Skip to main content
Log in

Relapse of Acute Lymphoblastic Leukemia in Children in the Context of Microarray Analyses

  • REVIEW
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Over the last four decades the treatment of patients with newly diagnosed childhood acute lymphoblastic leukemia (ALL) has improved remarkably. However, still about 20% of children with ALL relapse despite risk-adapted polychemotherapy. The prognosis of relapsed ALL is relatively poor, even with modern aggressive chemotherapy. Identification of the biological and genetic mechanisms contributing to recurrence in patients with ALL is critical for the development of effective therapeutic strategies to treat refractory leukemic patients. Allogeneic hematopoietic stem-cell transplantation is the treatment of choice for many children with relapsed ALL. The gene expression profile obtained by microarray technology could provide important determinants of the drug response and clinical outcome in childhood ALL. Incorporation of the data on expression levels of newly identified genes into existing strategies of risk stratification might improve clinical management. Current microarray data show correlation of in vitro drug resistance with significant patterns of gene expression and explain clinical differences between early and late relapse. Genes involved in cell proliferation, self-renewal and differentiation, protein biosynthesis, carbohydrate metabolism, and DNA replication and repair are usually among those highly expressed in relapsed lymphoblasts. Current status and future perspectives of microarray data on gene expression and drug resistance profile in relapsed pediatric ALL are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abshire TC, Buchanan GR, Jackson JF et al (1992) Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 6:357–362

    CAS  PubMed  Google Scholar 

  • Andersson A, Ritz C, Lindgren D et al (2007) Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia 21:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Bailey LC, Lange BJ, Rheingold SR et al (2008) Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. Lancet Oncol 9:873–883

    Article  PubMed  Google Scholar 

  • Beesley AH, Cummings AJ, Freitas JR et al (2005) The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure. Br J Haematol 131:447–456

    Article  CAS  PubMed  Google Scholar 

  • Bhojwani D, Kang H, Moskowitz NP et al (2006) Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood 108:711–717

    Article  CAS  PubMed  Google Scholar 

  • Bhojwani D, Kang H, Menezes RX et al (2008) Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: a Children’s Oncology Group Study [corrected]. J Clin Oncol 26:4376–4384

    Article  CAS  PubMed  Google Scholar 

  • Bleakley M, Shaw PJ, Nielsen JM (2002) Allogeneic bone marrow transplantation for childhood relapsed acute lymphoblastic leukemia: comparison of outcome in patients with and without a matched family donor. Bone Marrow Transplant 30:1–7

    Article  CAS  PubMed  Google Scholar 

  • Borgmann A, von Stackelberg A, Hartmann R et al (2003) Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood 101:3835–3839

    Article  CAS  PubMed  Google Scholar 

  • Buchanan GR, Rivera GK, Pollock BH et al (2000) Alternating drug pairs with or without periodic reinduction in children with acute lymphoblastic leukemia in second bone marrow remission: a Pediatric Oncology Group Study. Cancer 88:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Buhrer C, Hartmann R, Fengler R et al (1996) Peripheral blast counts at diagnosis of late isolated bone marrow relapse of childhood acute lymphoblastic leukemia predict response to salvage chemotherapy and outcome. Berlin-Frankfurt-Munster Relapse Study Group. J Clin Oncol 14:2812–2817

    CAS  PubMed  Google Scholar 

  • Carroll WL, Bhojwani D, Min DJ et al (2006) Childhood acute lymphoblastic leukemia in the age of genomics. Pediatr Blood Cancer 46:570–578

    Article  PubMed  Google Scholar 

  • Carter TL, Reaman GH, Kees UR (2001a) INK4A/ARF deletions are acquired at relapse in childhood acute lymphoblastic leukaemia: a paired study on 25 patients using real-time polymerase chain reaction. Br J Haematol 113:323–328

    Article  CAS  PubMed  Google Scholar 

  • Carter TL, Watt PM, Kumar R et al (2001b) Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse. Blood 97:572–574

    Article  CAS  PubMed  Google Scholar 

  • Cheok MH, Yang W, Pui CH et al (2003) Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 34:85–90

    Article  CAS  PubMed  Google Scholar 

  • Chessells JM, Veys P, Kempski H et al (2003) Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br J Haematol 123:396–405

    Article  PubMed  Google Scholar 

  • Coustan-Smith E, Gajjar A, Hijiya N et al (2004) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 18:499–504

    Article  CAS  PubMed  Google Scholar 

  • Eckert C, Biondi A, Seeger K et al (2001) Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 358:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Einsiedel HG, von Stackelberg A, Hartmann R et al (2005) Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 23:7942–7950

    Article  PubMed  Google Scholar 

  • Flotho C, Coustan-Smith E, Pei D et al (2007) A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110:1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Gaynon PS (2005) Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol 131:579–587

    Article  PubMed  Google Scholar 

  • Gaynon PS, Qu RP, Chappell RJ et al (1998) Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse—the Children’s Cancer Group Experience. Cancer 82:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Goker E, Waltham M, Kheradpour A et al (1995) Amplification of the dihydrofolate reductase gene is a mechanism of acquired resistance to methotrexate in patients with acute lymphoblastic leukemia and is correlated with p53 gene mutations. Blood 86:677–684

    CAS  PubMed  Google Scholar 

  • Guo G, Wang W, Bradley A (2004) Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429:891–895

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs S, Li C, Look AT (2010) SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115:4157–4161

    Article  CAS  PubMed  Google Scholar 

  • Henze G, Fengler R, Hartmann R et al (1991) Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM group. Blood 78:1166–1172

    CAS  PubMed  Google Scholar 

  • Holleman A, Cheok MH, den Boer ML et al (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351:533–542

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Chen IM, Wilson CS et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115:1394–1405

    Article  CAS  PubMed  Google Scholar 

  • Kirschner-Schwabe R, Lottaz C, Todling J et al (2006) Expression of late cell cycle genes and an increased proliferative capacity characterize very early relapse of childhood acute lymphoblastic leukemia. Clin Cancer Res 12:4553–4561

    Article  CAS  PubMed  Google Scholar 

  • Klumper E, Pieters R, Veerman AJ et al (1995) In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86:3861–3868

    CAS  PubMed  Google Scholar 

  • Lugthart S, Cheok MH, den Boer ML et al (2005) Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 7:375–386

    Article  CAS  PubMed  Google Scholar 

  • Malempati S, Gaynon PS, Sather H et al (2007) Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children’s Oncology Group study CCG-1952. J Clin Oncol 25:5800–5807

    Article  PubMed  Google Scholar 

  • Maloney KW, McGavran L, Odom LF et al (1999) Acquisition of p16(INK4A) and p15(INK4B) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood 93:2380–2385

    CAS  PubMed  Google Scholar 

  • Mullighan CG, Phillips LA, Su X et al (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Su X, Zhang J et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360:470–480

    Article  CAS  PubMed  Google Scholar 

  • Nguyen K, Devidas M, Cheng SC et al (2008) Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia 22:2142–2150

    Article  CAS  PubMed  Google Scholar 

  • Prokop A, Wieder T, Sturm I et al (2000) Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo. Leukemia 14:1606–1613

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Evans WE (1998) Acute lymphoblastic leukemia. N Engl J Med 339:605–615

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6:149–165

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Campana D, Evans WE (2001) Childhood acute lymphoblastic leukaemia—current status and future perspectives. Lancet Oncol 2:597–607

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350:1535–1548

    Article  CAS  PubMed  Google Scholar 

  • Rivera GK, Hudson MM, Liu Q et al (1996) Effectiveness of intensified rotational combination chemotherapy for late hematologic relapse of childhood acute lymphoblastic leukemia. Blood 88:831–837

    CAS  PubMed  Google Scholar 

  • Rivera GK, Zhou Y, Hancock ML et al (2005) Bone marrow recurrence after initial intensive treatment for childhood acute lymphoblastic leukemia. Cancer 103:368–376

    Article  PubMed  Google Scholar 

  • Rizzari C, Valsecchi MG, Arico M et al (2004) Outcome of very late relapse in children with acute lymphoblastic leukemia. Haematologica 89:427–434

    PubMed  Google Scholar 

  • Saarinen-Pihkala UM, Heilmann C, Winiarski J et al (2006) Pathways through relapses and deaths of children with acute lymphoblastic leukemia: role of allogeneic stem-cell transplantation in Nordic data. J Clin Oncol 24:5750–5762

    Article  PubMed  Google Scholar 

  • Sadowitz PD, Smith SD, Shuster J et al (1993) Treatment of late bone marrow relapse in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 81:602–609

    CAS  PubMed  Google Scholar 

  • Schroeder H, Garwicz S, Kristinsson J et al (1995) Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol 25:372–378

    Article  CAS  PubMed  Google Scholar 

  • Sorich MJ, Pottier N, Pei D et al (2008) In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoS Med 5:e83

    Article  PubMed  Google Scholar 

  • Staal FJ, van der Burg M, Wessels LF et al (2003) DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers. Leukemia 17:1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Staal FJ, de Ridder D, Szczepanski T et al (2010) Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype. Leukemia 24:491–499

    Article  CAS  PubMed  Google Scholar 

  • Te Kronnie G, Bicciato S, Franceschini L et al (2006) Validation by RQ-PCR and flow cytometry of alpha-defensin1–3 (DEFA1–3) overexpression in relapsed and refractory acute lymphoblastic leukemia. Oncol Rep 15:341–346

    Google Scholar 

  • Tosello V, Mansour MR, Barnes K et al (2009) WT1 mutations in T-ALL. Blood 114:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Uderzo C, Valsecchi MG, Bacigalupo A et al (1995) Treatment of childhood acute lymphoblastic leukemia in second remission with allogeneic bone marrow transplantation and chemotherapy: ten-year experience of the Italian Bone Marrow Transplantation Group and the Italian Pediatric Hematology Oncology Association. J Clin Oncol 13:352–358

    CAS  PubMed  Google Scholar 

  • Uderzo C, Conter V, Dini G et al (2001) Treatment of childhood acute lymphoblastic leukemia after the first relapse: curative strategies. Haematologica 86:1–7

    CAS  PubMed  Google Scholar 

  • Wheeler K, Richards S, Bailey C et al (1998) Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol 101:94–103

    Article  CAS  PubMed  Google Scholar 

  • Willenbrock H, Juncker AS, Schmiegelow K et al (2004) Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays. Leukemia 18:1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Yang JJ, Bhojwani D, Yang W et al (2008) Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 112:4178–4183

    Article  CAS  PubMed  Google Scholar 

  • Zhu YM, Foroni L, McQuaker IG et al (1999) Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia. Br J Cancer 79:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Zuna J, Ford AM, Peham M et al (2004) TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clin Cancer Res 10:5355–5360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant MNiSW No. N407 078 32/2964.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Styczyński.

About this article

Cite this article

Szczepanek, J., Styczyński, J., Haus, O. et al. Relapse of Acute Lymphoblastic Leukemia in Children in the Context of Microarray Analyses. Arch. Immunol. Ther. Exp. 59, 61–68 (2011). https://doi.org/10.1007/s00005-010-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0110-1

Keywords

Navigation