Skip to main content
Log in

Degree of hydration based Kelvin model for the basic creep of early age concrete

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Based on simple but fundamental physical observations, a simple Kelvin model with degree of hydration based stiffnesses and viscosity is developed for the simulation of the visco-elastic behaviour of early age concrete, including instantaneous deformation and basic creep. The validity of the model is verified by means of creep tests under constant or varying stresses. A good agreement with the experimental creep results is noticed. With the newly developed degree of hydration based Kelvin model the fundamental nature of the degree of hydration for the early age creep behaviour is illustrated once again.

Résumé

Sur la base d'observations physiques simples mais fondemantales, l'auteur a établi un modèle Kelvin simple dont les paramètres sont basés sur le degré d'hydratation et qui permet la simulation du comportement visco-élastique du béton jeune, comprenant la déformation instantanée et le fluage de base. Plusieurs essais de fluage sous contrainte constante ou variable ont permis d'évaluer le modèle et de constater la bonne concordance entre les résultats des essais et le modèle en question. Ces résultats montrent une fois de plus l'importance du degré d'hydratation pour le fluage de base du béton jeune.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E0 :

Young's modulus or spring stiffness

E1 :

spring stiffness

r:

degree of hydration

r0 :

degree of hydration at t0

t:

time

t0 :

loading age

α:

stress level

ε0 :

instantaneous strain

ε c :

basic creep strain

ε cf :

final basic creep strain

η1 :

damper viscosity

τ:

retardation time

ϕ cf :

final creep coefficient

References

  1. De Schutter, G. and Taerwe, L., ‘Towards a more fundamental non-linear basic creep model for early age concrete’,Mag. Con. Res. 49 (180) (1997) 195–200.

    Article  Google Scholar 

  2. De Schutter, G. and Taerwe, L. ‘General hydration model for portland cement and blast furnace slag cement’,,25 (3) (1995) 593–604.

    Google Scholar 

  3. Tschoegl, N. W., ‘The phenomenological theory of linear viscoelastic behavior’, (Springer Verlag, Berlin, 1989).

    MATH  Google Scholar 

  4. Van Breugel, K. ‘Relaxation of young concrete’, (Report 5-80-D8, Delft University of Technology, 1980).

  5. De Borst, R. and Van Den Boogaard, A. H. ‘Finite-element modeling of deformation and cracking in early-age concrete’,J. Eng. Mech 120 (12) (1994) 2519–2534.

    Article  Google Scholar 

  6. De Schutter, G. and Taerwe, L., ‘Degree of hydration based description of mechanical properties of early age concrete’,Mater. Struct. 29 (1996) 335–344.

    Google Scholar 

  7. De Witte, F. C. and Visschedijk, M. A. T. (eds.) ‘DIANA finite element analysis user's manual release 6.1, Potential flow analysis’, (TNO Building and Construction Research, Delft, 1996).

    Google Scholar 

  8. De Witte, F. C. and Feenstra, P. H. (eds.), ‘DIANA finite element analysis user's manual release 6.1, Nonlinear analysis’, (TNO Building and Construction Research, Delft, 1996).

    Google Scholar 

  9. Yue, L. L., ‘Creep recovery of plain concrete under uniaxial compression’, (Ph.D. thesis, Magnel Laboratory for Concrete Research, University of Ghent, Belgium, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Schutter, G. Degree of hydration based Kelvin model for the basic creep of early age concrete. Mat. Struct. 32, 260–265 (1999). https://doi.org/10.1007/BF02479595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479595

Keywords

Navigation