Skip to main content
Log in

On the Modelling of Vaulted Structures of Equal Strength

  • Research
  • Published:
Nexus Network Journal Aims and scope Submit manuscript

Abstract

The optimization of vaulted structures has primarily concentrated on the determination of the structure midsurface, governing the direction of forces flow, and the thickness variation, affecting the corresponding stress developed in a structure. The problems related to such optimizations are the so-called catenary of equal strength and its later three-dimensional equivalent, the membrane of equal strength. The present paper elaborates on the equilibrium analysis and analytical expressions that describe the resulting shapes and provides the visualization of the corresponding solutions as particular forms of vaulted structures of great span. Based on the analysis of the geometrical properties of midline and intrados curve, the study shows that there is only one shape of such a structure’s midsurface, whereby material properties affect only its size, which has, however, a theoretical limit. In addition, using FEM, various arch and dome sizes and materials are considered, and the assumption about equal stress distribution within such structures is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Benvenuto, Edoardo. 1991. An Introduction to the History of Structural Mechanics. New York: Springer-Verlag.

  • Bobillier, M. and M. Finck. 1827. Solution des deux problèmes de statique proposés à la page 296 du précédent volume. Annales de mathématiques pures et appliquées 17: 59–68.

  • Calladine, C. R. 2015. An amateur’s contribution to the design of Telford’s Menai suspension bridge: a commentary on Gilbert (1826) ‘On the mathematical theory of suspension bridges’. Phil. Trans. R. Soc. A 373: 20140346. https://doi.org/10.1098/rsta.2014.0346

  • Cengiz Dökmeci, M. 1966. A shell of constant strength. Zeitschrift für Angewandte Mathematik und Physik 17: 545–547.

  • Coriolis, G. 1836. Note sur la chaînette d’égale résistance. Journal de mathématiques pures et appliquées 1(1): 75–76.

  • Cowan, Henry J. 1981. Some observations on the structural design of masonry arches and domes before the age of structural mechanics. Archit Sci Rev 24(4): 98–102.

  • Dow, M., H. Nakamura and G. I. N. Rozvany. 1982. Optimal Cupolas of Uniform Strength: Spherical M-Shells and Axisymmetric T-Shells. Ingenieur Archiv 52: 335–353.

  • Foce, Federico. 2007. Milankovitch’s Theorie der Druckkurven: Good mechanics for masonry architecture. Nexus Network Journal 9(2): 185–210.

  • Gergonne, J. D. 1826. Questions proposées. Problémes de Statique. Annales de mathématiques pures et appliquées 16: 296.

  • Gilbert, Davies. 1826. On the mathematical theory of suspension bridges, with tables for facilitating their construction. Phil. Trans. R. Soc. 116: 202–218. https://doi.org/10.1098/rstl.1826.0019

  • Gregory, David. 1697. Catenaria. Phil Trans 19: 637–652.

  • Heyman, Jacques. 1997. The stone skeleton: structural engineering of masonry architecture. Cambridge: Cambridge University Press

  • Hooke, Robert. 1676. A Description of helioscopes, and some other instruments. London: John Martyn Printer to the Royal Society.

  • Kurrer, Karl-Eugen. 2018. The History of the Theory of Structures: Searching for Equilibrium, 2nd edition. Berlin: Wilhelm Ernst & Sohn Verlag.

  • Makris, Nicos and Haris Alexakis. 2013. The effect of stereotomy on the shape of the thrust-line and the minimum thickness of semi-circular masonry arches. Arch. Appl. Mech. 83: 1511–1533.

  • Milankovitch, Milutin. 1907. Theorie der Druckkurven. Zeitschrift für Mathematik und Physik 55: 1–27.

  • Milanković, Milutin. 1908. O membranama jednakog otpora. “Rad” Jugoslavenske akademije znanosti i umjetnosti 175, Matematičko-prirodoslovni razred 44: 140–152.

  • Nikolić, Dimitrije. 2019a. Catenary arch of finite thickness as the optimal arch shape. Structural and Multidisciplinary Optimization 60: 1957–1966. https://doi.org/10.1007/s00158-019-02304-9

  • Nikolić, Dimitrije. 2019b. The Influence of Milankovitch’s Thrust Line Theory on the Equilibrium Analysis of Masonry Arches. In The Life and Work of Milutin Milanković: Past, Present, Future, ed. S. Maksimović, 58–65. Belgrade: University of Belgrade, Faculty of Architecture.

  • Nikolić, Dimitrije and Vladimir Živaljević. 2019. A Note on the Finite Element Analysis of Milankovitch’s Membrane of Equal Strength. In The Life and Work of Milutin Milanković: Past, Present, Future, ed. S. Maksimović, 66–74. Belgrade: University of Belgrade, Faculty of Architecture.

  • Osserman, Robert. 2010. How the Gateway arch got its shape. Nexus Netw J 12(2): 167–189.

  • Poleni, Giovanni. 1748. Memorie istoriche della gran cupola del Tempio Vaticano. Padova: Stamperia del Seminario.

  • Prager, W. and G. I. N. Rozvany. 1980. Optimal Spherical Cupola of Uniform Strength. Ingenieur Archiv 49: 287–293.

  • Radelet-de Grave, Patricia. 2003. The use of a particular form of the parallelogram law of forces for the building of vaults (1650–1750). In Essays on the History of Mechanics, eds. A. Becchi, M. Corradi, F. Foce, O. Pedemonte, 135–163. Springer Basel AG.

  • Routh, Edward John. 1896. A Treatise on Analytical Statics, Vol. I, 2nd ed. Cambridge: Cambridge University Press.

  • Sayir, Mahir and Walter Schumann. 1972. Zu den anisotropen Membranschalen mit gegebenenfalls gleicher Festigkeit. Zeitschrift für Angewandte Mathematik und Physik 23: 815–827.

  • Schumann, W. and W. Wüthrich. 1972. Über Schalen gleicher Festigkeit. Acta Mechanica 14: 189–197.

  • Stirling, James. 1717. Lineæ tertii ordinis Neutonianæ. Oxford.

  • Truesdell, Clifford. 1960. The rational mechanics of flexible or elastic bodies 16381788. Introduction to Leonhardi Euleri Opera Omnia, 2nd series, vol XI. Zürich: Orell Füssli.

Download references

Acknowledgements

This research is supported by the Ministry of Education, Science and Technological Development through the Project no. 451-03-68/2020-14/200156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrije Nikolić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, D., Živaljević, V. On the Modelling of Vaulted Structures of Equal Strength. Nexus Netw J 22, 1219–1236 (2020). https://doi.org/10.1007/s00004-020-00507-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00004-020-00507-y

Keywords

Navigation