancerfonden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Percipalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percipalle, P. The long journey of actin and actin-associated proteins from genes to polysomes. Cell. Mol. Life Sci. 66, 2151–2165 (2009). https://doi.org/10.1007/s00018-009-0012-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0012-8

Keywords

Navigation