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Preface 

Scope, Aims, and Audiences 

This book, Level Set Methods and Dynamic Implicit Surfaces is designed 
to serve two purposes: 

Parts I and II introduce the reader to implicit surfaces and level set 
methods. We have used these chapters to teach introductory courses on the 
material to students with little more than a fundamental math background. 
No prior knowledge of partial differential equations or numerical analysis 
is required. These first eight chapters include enough detailed information 
to allow students to create working level set codes from scratch. 

Parts III and IV of this book are based on a series of papers published 
by us and our colleagues. For the sake of brevity, a few details have been 
occasionally omitted. These chapters do include thorough explanations and 
enough of the significant details along with the appropriate references to 
allow the reader to get a firm grasp on the material. 

This book is an introduction to the subject. We have given examples of 
the utility of the method to a diverse (but by no means complete) collection 
of application areas. We have also tried to give complete numerical recipes 
and a self-contained course in the appropriate numerical analysis. We be
lieve that this book will enable users to apply the techniques presented here 
to real problems. 

The level set method has been used in a rapidly growing number of areas, 
far too many to be represented here. These include epitaxial growth, opti
mal design, CAD, MEMS, optimal control, and others where the simulation 
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of moving interfaces plays a key role in the problem to be solved. A search of 
"level set methods" on the Google website (which gave over 2,700 responses 
as of May 2002) will give an interested reader some idea of the scope and 
utility of the method. In addition, some exciting advances in the technology 
have been made since we began writing this book. We hope to cover many of 
these topics in a future edition. In the meantime you can find some exciting 
animations and moving images as well as links to more relevant research pa
pers via our personal web sites: http://graphics . stanford. edu;-fedkiw 
andhttp://www.math.ucla.edu/-sjo/. 
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Part I 

Implicit Surfaces 

In the next two chapters we introduce implicit surfaces and illustrate a 
number of useful properties, focusing on those that will be of use to us 
later in the text. A good general review can be found in [16J. In the first 
chapter we discuss those properties that are true for a general implicit 
representation. In the second chapter we introduce the notion of a signed 
distance function with a Euclidean distance metric and a "±" sign used to 
indicate the inside and outside of the surface. 



1 
Implicit Functions 

1.1 Points 

In one spatial dimension, suppose we divide the real line into three distinct 
pieces using the points x = -1 and x = 1. That is, we define (-00, -1), 
(-1,1), and (1,00) as three separate sub domains of interest, although we 
regard the first and third as two disjoint pieces of the same region. We refer 
to 0- = (-1,1) as the inside portion of the domain and 0+ = (-00, -1) U 
(1,00) as the outside portion of the domain. The border between the inside 
and the outside consists of the two points ao = {-I, I} and is called 
the interface. In one spatial dimension, the inside and outside regions are 
one-dimensional objects, while the interface is less than one-dimensional. 
In fact, the points making up the interface are zero-dimensional. More 
generally, in 3tn , subdomains are n-dimensional, while the interface has 
dimension n 1. We say that the interface has codimension one. 

In an explicit interface representation one explicitly writes down the 
points that belong to the interface as we did above when defining ao = 
{-I, I}. Alternatively, an implicit interface representation defines the inter
face as the isocontour of some function. For example, the zero isocontour 
of ¢( x) = x2 - 1 is the set of all points where ¢( x) = 0; i.e., it is ex
actly ao = {-I, I}. This is shown in Figure 1.1. Note that the implicit 
function ¢( x) is defined throughout the one-dimensional domain, while the 
isocontour defining the interface is one dimension lower. More generally, 
in 3tn , the implicit function ¢( x) is defined on all x E 3tn , and its isocon
tour has dimension n - 1. Initially, the implicit representation might seem 
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outside 

interface 

\ outside 

an 
¢=o 

interface 

x 

Figure 1.1. Implicit function ¢(x) = x2 - 1 defining the regions n- and n+ as 
well as the boundary an 

wasteful, since the implicit function ¢(x) is defined on all of ~n, while the 
interface has only dimension n - 1. However, we will see that a number of 
very powerful tools are readily available when we use this representation. 

Above, we chose the ¢(x) = 0 isocontour to represent the lower
dimensional interface, but there is nothing special about the zero 
isocontour. For example, the (/>(x) = 1 isocontour of (/>(x) = x2 , defines 
the same interface, an = {-I, I}. In general, for any function (/>( x) and 
an arbitrary isocontour (/>(x) = a for some scalar a E ~, we can define 
¢(x) = (/>(x) a, so that the ¢(x) = 0 isocontour of ¢ is identical to the 
(/>(x) a isocontour of (/>. In addition, the functions ¢ and (/> have identical 
properties up to a scalar translation a. Moreover, the partial derivatives 
of ¢ are the same as the partial derivatives of (/>, since the scalar vanishes 
upon differentiation. Thus, throughout the text all of our implicit functions 
¢( x) will be defined so that the ¢( x) = 0 isocontour represents the interface 
(unless otherwise specified). 

1.2 Curves 

In two spatial dimensions, our lower-dimensional interface is a curve that 
separates ~2 into separate sub domains with nonzero areas. Here we are 
limiting our interface curves to those that are closed, so that they have 
clearly defined interior and exterior regions. As an example, consider ¢(x) = 



an 
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interface 
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n+ 
¢>O 
outside 

x 

Figure 1.2. Implicit representation of the curve x 2 + y2 = 1. 

X2 + y2 - 1, where the interface defined by the ¢(x) = 0 isocontour is the 
unit circle defined by an = {X' I Ixl = I}. The interior region is the unit 
open disk 0.- = {x I Ixl < I}, and the exterior region is 0.+ = {x I Ixl > I}. 
These regions are depicted in Figure 1.2. The explicit representation of this 
interface is simply the unit circle defined by an = {X' Ilxl = I}. 

In two spatial dimensions, the explicit interface definition needs to spec
ify all the points on a curve. While in this case it is easy to do, it can be 
somewhat more difficult for general curves. In general, one needs to param
eterize the curve with a vector function x(s), where the parameter S is in 
[so, Sf]. The condition that the curve be closed implies that x(so) = x(sf). 

While it is convenient to use analytical descriptions as we have done 
so far, complicated two-dimensional curves do not generally have such 
simple representations. A convenient way of approximating an explicit 
representation is to discretize the parameter s into a finite set of points 
So < ... < Si-l < Si < si+l < ... < Sf, where the subintervals lSi, Si+l] 
are not necessarily of equal size. For each point Si in parameter space, 
we then store the corresponding two-dimensional location of the curve de
noted by X(Si). As the number of points in the discretized parameter space 
is increased, so is the resolution (detail) of the two-dimensional curve. 

The implicit representation can be stored with a discretization as well, 
except now one needs to discretize all of ~2, which is impractical, since it is 
unbounded. Instead, we discretize a bounded subdomain D C ~2. Within 
this domain, we choose a finite set of points (Xi, Yi) for i = 1, ... ,N to dis
cretely approximate the implicit function ¢. This illustrates a drawback of 
the implicit surface representation. Instead of resolving a one-dimensional 
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interval [so, sf]' one needs to resolve a two-dimensional region D. More 
generally, in ~n, a discretization of an explicit representation needs to re
solve only an (n - l)-dimensional set, while a discretization of an implicit 
representation needs to resolve an n-dimensional set. This can be avoided, 
in part, by placing all the points if very close to the interface, leaving the 
rest of D unresolved. Since only the ¢(if) = 0 isocontour is important, only 
the points if near this isocontour are actually needed to accurately repre
sent the interface. The rest of D is unimportant. Clustering points near the 
interface is a local approach to discretizing implicit representations. (We 
will give more details about local approaches later.) Once we have chosen 
the set of points that make up our discretization, we store the values of the 
implicit function ¢(if) at each of these points. 

Neither the explicit nor the implicit discretization tells us where the in
terface is located. Instead, they both give information at sample locations. 
In the explicit representation, we know the location of a finite set of points 
on the curve, but do not know the location of the remaining infinite set 
of points (on the curve). Usually, interpolation is used to approximate the 
location of points not represented in the discretization. For example, piece
wise polynomial interpolation can be used to determine the shape of the 
interface between the data points. Splines are usually appropriate for this. 
Similarly, in the implicit representation we know the values of the implicit 
function ¢ at only a finite number of points and need to use interpolation 
to find the values of ¢ elsewhere. Even worse, here we may not know the 
location of any of the points on the interface, unless we have luckily cho
sen data points if where ¢(if) is exactly equal to zero. In order to locate 
the interface, the ¢(if) 0 isocontour needs to be interpolated from the 
known values of ¢ at the data points. This is a rather standard procedure 
accomplished by a variety of contour plotting routines. 

The set of data points where the implicit function ¢ is defined is called 
a grid. There are many ways of choosing the points in a grid, and these 
lead to a number of different types of grids, e.g., unstructured, adaptive, 
curvilinear. By far, the most popular grids, are Cartesian grids defined as 
{(Xi,Yj) 11 :s; i :s; m, 1 :s; j :s; n}. The natural orderings of the Xi and Yj 
are usually used for convenience. That is, Xl < ... < Xi-l < Xi < Xi+l < 
... < Xm and YI < ... < Yj-l < Yj < Yj+l < ... < Yn' In a uniform 
Cartesian grid, all the subintervals [Xi, Xi+ll are equal in size, and we set 
fix = Xi+l -- Xi. Likewise, all the subintervals [Yj, Yj+ll are equal in size, 
and we set fiy = Yj+l - Yj. Furthermore, it is usually convenient to choose 
fix = fiy so that the approximation errors are the same in the x-direction 
as they are in the y-direction. By definition, Cartesian grids imply the use 
of a rectangular domain D = [Xl, xml x [YI, YnJ. Again, since ¢ is important 
only near the interface, a local approach would indicate that many of the 
grid points are not needed, and the implicit representation can be optimized 
by storing only a subset of a uniform Cartesian grid. The Cartesian grid 
points that are not sufficiently near the interface can be discarded. 
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We pause for a moment to consider the discretization of the one
dimensional problem. There, since the explicit representation is merely a 
set of points, it is trivial to record the exact interface position, and no 
discretization or parameterization is needed. However, the implicit repre
sentation must be discretized if ¢ is not a known analytic function. A typical 
discretization consists of a set of points Xl < ... < Xi-l < Xi < Xi+l < 
... < Xm on a subdomain D = [Xl, xml of 3? Again, it is usually useful to 
use a uniform grid, and only the grid points near the interface need to be 
stored. 

1.3 Surfaces 

In three spatial dimensions the lower-dimensional interface is a surface 
that separates ~3 into separate subdomains with nonzero volumes. Again, 
we consider only closed surfaces with clearly defined interior and exterior 
regions. As an example, consider ¢(if) = X2 +y2 + z2 -1, where the interface 
is defined by the ¢( if) = 0 isocontour, which is the boundary of the unit 
sphere defined as 80, = {if Ilxl = I}. The interior region is the open unit 

sphere 0,- = {x II~ < I}, and the exterior region is 0,+ = {x Ilxl > I}. 
The explicit representation of the interface is 80, = {x I Ixl = I}. 

For complicated surfaces with no analytic representation, we again need 
to use a discretization. In three spatial dimensions the explicit represen
tation can be quite difficult to discretize. One needs to choose a number 
of points on the two-dimensional surface and record their connectivity. In 
two spatial dimensions, connectivity was determined based on the ordering, 
Le., if(Si) is connected to X(Si-l) and if(Si+l). In three spatial dimensions 
connectivity is less straightforward. If the exact surface and its connectivity 
are known, it is simple to tile the surface with triangles whose vertices lie 
on the interface and whose edges indicate connectivity. On the other hand, 
if connectivity is not known, it can be quite difficult to determine, and even 
some of the most popular algorithms can produce surprisingly inaccurate 
surface representations, e.g., surfaces with holes. 

Connectivity can change for dynamic implicit surfaces, i.e., surfaces that 
are moving around. As an example, consider the splashing water surface 
in a swimming pool full of children. Here, connectivity is not a "one-time" 
issue dealt with in constructing an explicit representation of the surface. 
Instead, it must be resolved over and over again every time pieces of the 
surface merge together or pinch apart. In two spatial dimensions the task 
is more manageable, since merging can be accomplished by taking two 
one-dimensional parameterizations, Si and Si, and combining them into a 
single one-dimensional parameterization. Pinching apart is accomplished by 
splitting a single one-dimensional parameterization into two separate one
dimensional parameterizations. In three spatial dimensions the "interface 
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surgery" needed for merging and pinching is much more complex, leading 
to a number of difficulties including, for example, holes in the surface. 

One of the nicest properties of implicit surfaces is that connectivity does 
not need to be determined for the discretization. A uniform Cartesian grid 
{(Xi,Yj,Zk) 11:::; i:::; m,l :::; j :::; n,l :::; k :::; p} can be used along 
with straightforward generalizations of the technology from two spatial 
dimensions. Possibly the most powerful aspect of implicit surfaces is that 
it is straightforward to go from two spatial dimensions to three spatial 
dimensions (or even more). 

1.4 Geometry Toolbox 

Implicit interface representations include some very powerful geometric 
tools. For example, since we have designated the ¢(x) = 0 isocontour as 
the interface, we can determine which side of the interface a point is on 
simply by looking at the local sign of ¢. That is, Xo is inside the interface 
when ¢(xo) < 0, outside the interface when ¢(xo) > 0, and on the interface 
when ¢(xo ) = O. With an explicit representation of the interface it can be 
difficult to determine whether a point is inside or outside the interface. A 
standard procedure for doing this is to cast a ray from the point in question 
to some far-off place that is known to be outside the interface. Then if the 
ray intersects the interface an even number of times, the point is outside 
the interface. Otherwise, the ray intersects the interface an odd number of 
times, and the point is inside the interface. Obviously, it is more convenient 
simply to evaluate ¢ at the point xo. In the discrete case, i.e., when the 
implicit function is given by its values at a finite number of data points, 
interpolation can be used to estimate ¢(xo) using the values of ¢ at the 
known sample points. For example, on our Cartesian grid, linear, bilin
ear, and trilinear interpolation can be used in one, two, and three spatial 
dimensions, respectively. 

Numerical interpolation produces errors in the estimate of ¢. This can 
lead to erroneously designating inside points as outside points and vice 
versa. At first glance these errors might seem disastrous, but in reality 
they amount to perturbing (or moving) the interface away from its exact 
position. If these interface perturbations are small, their effects may be mi
nor, and a perturbed interface might be acceptable. In fact, most numerical 
methods depend on the fact that the results are stable in the presence of 
small perturbations. If this is not true, then the problem under consider
ation is probably ill-posed, and numerical methods should be used only 
with extreme caution (and suspicion). These interface perturbation errors 
decrease as the number of sample points increases, implying that the exact 
answer could hypothetically be computed as the number of sample points 
is increased to infinity. Again, this is the basis for most numerical methods. 
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While one cannot increase the number of grid points to infinity, desirable 
solutions can be obtained for many problems with a practical number of 
grid points. Throughout the text we will make a number of numerical ap
proximations with errors proportional to the size of a Cartesian mesh cell, 
i.e., 6x (or (L.xY). If the implicit function is smooth enough and well 
resolved by the grid, these estimates will be appropriate. Otherwise, these 
errors might be rather large. Obviously, this means that we would like our 
implicit function to be as smooth as possible. In the next chapter we dis
cuss using a signed distance function to represent the surface. This turns 
out to be a good choice, since steep and fiat gradients as well as rapidly 
changing features are avoided as much as possible. 

Implicit functions make both simple Boolean operations and more ad
vanced constructive solid geometry (CSG) operations easy to apply. This 
is important, for example, in computer-aided design (CAD). If (h and 1>2 
are two different implicit functions, then ¢(x) = min(¢1(x),¢2(X)) is 
the implicit function representing the union of the interior regions of ¢l 
and ¢2. Similarly, ¢(x) = max(¢l(x), ¢2(X)) is the implicit function 
representing the intersection of the interior regions of ¢l and ¢2. The 
complement of ¢l(X) can be defined by ¢(x) = -¢l(X). Also, ¢(x) = 
max(¢l(x), -¢2(X)) represents the region obtained by subtracting the 
interior of ¢2 from the interior of ¢l. 

The gradient of the implicit function is defined as 

"VA. = (a¢ a¢ a¢) 
<P ax' ay' az . (1.1) 

The gradient "V ¢ is perpendicular to the isocontours of ¢ and points in the 
direction of increasing ¢. Therefore, if Xo is a point on the zero isocontour 
of ¢, i.e., a point on the interface, then "V¢ evaluated at Xo is a vector that 
points in the same direction as the local unit (outward) normal N to the 
interface. Thus, the unit (outward) normal is 

- "V¢ 
N = I"V¢I (1.2) 

for points on the interface. 
Since the implicit representation of the interface embeds the interface 

in a domain of one higher-dimension, it will be useful to have as much 
information as possible representable on the higher-dimensional domain. 
For example, instead of defining the unit normal N by equation (1.2) for 
points on the interface only, we use equation (1.2) to define a function N 
everywhere on the domain. This embeds the normal in a function N defined 
on the entire domain that agrees with the normal for points on the interface. 
Figure 1.3 shows a few isocontours of our two-dimensional example ¢(x) = 
x2 + y2 - 1 along with some representative normals. 

Consider the one-dimensional example ¢(x) = x2 -1, where N is defined 
by equation (1.2) as N = x/lxl. Here, N points to the right for all x > 0 
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y 

x 

Figure 1.3. A few isocontours of our two-dimensional example rj>(x) = x2 +y2_1 
along with some representative normals. 

including x = 1, where the interface normal is N = 1, and N points to the 
left for all x < 0 including x = -1, where the interface normal is N = -1. 
The normal is undefined at x = 0, since the denominator of equation (1.2) 
vanishes. This can be problematic in general, but can be avoided with a 
number of techniques. For example, at x = 0 we could simply define N as 
either N = lor N = -1. Our two- and three-dimensional examples (above) 
show similar degenerate behavior at x = 0, where all partial derivatives 
vanish. Again, a simple technique for evaluating (1.2) at these points is 
just to pick an arbitrary direction for the normal. Note that the standard 
trick of adding a small € > 0 to the denominator of equation (1.2) can 
be a bad idea in general, since it produces a normal with INI =I- 1. In fact, 
when the denominator in equation (1.2) is zero, so is the numerator, making 

N = ° when a small € > 0 is used in the denominator. (While setting N = ° 
is not always disastrous, caution is advised.) 

On our Cartesian grid, the derivatives in equation (1.2) need to be ap
proximated, for example using finite difference techniques. We can use a 
first-order accurate forward difference 

(1.3) 

abbreviated as D+ ¢, a first-order accurate backward difference 

a¢ ¢i - ¢i-l 
ax ::::: 6x (1.4) 
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abbreviated as D-¢, or a second-order accurate central difference 

o¢ ¢HI - ¢i-I (1.5) 
ox ~ 2L:.x 

abbreviated as DO¢. (The j and k indices have been suppressed in the 
above formulas.) The formulas for the derivatives in the y and z directions 
are obtained through symmetry. These simple formulas are by no means 
exhaustive, and we will discuss more ways of approximating derivatives 
later in the text. 

When all numerically calculated finite differences are identically zero, 
the denominator of equation (1.2) vanishes. As in the analytic case, we 
can simply randomly choose a normal. Here, however, randomly choosing 
a normal is somewhat justified, since it is equivalent to randomly perturb
ing the values of ¢ on our Cartesian mesh by values near round-off error. 
These small changes in the values of ¢ are dominated by the local approx
imation errors in the finite difference formula for the derivatives. Consider 
a discretized version of our one-dimensional example ¢(x) = x2 - 1, and 
suppose that grid points exist at Xi-I = -L:.x, Xi = 0, and xHI = L:.x with 
exact values of ¢ defined as ¢i-I = L:.x2 -1, ¢i = -1, and ¢HI = L:.x2 -1, 
respectively. The forward difference formula gives Ni = 1, the backward 
difference formula gives Ni = -1, and the central difference formula can
not be used, since DO¢ = 0 at Xi = O. However, simply perturbing ¢HI to 
6.x2 - 1 + E for any small E > 0 (even round-off error) gives DO ¢ =I- 0 and 
Ni = 1. Similarly, perturbing ¢i-I to L:.x2 - 1 + f gives Ni = -1. Thus, 
for any approach that is stable under small perturbations of the data, it is 
acceptable to randomly choose N when the denominator of equation (1.2) 
vanishes. Similarly in our two- and three-dimensional examples, N = x/lxl 
everywhere except at x = 0, where equation (1.2) is not defined and we 
are free to choose it arbitrarily. The arbitrary normal at the origin in the 
one-dimensional case lines up with the normals to either the right, where 
N = 1, or to the left, where N = -1. Similarly, in two and three spatial di
mensions, an arbitrarily chosen normal at x = 0 lines up with other nearby 
normals. This is always the case, since the normals near the origin point 
outward in every possible direction. 

If ¢ is a smooth well-behaved function, then an approximation to the 
value of the normal at the interface can be obtained from the values of N 
computed at the nodes of our Cartesian mesh. That is, given a point Xo 

on the interface, one can estimate the unit outward normal at Xo by in
terpolating the values of N from the Cartesian mesh to the point xo. If 
one is using forward, backward, or central differences, then linear (bilinear 
or trilinear) interpolation is usually good enough. However, higher-order 
accurate formulas can be used if desired. This interpolation procedure re
quires that ¢ be well behaved, implying that we should be careful in how 
we choose ¢. For example, it would be unwise to choose an implicit func
tion ¢ with unnecessary oscillations or steep (or flat) gradients. Again, a 
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good choice for ¢ turns out to be the signed distance function discussed in 
the next chapter. 

The mean curvature of the interface is defined as the divergence of the 
normal N = (nl' n2, n3), 

K, = V' . N = anI + on2 + on3 
AX oy oz' (1.6) 

so that K, > 0 for convex regions, K, < 0 for concave regions, and K, = 0 for a 
plane; see Figure 1.4. While one could simply use finite differences to com
pute the derivatives ofthe components of the normal in equation (1.6), it is 
usually more convenient, compact, and accurate to calculate the curvature 
directly from the values of ¢. Substituting equation (1.2) into equation (1.6) 
gives 

K, = V'. C~:I) , (1. 7) 

so that we can write the curvature as 

K, = (¢~¢yy - 2¢x¢y¢xy + ¢;¢xx + ¢~¢zz - 2¢x¢z¢xz + ¢~¢xx 
+¢;¢zz - 2¢y¢z¢yz + ¢~¢yy) IIV'¢13 (1.8) 

in terms of the first and second derivatives of ¢. A second-order accurate 
finite difference formula for ¢xx, the second partial derivative of ¢ in the x 
direction, is given by 

02¢ ¢i+1 - 2¢i + ¢i-l 
ox2 ::::; D.x2 

(1.9) 

abbreviated as D"t D; ¢, or equivalently, D; D"t ¢. Here D+ and D- are 
defined as in equations (1.3) and (1.4), respectively, and the x subscript 
indicates that the finite difference is evaluated in the x direction. A second
order accurate finite difference formula for ¢xy is given by D~D~¢, or 
equivalently, D~D~¢. The other second derivatives in equation (1.8) are 
defined in a manner similar to either ¢xx or ¢xy' 

In our one-dimensional example, ¢(x) = x 2 - 1, K, = 0 everywhere ex
cept at the origin, where equation (1.7) is undefined. Thus, the origin, is 
a removable singularity, and we can define K, = 0 everywhere. Interfaces in 
one spatial dimension are models of planes in three dimensions (assuming 
that the unmodeled directions have uniform data). Therefore, using K, = 0 
everywhere is a consistent model. In our two- and three-dimensional ex
amples above, K, = I}I and K, = I~I (respectively) everywhere except at the 
origin. Here the singularities are not removable, and K, -+ 00 as we approach 
the origin. Moreover, K, = 1 everywhere on the one-dimensional interface 
in two spatial dimensions, and K, = 2 everywhere on the two-dimensional 
interface in three spatial dimensions. The difference occurs because a two
dimensional circle is a cylinder in three spatial dimensions (assuming that 
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Figure 1.4. Convex regions have r;, > 0, and concave regions have r;, < o. 

the unmodeled direction has uniform data). It seems nonsensical to be trou
bled by K, --+ 00 as we approach the origin, since this is only a consequence 
of the embedding. In fact, since the smallest unit of measure on the Carte
sian grid is the cell size 6x, it makes little sense to hope to resolve objects 
smaller than this. That is, it makes little sense to model circles (or spheres) 
with a radius smaller than t:::.x. Therefore, we limit the curvature so that 
-ix ~ K, ~ lx. If a value of K, is calculated outside this range, we merely 
replace that value with either -lx or lx depending on which is closer. 

As a final note on curvature, one has to use caution when ¢ is noisy. 
The normal jJ will generally have even more noise, since it is based on the 
derivatives of ¢. Similarly, the curvature K, will be even noisier than the 
normal, since it is computed with the second derivatives of ¢. 

1.5 Calculus Toolbox 

The characteristic function X- of the interior region n- is defined as 

_ _ {I if ¢(x) ~ 0, 
X (x) = ° if ¢(x) > ° (1.10) 

where we arbitrarily include the boundary with the interior region. The 
characteristic function X+ of the exterior region n+ is defined similarly as 

X+(x) = {o if ¢(x) ~ 0, (1.11) 
1 if ¢(x) > 0, 

again including the boundary with the interior region. It is often useful to 
have only interior and exterior regions so that special treatment is not 
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needed for the boundary. This is easily accomplished by including the 
measure-zero boundary set with either the interior or exterior region (as 
above). Throughout the text we usually include the boundary with the 
interior region n- where ¢(x) < ° (unless otherwise specified). 

The functions x± are functions of a multidimensional variable X. It 
is often more convenient to work with functions of the one-dimensional 
variable ¢. Thus we define the one-dimensional Heaviside function 

H(¢)={O if¢:SO, 
1 if ¢ > 0, 

(1.12) 

where ¢ depends on X, although it is not important to specify this depen
dence when working with H. This allows us to work with H in one spatial 
dimension. Note that X+(x) = H(¢(x)) and X-(x) = I-H(¢(x)) for all X, 
so all we have done is to introduce an extra function of one variable H to 
be used as a tool when dealing with characteristic functions. 

The volume integral (area or length integral in ~2 or ?HI, respectively) of 
a function f over the interior region n- is defined as 

(1.13) 

where the region of integration is all of n, since x- prunes out the exterior 
region n+ automatically. The one-dimensional Heaviside function can be 
used to rewrite this volume integral as 

10 f(x) (1 - H(¢(x))) dx (1.14) 

representing the integral of f over the interior region n-. Similarly, 

in f(x)H(¢(x)) dx (1.15) 

is the integral of f over the exterior region n+. 
By definition, the directional derivative of the Heaviside function H in 

the normal direction N is the Dirac delta function 

8(x) = \lH(¢(x))' N, (1.16) 

which is a function of the multidimensional variable X. Note that this dis
tribution is nonzero only on the interface 8n where ¢ = 0. We can rewrite 
equation (1.16) as 

8(x) = H'(¢(x))\l¢(x) . \~:~:~\ = H'(¢(x))\\l¢(x)\ (1.17) 

using the chain rule to take the gradient of H, the definition of the normal 
from equation (1.2), and the fact that \l¢(x) . \l¢(x) = \\l¢(x)\2. In one 
spatial dimension, the delta function is defined as the derivative of the 
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one-dimensional Heaviside function: 

J(¢) = H'(¢), (1.18) 

where H(¢) is defined in equation (1.12) above. The delta function J(¢) 
is identically zero everywhere except at ¢ = O. This allows us to rewrite 
equations (1.16) and (1.17) as 

8(x) = J(¢(x)) 1\7¢(x) I (1.19) 

using the one-dimensional delta function J (¢). 
The sur/ace integral (line or point integral in lR2 or lRl, respectively) of 

a function / over the boundary 80 is defined as 

l /(x)8(x) dx, (1.20) 

where the region of integration is all of 0, since 8 prunes out everything 
except 80 automatically. The one-dimensional delta function can be used 
to rewrite this surface integral as 

l /(x)J(¢(x)) 1\7¢(x) I dx. (1.21 ) 

Typically, volume integrals are computed by dividing up the interior 
region 0-, and surface integrals are computed by dividing up the bound
ary 80. This requires treating a complex two-dimensional surface in three 
spatial dimensions. By embedding the volume and surface integrals in 
higher dimensions, equations (1.14), (1.15) and (1.21) avoid the need for 
identifying inside, outside, or boundary regions. Instead, the integrals are 
taken over the entire region O. Note that dx is a volume element in three 
spatial dimensions, an area element in two spatial dimensions, and a length 
element in one spatial dimension. On our Cartesian grid, the volume of a 
three-dimensional cell is 6.x6.y6.z, the area of a two-dimensional cell is 
6.x6.y, and the length of a one-dimensional cell is 6.x. 

Consider the surface integral in equation (1.21), where the one
dimensional delta function J(¢) needs to be evaluated. Since J(¢) = 0 
almost everywhere, i.e., except on the lower-dimensional interface, which 
has measure zero, it seems unlikely that any standard numerical approxi
mation based on sampling will give a good approximation to this integral. 
Thus, we use a first-order accurate smeared-out approximation of J (¢). 
First, we define the smeared-out Heaviside function 

H(¢) = {~ + it + .1... sin (!Ii.) 2 2< 271' < 

1 

¢ < -E, 

-E:S ¢ :s E, 

E < ¢, 

(1.22) 

where E is a tunable parameter that determines the size of the bandwidth 
of numerical smearing. A typically good value is E = 1.56.x (making the 



16 1. Implicit Functions 

interface width equal to three grid cells when cp is normalized to a signed 
distance function with l\7cpl = 1; see Chapter 2). Then the delta function 
is defined according to equation (1.18) as the derivative of the Heaviside 
function 

cp < -E, 

-E ~ cp ~ E, 

E < cp, 

(1.23) 

where E is determined as above. This delta function allows us to evaluate 
the surface integral in equation (1.21) using a standard sampling technique 
such as the midpoint rule. Similarly, the smeared-out Heaviside function in 
equation (1.22) allows us to evaluate the integrals in equations (1.14) and 
(1.15). 

The reader is cautioned that the smeared-out Heaviside and delta 
functions approach to the calculus of implicit functions leads to first
order accurate methods. For example, when calculating the volume of the 
region n- using 

10 (1- H(cp(x))) dV (1.24) 

with the smeared-out Heaviside function in equation (1.22) (and j(x) = 
1), the errors in the calculation are O(6x) regardless of the accuracy of 
the integration method used. If one needs more accurate results, a three
dimensional contouring algorithm such as the marching cubes algorithm can 
be used to identify the region n- more accurately, see Lorenson and Cline 
[108] or the more recent Kobbelt et al. [98]. Since higher-order accurate 
methods can be complex, we prefer the smeared-out Heaviside and delta 
function methods whenever appropriate. 



2 
Signed Distance Functions 

2.1 Introduction 

In the last chapter we defined implicit functions with ¢(x) ::; 0 in the 
interior region n- , ¢( x) > 0 in the exterior region n+, and ¢( x) = 0 on the 
boundary an. Little was said about ¢ otherwise, except that smoothness is 
a desirable property especially in sampling the function or using numerical 
approximations. In this chapter we discuss signed distance functions, which 
are a subset of the implicit functions defined in the last chapter. We define 
signed distance functions to be positive on the exterior, negative on the 
interior, and zero on the boundary. An extra condition of 1\7¢(x) I = 1 is 
imposed on a signed distance function. 

2.2 Distance Functions 

A distance function d(x) is defined as 

d(x) = min(lx - xII) for all XI Eon, (2.1) 

implying that d(x) = 0 on the boundary where x E 00. Geometrically, d 
may be constructed as follows. If x E an, then d(x) = O. Otherwise, for 
a given point x, find the point on the boundary set 00 closest to x, and 
label this point xc. Then d(x) = Ix - xci. 

For a given point x, suppose that Xc is the point on the interface closest 
to X. Then for every point y on the line segment connecting x and xc, 
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xe--+--ef---- Xc 

Figure 2.1. Xc is the closest interface point to X and y. 

Xc is the point on the interface closest to fl as well. To see this, consider 
Figure 2.1, where X, XC, and an example of a fl are shown. Since Xc is the 
closest interface point to X, no other interface points can be inside the large 
circle drawn about X passing through Xc. Points closer to ythan Xc must 
reside inside the small circle drawn about fl passing through Xc. Since the 
small circle lies inside the larger circle, no interface points can be inside 
the smaller circle, and thus Xc is the interface point closest to fl. The line 
segment from X to Xc is the shortest path from x to the interface. Any local 
deviation from this line segment increases the distance from the interface. 
In other words, the path from x to Xc is the path of steepest descent for the 
function d. Evaluating -\7 d at any point on the line segment from x to Xc 
gives a vector that points from X to Xc. Furthermore, since d is Euclidean 
distance, 

l\7dl = 1, (2.2) 

which is intuitive in the sense that moving twice as close to the interface 
gives a value of d that is half as big. 

The above argument leading to equation (2.2) is true for any x as long 
as there is a unique closest point xc. That is, equation (2.2) is true ex
cept at points that are equidistant from (at least) two distinct points on 
the interface. Unfortunately, these equidistant points can exist, making 
equation (2.2) only generally true. It is also important to point out that 
equation (2.2) is generally only approximately satisfied in estimating the 
gradient numerically. One of the triumphs of the level set method involves 
the ease with which these degenerate points are treated numerically. 

2.3 Signed Distance Functions 

A signed distance function is an implicit function ¢ with 1¢(x)1 = d(x) for 
all X. Thus, ¢(x) = d(x) = 0 for all x E 80" ¢(x) = -d(x) for all x E 0,-, 
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and ¢(x) = d(x) for all x E n+. Signed distance functions share all the 
properties of implicit functions discussed in the last chapter. In addition, 
there are a number of new properties that only signed distance functions 
possess. For example, 

IV'¢I = 1 (2.3) 

as in equation (2.2). Once again, equation (2.3) is true only in a general 
sense. It is not true for points that are equidistant from at least two points 
on the interface. Distance functions have a kink at the interface where 
d = 0 is a local minimum, causing problems in approximating derivatives 
on or near the interface. On the other hand, signed distance functions 
are monotonic across the interface and can be differentiated there with 
significantly higher confidence. 

Given a point x, and using the fact that ¢(x) is the signed distance to 
the closest point on the interface, we can write 

Xc = x - ¢(x)N (2.4) 

to calculate the closet point on the interface, where N is the local unit 
normal at x. Again, this is true only in a general sense, since equidistant 
points x have more than one closest point xc. Also, on our Cartesian grid, 
equation (2.4) will be only an approximation of the closest point on the 
interface xc. Nevertheless, we will find formulas of this sort very useful. 

Equations that are true in a general sense can be used in numerical ap
proximations as long as they fail in a graceful way that does not cause an 
overall deterioration of the numerical method. This is a general and pow
erful guideline for any numerical approach. So while the user should be 
cautiously knowledgeable of the possible failure of equations that are only 
generally true, one need not worry too much if the equation fails in a grace
ful (harmless) manner. More important, if the failure of an equation that is 
true in a general sense causes overall degradation of the numerical method, 
then many times a special-case approach can fix the problem. For example, 
when calculating the normals using equation (1.2) in the last chapter, we 
treated the special case where the denominator IV' ¢I was identically zero by 
randomly choosing the normal direction. The numerical methods outlined 
in Part II of this book are based on vanishing viscosity solutions that guar
antee reasonable behavior even at the occasional kink where a derivative 
fails to exist. 

2.4 Examples 

In the last chapter we used ¢( x) = x2 - 1 as an implicit representation 
of an = {-I, I}. A signed distance function representation of these same 
points is ¢(x) = lxi-I, as shown in Figure 2.2. The signed distance function 
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Figure 2.2. Signed distance function ¢(x) = Ixl- 1 defining the regions sr and 
0+ as well as the boundary 80. 

¢(x) = lxi-I, gives the same boundary ao, interior region 0-, and exterior 
region 0+, that the implicit function ¢(x) = x 2-I did. However, the signed 
distance function ¢(x) = Ixl- 1 has IV'¢I = 1 for all x =1= o. At x = 0 there 
is a kink in our function, and the derivative is not defined. While this may 
seem problematic, for example for determining the normal, our Cartesian 
grid contains only sample points and therefore cannot resolve this kink. 
On the Cartesian grid this kink is slightly smeared out, and the derivative 
will have a finite value. In fact, consideration of the possible placement of 
sample points shows that the value of the derivative lies in the interval 
[-1,1]. Thus, nothing special needs to be done for kinks. In the worst-case 
scenario, the gradient vanishes at a kink, and remedies for this were already 
addressed in the last chapter. 

In two spatial dimension we replace the implicit function ¢( x) = x2 + 
y2 _ 1 with the signed distance function ¢(x) = ";x2 + y2 - 1 in order to 
implicitly represent the unit circle ao = {x I Ixl = I}. Here IV' ¢I = 1 for 
all x i= 0, and a multidimensional kink exists at the single point x = o. 
Again, on our Cartesian grid the kink will be rounded out slightly and will 
not pose a problem. However, this numerical smearing of the kink makes 
IV'¢I =1= 1 locally. That is, locally ¢ is no longer a signed distance function, 
and one has to take care when applying formulas that assume IV' ¢I = 1. 
Luckily, this does not generally lead to catastrophic difficulties. In fact, 
these kinks mostly exist away from the zero isocontour, which is the region 
of real interest in interface calculations. 
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In three spatial dimensions we replace the implicit function ¢(x) = x2 + 
y2 + z2 _ 1 with the signed distance function ¢(x) = Jx2 + y2 + z2 - 1 
in order to represent the surface of the unit sphere an = {x I Ixl = 1} 
implicitly. Again, the multidimensional kink at x = 0 will be smeared out 
on our Cartesian grid. 

In all three examples there was a kink at a single point. This is somewhat 
misleading in general. For example, consider the one-dimensional example 
¢(x) = Ixl-1 again, but in two spatial dimensions, where we write ¢(x) = 
Ixl - 1. Here, the interface consists of the two lines x = -1 and x = 1, 
and the interior region is n- = {x Ilxl < I}. In this example every point 
along the line x = 0 has a kink in the x direction; i.e., there is an entire 
line of kinks. Similarly, in three spatial dimensions ¢(x) = Ix/-1 implicitly 
represents the two planes x = -1 and x = 1. In this case every point on 
the two-dimensional plane x = 0 has a kink in the x direction; i.e., there is 
an entire plane of kinks. All of these kinks will be numerically smeared out 
on our Cartesian grid, and we need not worry about the derivative being 
undefined. However, locally IV¢I =I- 1 numerically. 

2.5 Geometry and Calculus Toolboxes 

Boolean operations for signed distance functions are similar to those for 
general implicit functions. If ¢1 and ¢2 are two different signed distance 
functions, then ¢(x) = min(¢l(x), ¢2(X)) is the signed distance func
tion representing the union of the interior regions. The function ¢(x) = 
max(¢l(x), ¢2(X)) is the signed distance function, representing the intersec
tion of the interior regions. The complement of the set defined by ¢1 (x) has 
signed distance function ¢(x) = -¢l(X). Also, ¢(x) = max(¢l (x) , -¢2(X)) 
is the signed distance function for the region defined by subtracting the 
interior of ¢2 from the interior of ¢1. 

As mentioned in the last chapter, we would like our implicit function to be 
as smooth as possible. It turns out that signed distance functions, especially 
those where the kinks have been numerically smeared, are probably the 
best candidates for implicit representation of interfaces. This is because 
IV¢I = 1 everywhere except near the smoothed-out kinks. This simplifies 
many of the formulas from the last chapter by removing the normalization 
constants. Equation (1.2) simplifies to 

N=V¢ 

for the local unit normal. Equation (1.7) simplifies to 

K=t::..¢ 

for the curvature, where t::..¢ is the Laplacian of ¢ defined as 

t::..¢ = ¢xx + ¢yy + ¢zz, 

(2.5) 

(2.6) 

(2.7) 



22 2. Signed Distance Functions 

which should not be confused with L"x, which is the size of a Cartesian 
grid cell. While this overuse of notation may seem confusing at first, it is 
very common and usually clarified from the context in which it is used. 

Note the simplicity of equation (2.7) as compared to equation (1.8). 
Obviously, there is much to be gained in simplicity and efficiency in us
ing signed distance functions. However, one should be relatively cautious, 
since smeared-out kinks will generally have IV'¢I =1= 1, so that equa
tions (2.5) and (2.6) do not accurately define the normal and the curvature. 
In fact, when using numerical approximations, one will not generally obtain 
IV'¢I = 1, so equations (2.5) and (2.6) will not generally be accurate. There 
are many instances of the normal or the curvature appearing in a set of 
equations when these quantities may not actually be needed or desired. In 
fact, one may actually prefer the gradient of ¢ (Le., V' ¢) instead ofthe nor
mal. Similarly, one may prefer the Laplacian of ¢ (Le., L,,¢) instead of the 
curvature. In this sense one should always keep equations (2.5) and (2.6) 
in mind when performing numerical calculations. Even if they are not gen
erally true, they have the potential to make the calculations more efficient 
and even better behaved in some situations. 

The multidimensional delta function in equation (1.19) can be rewritten 
as 

8(x) = 8(¢(x)) (2.8) 

using the one-dimensional delta function 8 (¢). The surface integral in 
equation (1.21) then becomes 

l J(x)8(¢(x))dx, 

where the IV'¢I term has been omitted. 

(2.9) 



Part II 

Level Set Methods 

Level set methods add dynamics to implicit surfaces. The key idea that 
started the level set fanfare was the Hamilton-Jacobi approach to numer
ical solutions of a time-dependent equation for a moving implicit surface. 
This was first done in the seminal work of Osher and Sethian [126]. In the 
following chapters we will discuss this seminal work along with many of the 
auxiliary equations that were developed along the way, including a general 
numerical approach for Hamilton-Jacobi equations. 

In the first chapter we discuss the basic convection equation, otherwise 
known as the "level set equation." This moves an implicit surface in an ex
ternally generated velocity field. In the following chapter we discuss motion 
by mean curvature, emphasizing the parabolic nature of this equation as op
posed to the underlying hyperbolic nature of the level set equation. Then, 
in the following chapter we introduce the general concept of Hamilton
Jacobi equations, noting that basic convection is a simple instance of this 
general framework. In the next chapter we discuss the concept of a sur
face moving normal to itself. The next two chapters address two of the 
core level set equations and give details for obtaining numerical solutions 
in the Hamilton-Jacobi framework. Specifically, we discuss reinitialization 
to a signed distance function and extrapolation of a quantity away from 
or across an interface. After this, we discuss a recently developed particle 
level set method that hybridizes the Eulerian level set approach with La
grangian particle-tracking technology. Finally, we wrap up this part of the 
book with a brief discussion of co dimension-two (and higher) objects. 



3 
Motion in an Externally Generated 
Velocity Field 

3.1 Convection 

Suppose that the velocity of each point on the implicit surface is given as 
V(X'); i.e., assume that V(X') is known for every point X' with ¢(X') = O. 
Given this velocity field V = (u, v, w), we wish to move all the points on 
the surface with this velocity. The simplest way to do this is to solve the 
ordinary differential equation (ODE) 

dX' = V(X') 
dt 

(3.1) 

for every point X' on the front, i.e., for all X' with ¢(X') = O. This is the 
Lagrangian formulation of the interface evolution equation. Since there are 
generally an infinite number of points on the front (except, of course, in one 
spatial dimension), this means discretizing the front into a finite number 
of pieces. For example, one could use segments in two spatial dimensions 
or triangles in three spatial dimensions and move the endpoints of these 
segments or triangles. This is not so hard to accomplish if the connectiv
ity does not change and the surface elements are not distorted too much. 
Unfortunately, even the most trivial velocity fields can cause large distor
tion of boundary elements (segments or triangles), and the accuracy of the 
method can deteriorate quickly if one does not periodically modify the dis
cretization in order to account for these deformations by smoothing and 
regularizing inaccurate surface elements. The interested reader is referred to 
[174] for a rather recent least-squares-based smoothing scheme for damping 
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mesh-instabilities due to deforming elements. Examples are given in both 
two and three spatial dimensions. Reference [174J also discusses the use of 
a mesh-refinement procedure to maintain some degree of regularity as the 
interface deforms. Again, without these special procedures for maintaining 
both smoothness and regularity, the interface can deteriorate to the point 
where numerical results are so inaccurate as to be unusable. In addition 
to dealing with element deformations, one must decide how to modify the 
interface discretization when the topology changes. These surgical meth
ods of detaching and reattaching boundary elements can quickly become 
rather complicated. Reference [174J outlines some of the details involved in 
a single "surgical cut" of a three-dimensional surface. The use of the La
grangian formulation of the interface motion given in equation (3.1) along 
with numerical techniques for smoothing, regularization, and surgery are 
collectively referred to as front tracking methods. A seminal work in the 
field of three-dimensional front tracking is [168J, and the interested reader 
is referred to [165J for a current state-of-the-art review. 

In order to avoid problems with instabilities, deformation of surface 
elements, and complicated surgical procedures for topological repair of in
terfaces, we use our implicit function ¢ both to represent the interface 
and to evolve the interface. In order to define the evolution of our implicit 
function ¢ we use the simple convection (or advection) equation 

(3.2) 

where the t subscript denotes a temporal partial derivative in the time 
variable t. Recall that \i' is the gradient operator, so that 

if· \i'¢ = u¢x + V¢y + w¢z. 

This partial differential equation (PDE) defines the motion of the interface 
where ¢(x) = O. It is an Eulerian formulation of the interface evolution, 
since the interface is captured by the implicit function ¢ as opposed to being 
tracked by interface elements as was done in the Lagrangian formulation. 
Equation (3.2) is sometimes referred to as the level set equation; it was 
introduced for numerical interface evolution by Osher and Sethian [126J. It 
is also a quite popular equation in the combustion community, where it is 
known as the G-equation given by 

(3.3) 

where the G(x) = 0 isocontour is used to represent implicitly the reac
tion surface of an evolving flame front. The G-equation was introduced by 
Markstein [110], and it is used in the asymptotic analysis of flame fronts in 
instances where the front is thin enough to be considered a discontinuity. 
The interested reader is referred to Williams [173J as well. Lately, numeri
cal practitioners in the combustion community have started using level set 
methods to find numerical solutions of equation (3.3) in (obviously) the 
same manner as equation (3.2). 
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On a Cartesian grid it can be slightly complicated to implement equa
tion (3.2) if the velocity field is defined only on the interface itself. So, 
as with the embedding of cP, we usually write equation (3.2) using the 
assumption that the velocity field if is not only defined on the interface 
where ¢(i) = 0, but is defined off the interface as well. Often if will be 
naturally defined on the entire computational domain n, but for numerical 
purposes it is usually sufficient to have if defined on a band containing 
the interface. The bandwidth varies based on the numerical method used 
to obtain approximate solutions to equation (3.2). When if is already de
fined throughout all of n nothing special need be done. However, there 
are interesting examples where if is known only on the interface, and one 
must extend its definition to (at least) a band about the interface in order 
to solve equation (3.2). We will discuss the extension of a velocity off the 
interface in Chapter 8. 

Embedding if on our Cartesian grid introduces the same sampling issues 
that we faced in Chapter 1 when we embedded the interface r as the zero 
level set of the function ¢. For example, suppose we were given a velocity 
field if that is identically zero in all of n except on the interface, where 
if = (1,0,0). Then the exact solution is an interface moving to the right 
with speed 1. However, since most (if not all) of the Cartesian grid points 
will not lie on the interface, most of the points on our Cartesian mesh have 
if identically equal to zero, causing the if· '\lcP term in equation (3.2) to 
vanish. This in turn implies that cPt = 0 almost everywhere, so that the 
interface mostly (or completely if no points happen to fall on the interface) 
incorrectly sits still. This difficult issue can be rectified in part by placing 
some conditions on the velocity field if. For example, if we require that 
if be continuous near the interface, then this rules out our degenerate 
example. 

Restricting if to the set of continuous functions generally does not alle
viate our sampling problems. Suppose, for example, that the above velocity 
field was equal to (1,0,0) on the interface, zero outside a band of thickness 
€ > 0 surrounding the interface, and smooth in between. We can choose if 
as smooth as we like by defining it appropriately in the band of thickness € 

surrounding the interface. The difficulty arises when € is small compared to 
6x. If € is small enough, then almost every grid point will lie outside the 
band where if = O. Once again, we will (mostly) compute an interface that 
incorrectly sits still. In fact, even if € is comparable to fix, the numerical 
solution will have significant errors. In order to resolve the velocity field, it 
is necessary to have a number of grid points within the € thickness band 
surrounding the interface. That is, we need fix to be significantly smaller 
than the velocity variation (which scales like €) in order get a good ap
proximation of the velocity near the interface. Since 6x needs to be much 
smaller than €, we desire a relatively large € to minimize the variation in 
the velocity field. 
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Given a velocity field V and the notion (discussed above) that minimizing 
its variation is good for treating the sampling problem, there is an obvious 
choice of V that gives both the correct interface motion and the least vari
ation. First, since the values of V given on the interface dictate the correct 
interface motion, these cannot be changed, regardless of the variation. In 
some sense, the spatial variation of the velocity on the interface dictates 
how many Cartesian grid points will be needed to accurately predict the in
terface motion. If we cannot resolve the tangential variation of the interface 
velocity with our Cartesian grid, then it is unlikely that we can calculate 
a good approximation to the interface motion. Second, the velocity off the 
interface has nothing to do with the correct interface motion. This is true 
even if the velocity off the interface is inherited from some underlying phys
ical calculation. Only the velocity of the interface itself contains any real 
information about the interface propagation. Otherwise, one would have 
no hope of using the Lagrangian formulation, equation (3.1), to calculate 
the interface motion. In summary, the velocity variation tangential to the 
interface dictates the interface motion, while the velocity variation normal 
to the interface is meaningless. Therefore, the minimum variation in the 
velocity field can be obtained by restricting the interface velocity V to be 
constant in the direction normal to the interface. This generally makes the 
velocity multivalued, since lines normal to the interface will eventually in
tersect somewhere away from the interface (if the interface has a nonzero 
curvature). Alternatively, the velocity V(x) at a point x can be set equal to 
the interface velocity V(xc) at the interface point Xc closest to the point X. 
While this doesn't change the value of the velocity on the interface, it makes 
the velocity off the interface approximately constant in the normal direction 
local to the interface. In Chapter 8 we will discuss numerical techniques for 
constructing a velocity field defined in this manner. 

Defining the velocity V equal to the interface velocity at the closest in
terface point Xc is a rather ingenious idea. In the appendix of [175], Zhao 
et al. showed that a signed distance function tends to stay a signed dis
tance function if this closest interface point velocity is used to advect the 
interface. A number of researchers have been using this specially defined ve
locity field because it usually gives superior results over velocity fields with 
needlessly more spatial variation. Chen, Merriman, Osher, and Smereka 
[43] published the first numerical results based on this specially designed 
velocity field. The interested reader is referred to the rather interesting 
work of Adalsteinsson and Sethian [1] as well. 

The velocity field given in equation (3.2) can come from a number of ex
ternal sources. For example, when the </J(x) = 0 isocontour represents the 
interface between two different fluids, the interface velocity is calculated 
using the two-phase Navier-Stokes equations. This illustrates that the in
terface velocity more generally depends on both space and time and should 
be written as V(x, t), but we occasionally omit the X dependence and more 
often the t dependence for brevity. 
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3.2 Upwind Differencing 

Once ¢ and V are defined at every grid point (or at least sufficiently close 
to the interface) on our Cartesian grid, we can apply numerical methods 
to evolve ¢ forward in time moving the interface a'Cross the grid. At some 
point in time, say time tn, let ¢n = ¢( tn ) represent the current values 
of ¢. Updating ¢ in time consists of finding new values of ¢ at every grid 
point after some time increment 6.t. We denote these new values of ¢ by 
¢n+l = ¢(tn+1 ), where tn+! = tn + 6.t. 

A rather simple first-order accurate method for the time discretization 
of equation (3.2) is the forward Euler method given by 

-I-n+l -I-n 
'I' 6.~ 'I' + Vn . \7¢n = 0, (3.4) 

where vn is the given external velocity field at time tn, and \7 ¢n evaluates 
the gradient operator using the values of ¢ at time tn. Naively, one might 
evaluate the spatial derivatives of ¢ in a straightforward manner using equa
tion (1.3), (1.4), or (1.5). Unfortunately, this straightforward approach will 
fail. One generally needs to exercise great care when numerically discretiz
ing partial differential equations. We begin by writing equation (3.4) in 
expanded form as 

(3.5) 

and address the evaluation of the un¢~ term first. The techniques used to 
approximate this term can then be applied independently to the vn ¢; and 
wn¢~ terms in a dimension-by-dimension manner. 

For simplicity, consider the one-dimensional version of equation (3.5), 
-I-n+l -I-n 
-'-'1' __ ---'-'1'_ + n -I-n = ° 6.t u 'Px , (3.6) 

where the sign of un indicates whether the values of ¢ are moving to the 
right or to the left. Since un can be spatially varying, we focus on a specific 
grid point Xi, where we write 

¢n+l ¢n 
i 6.~ i + ur(¢x)r = 0, (3.7) 

where (¢x)i denotes the spatial derivative of ¢ at the point Xi' If Ui > 0, 
the values of ¢ are moving from left to right, and the method of charac
teristics tells us to look to the left of Xi to determine what value of ¢ will 
land on the point Xi at the end of a time step. Similarly, if Ui < 0, the 
values of ¢ are moving from right to left, and the method of characteristics 
implies that we should look to the right to determine an appropriate value 
of ¢i at time tn+!. Clearly, D-¢ (from equation (1.4)) should be used to 
approximate ¢x when Ui > 0. In contrast, D+ ¢ cannot possibly give a good 
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approximation, since it fails to contain the information to the left of Xi that 
dictates the new value of (/>i. Similar reasoning indicates that D+ ¢ should 
be used to approximate ¢x when Ui < O. This method of choosing an ap
proximation to the spatial derivatives based on the sign of u is known as 
upwind differencing or upwinding. Generally, upwind methods approximate 
derivatives by biasing the finite difference stencil in the direction where the 
characteristic information is coming from. 

We summarize the upwind discretization as follows. At each grid point, 
define ¢; as D-¢ and ¢t as D+ ¢. If Ui > 0, approximate ¢x with ¢;. If 
Ui < 0, approximate ¢x with ¢t. When Ui = 0, the Ui(¢x)i term vanishes, 
and ¢x does not need to be approximated. This is a first-order accurate 
discretization of the spatial operator, since D-¢ and D+ ¢ are first-order 
accurate approximations of the derivative; i.e., the errors are O(.0,x). 

The combination of the forward Euler time discretization with the up
wind difference scheme is a consistent finite difference approximation to 
the partial differential equation (3.2), since the approximation error con
verges to zero as .0,t -+ 0 and .0,x -+ O. According to the Lax-Richtmyer 
equivalence theorem a finite difference approximation to a linear partial 
differential equation is convergent, i.e., the correct solution is obtained as 
.0,t -+ 0 and .0,x -+ 0, if and only if it is both consistent and stable. Stability 
guarantees that small errors in the approximation are not amplified as the 
solution is marched forward in time. 

Stability can be enforced using the Courant-Friedreichs-Lewy condition 
(CFL condition), which asserts that the numerical waves should propagate 
at least as fast as the physical waves. This means that the numerical wave 
speed of .0,x/.0,t must be at least as fast as the physical wave speed lui, 
i.e., Lx/Lt > lui. This leads us to the CFL time step restriction of 

Lx 
Lt < max{lul} , (3.8) 

where max{lul} is chosen to be the largest value of lui over the entire 
Cartesian grid. In reality, we only need to choose the largest value of lui on 
the interface. Of course, these two values are the same if the velocity field is 
defined as the velocity of the closest point on the interface. Equation (3.8) 
is usually enforced by choosing a CFL number ex with 

(3.9) 

and 0 < ex < 1. A common near-optimal choice is ex = 0.9, and a common 
conservative choice is ex = 0.5. A multidimensional CFL condition can be 
written as 

(3.10) 
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although 

f::::.t ( max{IVI} ) = Q: 

min{6x, 6y, f::::.z} 
(3.11) 

is also quite popular. More details on consistency, stability, and conver
gence can be found in basic textbooks on the numerical solution of partial 
differential equations; see, for example, [157]. 

Instead of upwinding, the spatial derivatives in equation (3.2) could be 
approximated with the more accurate central differencing. Unfortunately, 
simple central differencing is unstable with forward Euler time discretiza
tion and the usual CFL conditions with 6t "" f::::.x. Stability can be achieved 
by using a much more restrictive CFL condition with 6t "" (f::::.x)2, al
though this is too computationally costly. Stability can also be achieved 
by using a different temporal discretization, e.g., the third-order accurate 
Runge-Kutta method (discussed below). A third way of achieving stabil
ity consists in adding some artificial dissipation to the right-hand side of 
equation (3.2) to obtain 

(3.12) 

where the viscosity coefficient J-l is chosen proportional to 6x, Le., J-l "" f::::.x, 
so that the artificial viscosity vanishes as 6x ---> 0, enforcing consistency 
for this method. While all three of these approaches stabilize central differ
encing, we instead prefer to use upwind methods, which draw on the highly 
sucessful technology developed for the numerical solution of conservation 
laws. 

3.3 Hamilton-Jacobi ENO 

The first-order accurate upwind scheme described in the last section can 
be improved upon by using a more accurate approximation for ¢;; and ¢d;. 
The velocity u is still used to decide whether ¢;; or ¢d; is used, but the 
approximations for ¢;; or ¢d; can be improved significantly. 

In [81], Harten et al. introduced the idea of essentially nonoscillatory 
(ENO) polynomial interpolation of data for the numerical solution of con
servation laws. Their basic idea was to compute numerical flux functions 
using the smoothest possible polynomial interpolants. The actual numerical 
implementation of this idea was improved considerably by Shu and Osher 
in [150] and [151]' where the numerical flux functions were constructed 
directly from a divided difference table of the pointwise data. In [126], 
Osher and Sethian realized that Hamilton-Jacobi equations in one spatial 
dimension are integrals of conservation laws. They used this fact to extend 
the ENO method for the numerical discretization of conservation laws to 
Hamilton-Jacobi equations such as equation (3.2). This Hamilton-Jacobi 
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ENO (HJ ENO) method allows one to extend first-order accurate upwind 
differencing to higher-order spatial accuracy by providing better numerical 
approximations to ¢;; or ¢t. 

Proceeding along the lines of [150J and [151]' we use the smoothest pos
sible polynomial interpolation to find ¢ and then differentiate to get ¢x, As 
is standard with Newton polynomial interpolation (see any undergraduate 
numerical analysis text, e.g., [82]), the zeroth divided differences of ¢ are 
defined at the grid nodes and defined by 

D?¢ = ¢i (3.13) 

at each grid node i (located at Xi). The first divided differences of ¢ are 
defined midway between grid nodes as 

1 D?+l¢ - D?¢ 
Di+1/2¢ = 6x' (3.14) 

where we are assuming that the mesh spacing is uniformly 6x. Note that 
DL1/2¢ = (D-¢)i and D;+1/2¢ = (D+¢)i, i.e., the first divided dif
ferences, are the backward and forward difference approximations to the 
derivatives. The second divided differences are defined at the grid nodes as 

D2,!, = D;+1/2¢ - DL1/2¢ (3.15) 
• 'f' 26x ' 

while the third divided differences 

(3.16) 

are defined midway between the grid nodes. 
The divided differences are used to reconstruct a polynomial of the form 

(3.17) 

that can be differentiated and evaluated at Xi to find (¢;;)i and (¢t)i' That 
is, we use 

(3.18) 

to define (¢;;)i and (¢tk Note that the constant Qo(x) term vanishes 
upon differentiation. 

To find ¢;; we start with k = i - 1, and to find ¢t we start with k = i. 
Then we define 

(3.19) 

so that 

(3.20) 

implying that the contribution from Q~ (Xi) in equation (3.18) is the back
ward difference in the case of ¢;; and the forward difference in the case 
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of ¢~. In other words, first-order accurate polynomial interpolation is 
exactly first-order upwinding. Improvements are obtained by including 
the Q~(Xi) and Q;(Xi) terms in equation (3.18), leading to second- and 
third-order accuracy, respectively. 

Looking at the divided difference table and noting that Dk+l/2¢ was 
chosen for first-order accuracy, we have two choices for the second-order 
accurate correction. We could include the next point to the left and use 
D~¢, or we could include the next point to the right and use D~+l ¢. The 
key observation is that smooth slowly varying data tend to produce small 
numbers in divided difference tables, while discontinuous or quickly vary
ing data tend to produce large numbers in divided difference tables. This 
is obvious in the sense that the differences measure variation in the data. 
Comparing ID~¢I to ID~+l ¢I indicates which of the polynomial interpolants 
has more variation. We would like to avoid interpolating near large varia
tions such as discontinuities or steep gradients, since they cause overshoots 
in the interpolating function, leading to numerical errors in the approxi
mation of the derivative. Thus, if ID~¢I ~ ID~+1 ¢I, we set c = D~¢ and 
k* = k - 1; otherwise, we set c = D~+1 ¢ and k* = k. Then we define 

Q2(X) = c(x - Xk)(X - Xk+1), (3.21) 

so that 

Q~(Xi) = c (2(i - k) - 1)!::::'x (3.22) 

is the second-order accurate correction to the approximation of ¢x in 
equation (3.18). If we stop here, i.e., omitting the Q3 term, we have a 
second-order accurate method for approximating ¢; and ¢~. Note that 
k* has not yet been used. It is defined below for use in calculating the 
third-order accurate correction. 

Similar to the second-order accurate correction, the third-order ac
curate correction is obtained by comparing ID2*+1/2¢1 and ID2*+3/2¢1. 
If ID2*+1/2¢1 s ID2*+3/2¢1, we set c* = D2*+1/2¢; otherwise, we set 
c* = D2*+3/2¢. Then we define 

Q3(X) = c*(x - Xk* )(x - Xk*+I)(X - Xk*+2), (3.23) 

so that 

Q;(xd = c* (3(i - k*)2 - 6(i - k*) + 2) (!::::.X)2 (3.24) 

is the third-order accurate correction to the approximation of ¢x in 
equation (3.18). 

3.4 Hamilton-Jacobi WENO 

When calculating (¢;)i, the third-order accurate HJ ENO scheme uses a 
subset of {¢i-3, ¢i-2, ¢i-l. ¢i, ¢i+l, ¢i+2} that depends on how the stencil 
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is chosen. In fact, there are exactly three possible HJ ENO approximations 
to (¢;;;k Defining VI = D-¢i-2, V2 = D-¢i-b V3 = D-¢i, V4 = D-¢HI, 
and V5 = D-¢H2 allows us to write 

and 

A,I _ VI 7V2 llv3 
'Px - "3 - (5 + -6-' 

A,2 __ V2 5V3 V4 

'Px - 6 + 6 + 3 ' 

A,3 = V3 + 5V4 _ V5 

'Px 3 6 6 

(3.25) 

(3.26) 

(3.27) 

as the three potential HJ ENO approximations to ¢;;;. The goal of HJ ENO 
is to choose the single approximation with the least error by choosing the 
smoothest possible polynomial interpolation of ¢. 

In [107], Liu et al. pointed out that the ENO philosophy of picking exactly 
one of three candidate stencils is overkill in smooth regions where the data 
are well behaved. They proposed a weighted ENO (WENO) method that 
takes a convex combination of the three ENO approximations. Of course, 
if any of the three approximations interpolates across a discontinuity, it is 
given minimal weight in the convex combination in order to minimize its 
contribution and the resulting errors. Otherwise, in smooth regions of the 
flow, all three approximations are allowed to make a significant contribu
tion in a way that improves the local accuracy from third order to fourth 
order. Later, Jiang and Shu [89] improved the WENO method by choosing 
the convex combination weights in order to obtain the optimal fifth-order 
accuracy in smooth regions of the flow. In [88], following the work on HJ 
ENO in [127], Jiang and Peng extended WENO to the Hamilton-Jacobi 
framework. This Hamilton-Jacobi WENO, or HJ WENO, scheme turns 
out to be very useful for solving equation (3.2), since it reduces the errors 
by more than an order of magnitude over the third-order accurate HJ ENO 
scheme for typical applications. 

The HJ WENO approximation of (¢;;;)i is a convex combination of the 
approximations in equations (3.25), (3.26), and (3.27) given by 

(3.28) 

where the 0 :=:; Wk :=:; 1 are the weights with WI + W2 + W3 = 1. The key 
observation for obtaining high-order accuracy in smooth regions is that 
weights of WI = 0.1, W2 = 0.6 and W3 = 0.3 give the optimal fifth-order 
accurate approximation to ¢x' While this is the optimal approximation, it is 
valid only in smooth regions. In nonsmooth regions this optimal weighting 
can be very inaccurate, and we are better off with digital (Wk = 0 or 
Wk = 1) weights that choose a single approximation to ¢x, i.e., the HJ 
ENO approximation. 
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Reference [89] pointed out that setting WI = 0.1 + 0((6x)2), W2 = 0.6 + 
0((6X)2), and W3 = 0.3 + 0((6x)2) still gives the optimal fifth-order 
accuracy in smooth regions. In order to see this, we rewrite these as WI = 
0.1+CI (6x?, W2 = 0.6+C2(6x)2 and W3 = 0.3+C3(6x)2 and plug them 
into equation (3.28) to obtain 

0.1¢; + 0.6¢; + 0.3¢~ (3.29) 

and 

(3.30) 

as the two terms that are added to give the HJ WENO approximation 
to ¢x. The term given by equation (3.29) is the optimal approximation 
that gives the exact value of ¢x plus an 0((6X)5) error term. Thus, if 
the term given by equation (3.30) is 0((6x)5), then the entire HJ WENO 
approximation is 0((6X)5) in smooth regions. To see that this is the case, 
first note that each of the HJ ENO ¢~ approximations gives the exact value 
of ¢x, denoted by ¢~, plus an 0((6X)3) error term (in smooth regions). 
Thus, the term in equation (3.30) is 

(3.31) 

plus an 0((6x)2)0((Llx)3) = 0((6X)5) term. Since, each of the Ck is 0(1), 
as is ¢~, this appears to be an 0((Llx)2) term at first glance. However, 
since WI + W2 + W3 = 1, we have CI + C2 + C3 = 0, implying that the term 
in equation (3.31) is identically zero. Thus, the HJ WENO approximation 
is 0((6x)5) in smooth regions. Note that [107] obtained only fourth-order 
accuracy, since they chose WI = 0.1 + O(Llx), W2 = 0.6 + 0(6x), and 
W3 = 0.3 + 0(6x). 

In order to define the weights, Wk, we follow [88J and estimate the 
smoothness of the stencils in equations (3.25), (3.26), and (3.27) as 

13 2 1 2 
81 = 12(VI-2v2+V3) +'4(VI-4v2+3v3), (3.32) 

13 2 1 2 
8 2 = 12 (V2 - 2V3 + V4) + '4(V2 - V4) , (3.33) 

and 

13 2 1 2 
83 = 12 (V3 - 2V4 + V5) + '4(3V3 - 4V4 + V5) , (3.34) 

respectively. Using these smoothness estimates, we define 

0.1 
(3.35) 

(3.36) 
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and 

(3.37) 

with 

f = 1O-6max{vi,v~,v~,v~,vn + 10-99 , (3.38) 

where the 10-99 term is set to avoid division by zero in the definition of 
the Q:k. This value for epsilon was first proposed by Fedkiw et al. [69], 
where the first term is a scaling term that aids in the balance between 
the optimal fifth-order accurate stencil and the digital HJ ENO weights. 
In the case that ¢ is an approximate signed distance function, the Vk that 
approximate ¢x are approximately equal to one, so that the first term in 
equation (3.38) can be set to 10-6 . This first term can then absorb the 
second term, yielding f = 10-6 in place of equation (3.38). Since the first 
term in equation (3.38) is only a scaling term, it is valid to make this Vk ~ 1 
estimate in higher dimensions as well. 

A smooth solution has small variation leading to small Sk. If the Sk 
are small enough compared to f, then equations (3.35), (3.36), and (3.37) 
become Q:I ~ 0.lC2 , Q:2 ~ 0.6c2 , and Q:3 ~ 0.3c2 , exhibiting the proper 
ratios for the optimal fifth-order accuracy. That is, normalizing the Q:k to 
obtain the weights 

and 

Q:I 
WI = , 

Q:l + Q:2 + Q:3 
Q:2 

W2 = , 
Q:l + Q:2 + Q:3 

(3.39) 

(3.40) 

(3.41 ) 

gives (approximately) the optimal weights of WI = 0.1, W2 = 0.6 and W3 = 
0.3 when the Sk are small enough to be dominated by f. Nearly optimal 
weights are also obtained when the Sk are larger than f, as long as all the Sk 
are approximately the same size, as is the case for sufficiently smooth data. 
On the other hand, if the data are not smooth as indicated by large Sk, 
then the corresponding Q:k will be small compared to the other Q:k'S, giving 
that particular stencil limited influence. If two of the Sk are relatively large, 
then their corresponding Q:k'S will both be small, and the scheme will rely 
most heavily on a single stencil similar to the digital behavior of HJ ENO. 
In the unfortunate instance that all three of the Sk are large, the data 
are poorly conditioned, and none of the stencils are particularly useful. 
This case is problematic for the HJ ENO method as well, but fortunately 
it usually occurs only locally in space and time, allowing the methods to 
repair themselves after the situation subsides. 
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The function (cPt)i is constructed with a subset of {cPi-2, cPi-l, cPi, 
cPi+l,cPi+2,cPi+3}. Defining Vl = D+cPi+2, V2 = D+cPi+l, V3 = D+cPi, 
V4 = D+cPi-l> and V5 = D+cPi-2 allows us to use equations (3.25), (3.26), 
and (3.27) as the three HJ ENO approximations to (cPtk Then the HJ 
WENO convex combination is given by equation (3.28) with the weights 
given by equations (3.39), (3.40), and (3.41). 

3.5 TVD Runge-Kutta 

HJ ENO and HJ WENO allow us to discretize the spatial terms in 
equation (3.2) to fifth-order accuracy, while the forward Euler time dis
cretization in equation (3.4) is only first-order accurate in time. Practical 
experience suggests that level set methods are sensitive to spatial accu
racy, implying that the fifth-order accurate HJ WENO method is desirable. 
On the other hand, temporal truncation errors seem to produce signifi
cantly less deterioration of the numerical solution, so one can often use the 
low-order accurate forward Euler method for discretization in time. 

There are times when a higher-order temporal discretization is necessary 
in order to obtain accurate numerical solutions. In [150], Shu and Osher 
proposed total variation diminishing (TVD) Runge-Kutta (RK) methods to 
increase the accuracy for a method of lines approach to temporal discretiza
tion. The method of lines approach assumes that the spatial discretization 
can be separated from the temporal discretization in a semidiscrete manner 
that allows the temporal discretization of the PDE to be treated indepen
dently as an ODE. While there are numerous RK schemes, these TVD RK 
schemes guarantee that no spurious oscillations are produced as a conse
quence of the higher-order accurate temporal discretization as long as no 
spurious oscillations are produced with the forward Euler building block. 

The basic first-order accurate TVD RK scheme is just the forward Euler 
method. As mentioned above, we assume that the forward Euler method 
is TVD in conjunction with the spatial discretization of the PDE. Then 
higher-order accurate methods are obtained by sequentially taking Euler 
steps and combining the results with the initial data using a convex com
bination. Since the Euler steps are TVD (by assumption) and the convex 
combination operation is TVD as long as the coefficients are positive, the 
resulting higher-order accurate TVD RK method is TVD. Unfortunately, in 
our specific case, the HJ ENO and HJ WENO schemes are not TVD when 
used in conjunction with upwinding to approximate equation (3.4). How
ever, practical numerical experience has shown that the HJ ENO and HJ 
WENO schemes are most likely total variation bounded (TVB), implying 
that the overall method is also TVB using the TVD RK schemes. 

The second-order accurate TVD RK scheme is identical to the standard 
second-order accurate RK scheme. It is also known as the midpoint rule, 
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as the modified Euler method, and as Heun's predictor-corrector method. 
First, an Euler step is taken to advance the solution to time tn + 6.t, 

A,n+l A,n 
If' 6.~ If' + vn . '\l¢n = 0, (3.42) 

followed by a second Euler step to advance the solution to time tn + 26.t, 

¢n+2 ¢n+1 
- + V n+1 . '\lA,n+l = 0 
6.t If', 

(3.43) 

followed by an averaging step 

¢n+1 = ~¢n + ~¢n+2 
2 2 

(3.44) 

that takes a convex combination of the initial data and the result of two 
Euler steps. The final averaging step produces the second-order accurate 
TVD (or TVB for HJ ENO and HJ WENO) approximation to ¢ at time 
tn + 6.t. 

The third-order accurate TVD RK scheme proposed in [150] is as follows. 
First, an Euler step is taken to advance the solution to time tn + 6.t, 

A,n+l A,n 
If' 6~ If' + vn . '\l¢n = 0, (3.45) 

followed by a second Euler step to advance the solution to time tn + 26.t, 
¢n+2 ¢n+l 

- + V n+1 . '\lA,n+l = 0 
6.t If', 

followed by an averaging step 

¢n+~ = ~¢n + ~¢n+2 
4 4 

(3.46) 

(3.47) 

that produces an approximation to ¢ at time tn + ~6.t. Then another Euler 
step is taken to advance the solution to time tn + ~ 6.t, 

¢n+~ _ ¢n+~ 
-----+ Vn+~. '\l¢n+~ = 0, 

6.t 

followed by a second averaging step 

A,n+l _ 1 A,n 2 A,n+~ 
If' - -If' + -If' 2 

3 3 

(3.48) 

(3.49) 

that produces a third-order accurate approximation to ¢ at time tn + 6.t. 
This third-order accurate TVD RK method has a stability region that 
includes part of the imaginary axis. Thus, a stable (although ill-advised) 
numerical method results from combining third-order accurate TVD RK 
with central differencing for the spatial discretization. 

While fourth-order accurate (and higher) TVD RK schemes exist, this 
improved temporal accuracy does not seem to make a significant difference 
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in practical calculations, especially since the HJ WENO scheme usually 
loses accuracy and looks a lot like the third-order accurate HJ ENO scheme 
in many interesting areas of the flow. Also, the fourth-order accurate (and 
higher) TVD RK methods require both upwind and downwind differencing 
approximations, doubling the computational cost of evaluating the spatial 
operators. See [150] for fourth- and fifth-order accurate TVD RK schemes. 
Finally, we note that a rather interesting approach to TVD RK schemes 
has recently been carried out by Spiteri and Ruuth [154], who proposed 
increasing the number of internal stages so that this number exceeds the 
order of the method. 



4 
Motion Involving Mean Curvature 

4.1 Equation of Motion 

In the last chapter we discussed the motion of an interface in an externally 
generated velocity field V(x, t). In this chapter we discuss interface motion 
for a self-generated velocity field V that depends directly on the level set 
function ¢. As an example, we consider motion by mean curvature where 
the interface moves in the normal direction with a velocity proportional 
to its curvature; Le., V = -b/'d:J, where b > 0 is a constant and K is the 
curvature. When b > 0, the interface moves in the direction of concavity, 
so that circles (in two dimensions) shrink to a single point and disappear. 
When b < 0, the interface moves in the direction of convexity, so that 
circles grow instead of shrink. This growing-circle effect leads to the growth 
of small perturbations in the front including those due to round-off errors. 
Because b < 0 allows small erroneous perturbations to incorrectly grow 
into 0(1) features, the b < 0 case is ill-posed, and we do not consider it 
here. Figure 4.1 shows the motion of a wound spiral in a curvature-driven 
flow. The high-curvature ends of the spiral move significantly faster than 
the relatively low curvature elongated body section. Figure 4.2 shows the 
evolution of a star-shaped interface in a curvature-driven flow. The tips of 
the star move inward, while the gaps in between the tips move outward. 

The velocity field for motion by mean curvature contains a component 
in the normal direction only, i.e., the tangential component is identically 
zero. In general, one does not need to specify tangential components when 
devising a velocity field. Since iJ and \7 ¢ point in the same direction, 
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Figure 4.1. Evolution of a wound spiral in a curvature-driven flow. The 
high-curvature ends of the spiral move significantly faster than the elongated 
body section. 

f . \7 ¢ = 0 for any tangent vector f, implying that the tangential velocity 
components vanish when plugged into the level set equation. For example, 
in two spatial dimensions with V = VnN + Vtf, the level set equation 

(4.1) 

is equivalent to 

(4.2) 

~ince f· \7 ¢ = O. Furthermore, since 

(4.3) 

we can rewrite equation (4.2) as 

(4.4) 

where Vn is the component of velocity in the normal direction, other
wise known as the normal velocity. Thus, motion by mean curvature is 
characterized by Vn = -bl),. 
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Figure 4.2. Evolution of a star-shaped interface in a curvature-driven flow. The 
tips of the star move inward, while the gaps in between the tips move outward. 

Equation (4.4) is also known as the equation of the level set equation. Like 
equation (3.2), equation (3.2) is used for externally generated velocity fields, 
while equation (4.4) is used for (internally) self-generated velocity fields. 
As we shall see shortly, this is more than a notational difference. In fact, 
slightly more complicated numerical methods are needed for equation (4.4) 
than were proposed in the last chapter for equation (3.2). 

Plugging Vn = -b", into the level set equation (4.4) gives 

(4.5) 

where we have moved the spatial term to the right-hand side. We note 
that b"'IV'q'>1 is a parabolic term that cannot be discretized with an upwind 
approach. When q'> is a signed distance function, equation (4.5) becomes 
the heat equation 

q'>t = bf::::.q'>, (4.6) 

where q'> is the temperature and b is the thermal conductivity. The heat 
equation is the most basic equation of the parabolic model. 

When q'> is a signed distance function, b",IV'q'>1 and bf::::.q'> are identical, and 
either of these can be used to calculate the right-hand side of equation (4.5). 
However, once this right-hand side is combined with a forward Euler time 
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step (or a forward Euler substep in the case of RK), the new value of ¢ 
is not a signed distance function, and equations (4.5) and (4.6) can no 
longer be interchanged. If this new value of ¢ is reinitialized to a signed 
distance function (methods for doing this are outlined in Chapter 7), then 
b!::::'¢ can be used in place of b/'i;I\7¢1 in the next time step as well. In 
summary, equations (4.5) and (4.6) have the same effect on the interface 
location as long as one keeps ¢ equal to the signed distance function off the 
interface. Note that keeping ¢ equal to signed distance off the interface does 
not change the interface location. It only changes the implicit embedding 
function used to identify the interface location. 

4.2 Numerical Discretization 

Parabolic equations such as the heat equation need to be discretized using 
central differencing since the domain of dependence includes information 
from all spatial directions, as opposed to hyperbolic equations like equa
tion (3.2), where information flows in the direction of characteristics only. 
Thus, the !::::.¢ term in equation (4.6) is discretized using the second-order 
accurate formula in equation (1.9) in each spatial dimension (see equa
tion (2.7)). A similar approach should therefore be taken in discretizing 
equation (4.5). The curvature /'i; is discretized using second-order accurate 
central differencing as outlined in equation (1.8) and the discussion follow
ing that equation. Likewise, the \7 ¢ term is discretized using the second 
order accurate central differencing in equation (1.5) applied independently 
in each spatial dimension. While these discretizations are only second-order 
accurate in space, the dissipative nature of the equations usually makes this 
second-order accuracy sufficient. 

Central differencing of !::::.¢ in equation (4.6) combined with a forward 
Euler time discretization requires a time-step restriction of 

!::::.t --+--+-- <1 ( 2b 2b 2b) 
(!::::.x)2 (!::::.y) 2 (!::::.z) 2 

(4.7) 

to maintain stability of the numerical algorithm. Here !::::.t is O((!::::.x)2), 
which is significantly more stringent than in the hyperbolic case, where 
!::::.t is only O(!::::.x). Enforcing !::::.t = O((!::::.x)2) gives an overall O((!::::.X)2) 
accurate discretization, even though forward Euler is used for the time 
differencing (i.e., since the first-order accurate O(!::::.t) time discretization 
is O((!::::.x)2)). Equation (4.5) can be discretized using forward Euler time 
stepping with the CFL condition in equation (4.7) as well. 

The stringent O((!::::.X)2) time-step restriction resulting from the forward 
Euler time discretization can be alleviated by using an ODE solver with 
a larger stability region, e.g., an implicit method. For example, first-order 
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accurate backward Euler time stepping applied to equation (4.6) gives 

-t,n+l qP 
..:...'1' __ ----'-_ = b6 -t,n+ 1 

6t '1', 
(4.8) 

which has no time step stability restriction on the size of 6t. This means 
that 6t can be chosen for accuracy reasons alone, and one typically sets 
6t = O(6x). Note that setting 6t = O(6x) as opposed to 6t = O((6X)2) 
lowers the overall accuracy to O(6x). This can be improved upon using 
the trapezoidal rule 

¢n+l _ ¢n = b (6¢n + 6¢n+l) 
6t 2' 

(4.9) 

which is O((6t)2) in time and thus O((6X)2) overall even when 6t = 
O(6x). This combination of the trapezoidal rule with central differencing 
of a parabolic spatial operator is generally referred to as the Crank-Nicolson 
scheme. 

The price we pay for the larger time step achieved using either equa
tion (4.8) or equation (4.9) is that a linear system of equations must 
be solved at each time step to obtain ¢n+l. Luckily, this is not difficult 
given the simple linear structure of 6¢n+l. Unfortunately, an implicit dis
cretization of equation (4.5) requires consideration of the more complicated 
nonlinear I'i:n+1 IV ¢n+ll term. 

We caution the reader that one cannot substitute equation (4.6) for equa
tion (4.5) when using an implicit time discretization. Even if ¢n is initially 
a signed distance function, ¢n+l will generally not be a signed distance 
function after the linear system has been solved. This means that 6¢n+l 
is not a good approximation to I'i:n+llv¢n+ll even though 6¢n may be 
exactly equal to l'i:nlv¢nl. Although we stress (throughout the book) the 
conceptual simplifications and computational savings that can be obtained 
when ¢ is a signed distance function, e.g., replacing N with V ¢, I'i: with 
6¢, etc., we caution the reader that there is a significant and important 
difference between the two in the case where ¢ is not a signed distance 
function. 

4.3 Convection-Diffusion Equations 

The convection-diffusion equation 

(4.10) 

includes both the effects of an external velocity field and a diffusive term. 
The level set version of this is 

(4.11) 
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and the two can be used interchangeably if one maintains a signed distance 
approximation for ¢ off the interface. These equations can be solved using 
the upwind methods from the last chapter on the V . \7 ¢ term and cen
tral differencing on the parabolic bD¢ or bl\;l\7¢1 term. A TVD RK time 
discretization can be used with a time-step restriction of 

Dt(M+M+M+~+~+~) <1 
DX DY DZ (DX)2 (6y)2 (DZ)2 

(4.12) 

satisfied at every grid point. 
Suppose the 0(1) size b term is replaced with an O(DX) size € term 

that vanishes as the mesh is refined with 6x -t O. Then equation (4.10) 
becomes 

(4.13) 

which asymptotically approaches equation (3.2) as € -t O. The addition of 
an artificial €6¢ term to the right-hand side of equation (3.2) is called the 
artificial viscosity method. Artificial viscosity is used by many authors to 
stabilize a central differencing approximation to the convective \7 ¢ term in 
equation (3.2). This arises in computational fluid dynamics, where terms 
of the form €6¢ are added to the right-hand side of convective equations 
to pick out vanishing viscosity solutions valid in the limit as € -t O. This 
vanishing viscosity picks out the physically correct weak solution when no 
classical solution exists, for example in the case of a discontinuous shock 
wave. It is interesting to note that the upwind discretizations discussed 
in the last chapter have numerical truncation errors that serve the same 
purpose as the €D¢ term. First-order accurate upwinding has an intrinsic 
0(6x) artificial viscosity, and the higher-order accurate upwind methods 
have intrinsic artificial viscosities with magnitude 0((6xt), where r is the 
order of accuracy of the method. 

In [146], Sethian suggested an entropy condition that required curves to 
flow into corners, and he provided numerical evidence to show that this 
entropy condition produced the correct weak solution for self-interesting 
curves. Sethian's entropy condition indicates that €1\;1\7¢1 is a better form 
for the vanishing viscosity than €D¢ for dealing with the evolution of lower
dimensional interfaces. This concept was rigorized by Osher and Sethian in 
[126], where they pointed out that 

¢t + V . \7¢ = €1\;1\7¢1 (4.14) 

is a more natural choice than equation (4.13) for dealing with level set 
methods, although these two equations are interchangeable when ¢ is a 
signed distance function. 



5 
Hamilton-Jacobi Equations 

5.1 Introduction 

In this chapter we discuss numerical methods for the solution of general 
Hamilton-Jacobi equations of the form 

e/>t + H(V'e/» = 0, (5.1) 

where H can be a function of both space and time. In three spatial 
dimensions, we can write 

(5.2) 

as an expanded version of equation (5.1). Convection in an externally gen
erated velocity field (equation (3.2)) is an example of a Hamilton-Jacobi 
equation where H(V'e/» = iT· V'e/>. The level set equation (equation (4.4)) 
is another example of a Hamilton-Jacobi equation with H(V'e/» = VnJV'e/>J. 
Here Vn can depend on X, t, or even V'e/>/IV'e/>I. 

The equation for motion by mean curvature (equation (4.5)) is not a 
Hamilton-Jacobi-type equation, since the front speed depends on the sec
ond derivatives of e/>. Hamilton-Jacobi equations depend on (at most) the 
first derivatives of e/>, and these equations are hyperbolic. The equation for 
motion by mean curvature depends on the second derivatives of ¢ and is 
parabolic. 
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5.2 Connection with Conservation Laws 

Consider the one-dimensional scalar conservation law 

Ut + F(u)x = 0; (5.3) 

where u is the conserved quantity and F( u) is the flux function. A well
known conservation law is the continuity equation 

Pt + (pu)x = 0 (5.4) 

for conservation of mass, where p is the density of the material. In compu
tational fluid dynamics (CFD), the continuity equation is combined with 
equations for conservation of momentum and conservation of energy to ob
tain the compressible N avier-Stokes equations. When viscous effects are 
ignored, the Navier-Stokes equations reduce to the compressible inviscid 
Euler equations. 

The presence of discontinuities in the Euler equations forces one to con
sider weak solutions where the derivatives of solution variables, e.g., Px, 
can fail to exist. Examples include linear contact discontinuities and non
linear shock waves. The nonlinear nature of shock waves allows them to 
develop as the solution progresses forward in time even if the data are ini
tially smooth. The Euler equations may not always have unique solutions, 
and an entropy condition is used to pick out the physically correct solu
tion. This is the vanishing viscosity solution discussed in the last chapter. 
For example, vanishing viscosity admits physically consistent rarefaction 
waves, ruling out physically inadmissible expansion shocks. 

Burgers' equation 

(5.5) 

is a scalar conservation law that possesses many of the interesting non
linear properties contained in the more complex Euler equations. Burgers' 
equation develops discontinuous shock waves from smooth initial data and 
exhibits nonphysical expansion shocks if the vanishing viscosity solution is 
not used to force these to become smooth rarefaction waves. Many of the 
numerical methods developed to solve Burgers' equation can be extended to 
treat both the one-dimensional and the multidimensional Euler equations 
of gas dynamics. 

Consider the one-dimensional Hamilton-Jacobi equation 

(5.6) 

which becomes 

(5.7) 
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after one takes a spatial derivative of the entire equation. Setting u = <Px 
in equation 5.7 results in 

Ut + H(u)x = 0, (5.8) 

which is a scalar conservation law; see equation (5.3). Thus, in one spatial 
dimension we can draw a direct correspondence between Hamilton-Jacobi 
equations and conservation laws. The solution u to a conservation law is 
the derivative of a solution ¢ to a Hamilton-Jacobi equation. Conversely, 
the solution ¢ to a Hamilton-Jacobi equation is the integral of a solution u 
to a conservation law. This allows us to point out a number of useful facts. 
For example, since the integral of a discontinuity is a kink, or discontinuity 
in the first derivative, solutions to Hamilton-Jacobi equations can develop 
kinks in the solution even if the data are initially smooth. In addition, 
solutions to Hamilton-Jacobi equations cannot generally develop a discon
tinuity unless the corresponding conservation law develops a delta function. 
Thus, solutions ¢ to equation (5.2) are typically continuous. Furthermore, 
since conservation laws can have nonunique solutions, entropy conditions 
are needed to pick out "physically" relevant solutions to equation (5.2) as 
well. 

Viscosity solutions for Hamilton-Jacobi equations were first proposed by 
Crandall and Lions [52J. Monotone first-order accurate numerical meth
ods were first presented by Crandall and Lions [53J as well. Later, Osher 
and Sethian [126J used the connection between conservation laws and 
Hamilton-Jacobi equations to construct higher-order accurate "artifact
free" numerical methods. Even though the analogy between conservation 
laws and Hamilton-Jacobi equations fails in multiple spatial dimensions, 
many Hamilton-Jacobi equations can be discretized in a dimension by di
mension fashion. This culminated in [127J, where Osher and Shu proposed 
a general framework for the numerical solution of Hamilton-Jacobi equa
tions using successful methods from the theory of conservation laws. We 
follow [127J below. 

5.3 Numerical Discretization 

A forward Euler time discretization of a Hamilton-Jacobi equation can be 
written as 

A.n+l A.n 
_'P _----''P'-- + fr(A.- A.+. A.- A.+. A.- A.+) - 0 (5.9) l::,.t 'Px , 'Px , 'Py , 'Py , 'Pz , 'Pz - , 

where if(¢;, <Pi; ¢;, ¢t; ¢;, ¢'n is a numerical approximation of H(¢x, ¢Y' 
¢z)' The function if is called a numerical Hamiltonian, and it is required 
to be consistent in the sense that if(¢x, ¢x; ¢Y' ¢Y; ¢z, ¢z) = H(<px, ¢Y' ¢z). 
Recall that spatial derivatives such as ¢; are discretized with either first
order accurate one-sided differencing or the higher-order accurate HJ ENO 
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or HJ WENO schemes. For brevity, we discuss the two-dimensional numer
ical approximation to H (¢x, ¢y), noting that the extension to three spatial 
dimensions is straightforward. An important class of schemes is that of 
monotone schemes. A scheme is monotone when ¢n+l as defined in equa
tion (5.9) is a nondecreasing function of all the ¢n. Crandall and Lions 
proved that these schemes converge to the correct solution, although they 
are only first-order accurate. The numerical Hamiltonians associated with 
monotone schemes are important, and examples will be given below. 

The forward Euler time discretization (equation (5.9)) can be extended to 
higher-order TVD Runge Kutta in a straightforward manner, as discussed 
in Chapter (3). The CFL condition for equation 5.9 is 

6tmax {/Hl/ + /H2/ + /H3/} < 1, (5.10) 
6x 6 y 6 z 

where HI, H2, and H3 are the partial derivatives of H with respect to ¢x, 
¢Y' and ¢z, respectively. For example, in equation (3.2), where H('V¢) = 

V· 'V¢, the partial derivatives of H are HI = U, H2 = v, and H3 = w. In 
this case equation (5.10) reduces to equation (3.10). As another example, 
consider the level set equation (4.4) with H('V¢) = Vn/'V¢I. Here the partial 
derivatives are slightly more complicated, with HI = VN¢x/I'V¢I, H2 = 
VN¢y/I'V¢I, and H3 = VN¢z/I'V¢/, assuming that VN does not depend on 
¢x, ¢y or ¢z' Otherwise, the partial derivatives can be substantially more 
complicated. 

5.3.1 Lax-Friedrichs Schemes 

The first approximation to iI that we consider is the Lax-Friedrichs (LF) 
scheme from [53] given by 

iI = H (¢; ; ¢t , ¢;;; : ¢t) _ax (¢t ; ¢;) -aY (¢t ; ¢;;;) , (5.11) 

where aX and aY are dissipation coefficients that control the amount of 
numerical viscosity. These dissipation coefficients 

(5.12) 

are chosen based on the partial derivatives of H. 
The choice of the dissipation coefficients in equation (5.12) can be rather 

subtle. In the traditional implementation of the LF scheme, the maximum is 
chosen over the entire computational domain. First, the maximum and min
imum values of ¢x are identified by considering all the values of ¢; and ¢t 
on the Cartesian mesh. Then one can identify the interval]x = [¢r;:in, ¢r;:ax]. 
A similar procedure is used to define IY = [¢;;'in, ¢;;,ax]. The coefficients 
aX and aY are set to the maximum possible values of / HI (¢x, ¢y) I and 
IH2(¢x,¢y)l, respectively, with ¢x E ]X and ¢Y E !Y. Although it is oc
casionally difficult to evaluate the maximum values of / H 11 and / H 2/, it is 
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straightforward to do so in many instances. For example, in equation (3.2), 
both HI = u and H 2 = V are independent of ¢>x and ¢>Y' so aX and a Y can 
be set to the maximum values of lui and Ivl on the Cartesian mesh. 

Consider evaluating aX and a Y for equation (4.4) where HI = VN¢>xllV' ¢>I 
and H2 = VN¢>yllV'¢>I, recalling that these are the partial derivatives only if 
VN is independent ¢>x and ¢>Y' It is somewhat more complicated to evaluate 
aX and a Y in this case. When ¢> is a signed distance function with IV'¢>I = 1 
(or ~ 1 numerically), we can simplify to HI = VN¢>x and H2 = VN¢>y. 
These functions can still be somewhat tricky to work with if VN is spatially 
varying. But in the special case that VN is spatially constant, the maximum 
values of IHII and IH21 can be determined by considering only the endpoints 
of Ix and Iy, respectively. This is true because HI and H2 are monotone 
functions of ¢>x and ¢>Y' respectively. In fact, when VN is spatially constant, 
HI = VN¢>xllV'¢>1 and H2 = VN¢>yllV'¢>1 are straightforward to work with as 
well. The function HI achieves a maximum when I¢>xl is as large as possible 
and I¢>yl is as small as possible. Thus, only the endpoints of]X and IY need 
be considered; note that we use ¢>y = 0 when the endpoints of IY differ 
in sign. Similar reasoning can be used to find the maximum value of IH2 1. 
One way to treat a spatially varying VN is to make some estimates. For 
example, since l¢>xl/lV'¢>1 :::; 1 for all ¢>x and ¢>Y' we can bound IHII :::; IVNI· 
A similar bound of IH21 :::; IVNI holds for IH2 1. Thus, both aX and a Y can 
be set to the maximum value of IVNI on the Cartesian mesh. The price 
we pay for using bounds to choose a larger than it should be is increased 
numerical dissipation. That is, while the numerical method will be stable 
and give an accurate solution as the mesh is refined, some details of this 
solution may be smeared out and lost on a coarser mesh. 

Since increasing a increases the amount of artificial dissipation, decreas
ing the quality of the solution, it is beneficial to chose a as small as possible 
without inducing oscillations or other nonphysical phenomena into the so
lution. In approximating Hi,j at a grid point Xi,j on a Cartesian mesh, 
it then makes little sense to do a global search to define the intervals ]X 
and !Y. In particular, consider the simple convection equation (3.2) where 
aX = max lui and a Y = max Ivl. Suppose that some region had relatively 
small values of lui and lvi, while another region had relatively large values. 
Since the LF method chooses aX as the largest value of lui and a Y as the 
largest value of lvi, the same values of a will be used in the region where 
the velocities are small as is used in the region where the velocities are 
large. In the region where the velocities are large, the large values of a are 
required to obtain a good solution. But in the region where the velocities 
are small, these large values of a produce too much numerical dissipation, 
wiping out small features of the solution. Thus, it is advantageous to use 
only the grid points sufficiently close to Xi,j in determining a. A rule of 
thumb is to include the grid points from Xi-3,j to Xi+3,j in the x-direction 
and from Xi,j-3 to Xi,j+3 in the y-direction in the local search neighborhood 
for determining a. This includes all the grid nodes that are used to evaluate 
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¢; and ¢~ at Xi,j using the HJ WENO scheme. This type of scheme has 
been referred to as a Stencil Lax-Friedrichs (SLF) scheme, since it deter
mines the dissipation coefficient using only the neighboring grid points that 
are part of the stencil used to determine ¢x and ¢Y' An alternative to the 
dimension-by-dimension neighborhoods is to use the 49 grid points in the 
rectangle with diagonal corners at Xi-3,j-3 and Xi+3,j+3 to determine a. 

This idea of searching only locally to determine the dissipation coeffi
cients can be taken a step further. The Local Lax-Friedrichs (LLF) scheme 
proposed for conservation laws by Shu and Osher [151] does not look at 
any neighboring grid points when calculating the dissipation coefficients in 
a given direction. In [127], Osher and Shu interpreted this to mean that 
aX is determined at each grid point using only the values of ¢; and ¢t 
at that specific grid point to determine the interval IX. The interval IY is 
still determined in the LF or SLF manner (in the SLF case we rename LLF 
as SLLF). Similarly, a Y uses an interval JY, defined using only the values 
of ¢:;; and ¢t at the grid point in question while IX is still determined in 
the LF or SLF fashion. Osher and Shu [127J also proposed the Local Lo
cal Lax-Friedrichs (LLLF) scheme with even less numerical dissipation. At 
each grid point IX is determined using the values of ¢; and ¢t at that grid 
point; IY is determined using the values of ¢:;; and ¢t at that grid point; 
and then these intervals are used to determine both aX and aY. When H is 
separable, i.e., H(¢x, ¢y) = HX(¢x) + HY(¢y), LLLF reduces to LLF, since 
aX is independent of ¢Y' and aY is independent of ¢x, When H is not sep
arable, LLF and LLLF are truly distinct schemes. In practice, LLF seems 
to work better than any of the other options. LF and SLF are usually too 
dissipative, while LLLF is usually not dissipative enough to overcome the 
problems introduced by using the centrally averaged approximation to ¢x 
and ¢Y in evaluating H in equation (5.11). Note that LLF is a monotone 
scheme. 

5.3.2 The Roe-Fix Scheme 

As discussed above, choosing the appropriate amount of artificial dissipa
tion to add to the centrally evaluated H in equation (5.11) can be tricky. 
Therefore, it is often desirable to use upwind-based methods with built-in 
artificial dissipation. For conservation laws, Shu and Osher [151J proposed 
using Roe's upwind method along with an LLF entropy correction at sonic 
points where entropy-violating expansion shocks might form. The added 
dissipation from the LLF entropy correction forces the expansion shocks 
to develop into continuous rarefaction waves. The method was dubbed Roe 
Fix (RF) and it can be written for Hamilton-Jacobi equations (see [127]) 
as 

(5.13) 
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where a? and oY are usually set identically to zero in order to remove 
the numerical dissipation terms. In the RF scheme, IX and IY are initially 
determined using only the nodal values for 1>; and 1>~ as in the LLLF 
scheme. In order to estimate the potential for upwinding, we look at the 
partial derivatives HI and H2. If H I (1)x,1>y) has the same sign (either 
always positive or always negative) for all 1>x E IX and all 1>y E IY, we 
know which way information is flowing and can apply upwinding. Similarly, 
if H2 (1)x, 1>y) has the same sign for all 1>x E IX and 1>y ElY, we can 
upwind this term as well. If both HI and H2 do not change sign, we upwind 
completely, setting both OX and oY to zero. If HI > 0, information is 
flowing from left to right, and we set 1>; = 1>;. Otherwise, HI < 0, and we 
set 1>; = 1>t· Similarly, H2 > 0 indicates 1>~ = 1>;, and H2 < 0 indicates 
A,* _ A,+ 
'f'y - 'f'y. 

If either HI or H2 changes sign, we are in the vicinity of a sonic point 
where the eigenvalue (in this case HI or H2) is identically zero. This signifies 
a potential difficulty with nonunique solutions, and artificial dissipation 
is needed to pick out the physically correct vanishing viscosity solution. 
We switch from the RF scheme to the LLF scheme to obtain the needed 
artificial viscosity. If there is a sonic point in only one direction, i.e., x or y, 
it makes little sense to add damping in both directions. Therefore, we look 
for sonic points in each direction and add damping only to the directions 
that have sonic points. This is done using the IX and IY defined as in the 
LLF method. That is, we switch from the LLLF defined intervals used 
above to initially look for sonic points to the larger LLF intervals that are 
even more likely to have sonic points. We proceed as follows. If HI (1)x, 1>y) 
does not change sign for all 1>x E I'LLF and all 1>y E IhF' we set 1>; equal to 
either 1>; or 1>t depending on the sign of HI. In addition, we set OX to zero 
to remove the artificial dissipation in the x-direction. At the same time, this 
means that a sonic point must have occurred in H 2 , so we use an LLF-type 
method for the y-direction, setting 1>~ = (1); + 1>t)/2 and choosing oY as 
dictated by the LLF scheme. A similar algorithm is executed if H 2 (1)x, 1>y) 
does not change sign for all 1>x E IfLP and 1>y E IfLp. Then 1>~ is set to 
either 1>; or 1>t, depending on the sign of H 2 ; oy is set to zero; and an LLF 
method is used in the x-direction, setting 1>; = (1); +1>t)/2 while choosing 
OX as dictated by the LLF scheme. If both HI and H2 change sign, we have 
sonic points in both directions and proceed with the standard LLF scheme 
at that grid point. 

With the RF scheme, upwinding in the x-direction dictates that either 
1>; or 1>t be used, but not both. Similarly, upwinding in the y-direction uses 
either 1>; or 1>t, but not both. Since evaluating 1>; and 1>~ using high-order 
accurate HJ ENO or HJ WENO schemes is rather costly, it seems wasteful 
to do twice as much work in these instances. Unfortunately, one cannot 
determine whether upwinding can be used (as opposed to LLF) without 
computing 1>; and 1>~. In order to minimize CPU time, one can compute 
1>; and 1>~ using the first-order accurate forward and backward difference 
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formulas and use these cheaper approximations to decide whether or not 
upwinding or LLF will be used. After making this decision, the higher
order accurate HJ WENO (or HJ ENO) method can be used to compute 
the necessary values of ¢; and ¢:!f used in the numerical discretization, 
obtaining the usual high-order accuracy. Sonic points rarely occur in prac
tice, and this strategy reduces the use of the costly HJ WENO method by 
approximately a factor of two. 

5.3.3 Godunov's Scheme 

In [74], Godunov proposed a numerical method that gives the exact solu
tion to the Riemann problem for one-dimensional conservation laws with 
piecewise constant initial data. The multidimensional Hamilton-Jacobi 
formulation of this scheme can be written as 

(5.14) 

as was pointed out by Bardi and Osher [12]. This is the canonical monotone 
scheme. Defining our intervals IX and IY in the LLLF manner using only 
the values of ¢; and ¢:!f at the grid node under consideration, we define 
extx and exty as follows. If ¢; < ¢t, then extxH takes on the minimum 
value of H for all ¢x E IX. If ¢; > ¢t, then extxH takes on the maximum 
value of H for all ¢x E IX. Otherwise, if ¢; = ¢t, then extxH simply plugs 
¢;(= ¢t) into H for ¢x. Similarly, if ¢; < ¢t, then extyH takes on the 
minimum value of H for all ¢y E JY. If ¢; > ¢t, then extyH takes on the 
maximum value of H for all ¢y E IY. Otherwise, if ¢; = ¢t, then extyH 
simply plugs ¢;(= ¢t) into H for ¢Y' In general, extxextyH #- extyextxH, 
so different versions of Godunov's method are obtained depending on the 
order of operations. However, in many cases, including when H is separable, 
extxextyH = extyextxH so this is not an issue. 

Although Godunov's method can sometimes be difficult to implement, 
there are times when it is straightforward. Consider equation (3.2) for mo
tion in an externally generated velocity field. Here, we can consider the 
x and y directions independently, since H is separable with extxextyH = 
extx(u¢x) + exty(v¢y). If ¢; < ¢t, we want the minimum value of u¢x' 
Thus, if u > 0, we use ¢;, and if u < 0, we use ¢t. If u = 0, we obtain 
u¢x = 0 regardless of the choice of ¢x' On the other hand, if ¢; > ¢t, 
we want the maximum value of u¢x. Thus, if u > 0, we use ¢;, and if 
u < 0, we use ¢t. Again, u = 0 gives u¢x = O. Finally, if ¢; = ¢t, then 
u¢x is uniquely determined. This can be summarized as follows. If u > 0, 
use ¢;; if u < 0, use ¢t; and if u = 0, set u¢x = O. This is identical to 
the standard upwind differencing method described in Chapter 3. That is, 
for motion in an externally generated velocity field, Godunov's method is 
identical to simple upwind differencing. 



6 
Motion in the Normal Direction 

6.1 The Basic Equation 

In this chapter we discuss the motion of an interface under an internally 
generated velocity field for constant motion in the normal direction. This 
velocity field is defined by V = aN or Vn = a, where a is a constant. The 
corresponding level set equation (Le., equation (4.4)) is 

<Pt + alY'<p1 = 0, (6.1) 

where a can be of either sign. When a > 0 the interface moves in the 
normal direction, and when a < 0 the interface moves opposite the normal 
direction. When a = 0 this equation reduces to the trivial <Pt = 0, where 
<P is constant for all time. Figure 6.1 shows the evolution of a star-shaped 
interface as it moves normal to itself in the outward direction. 

When <p is a signed distance function, equation (6.1) reduces to <Pt = -a, 
and the values of <P either increase or decrease, depending on the sign of a. 
Forward Euler time discretization of this equation gives <pn+1 = <pn - ab..t. 
Whe.n a > 0, the <p = 0 isocontour becomes the <p = -ab..t isocontour 
after one time step. Similarly, the <p = ab..t isocontour becomes the <p = 0 
isocontour. That is, the <p = 0 isocontour moves ab..t units forward in 
the normal direction to the old position of the old <p = ab..t isocontour. 
The interface is moving in the normal direction with speed a. Taking the 
gradient of this forward Euler time stepping gives Y' <pn+ 1 = Y' <pn - Y' ( ab..t). 
Since ab..t is spatially constant, Y' (ab..t) = 0, implying that Y' <pn+l = Y' <pn • 
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Figure 6.1. Evolution of a star-shaped interface as it moves normal to itself in 
the outward direction. 

Thus, if cpn is initially a signed distance function (with lV'cpnl = 1), it stays 
a distance function (with lV'cpl = 1) for all time. 

When the initial data constitute a signed distance function, forward Euler 
time stepping reduces to solving the ordinary differential equation CPt = -a 
independently at every grid point. Since a is a constant, this forward Euler 
time stepping gives the exact solution up to round-off error (Le., there is no 
truncation error). For example, consider a point where cP = CPo > 0, which is 
CPo units from the interface. In L.t units of time the interface will approach 
aL.t spatial units closer, changing the value of this point to CPo - aL.t, which 
is exactly the forward Euler time update of this point. The exact interface 
crossing time can be identified for all points by solving CPo - at = ° to get 
t = cpo/a. (Similar arguments hold when a < 0, except that the interface 
moves in the opposite direction.) 

Here, we see the power of signed distance functions. When CPo is a signed 
distance function, we can write down the exact solution of equation (6.1) 
as cp(t) = CPo - at. On the other hand, when CPo is not a signed distance 
function, equation (6.1) needs to be solved numerically by treating it as a 
Hamilton-Jacobi equation, as discussed in the last chapter. 
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6.2 Numerical Discretization 

For instructive purposes, suppose we plug V = aN into equation (4.2) and 
try a simple upwind differencing approach. That is, we will attempt to 
discretize 

( a¢x a¢y a¢z) _ 
¢t+ IV'¢I' IV'¢I' IV'¢I ·V'¢-O (6.2) 

with simple upwinding. Consider the first spatial term a¢xlV'¢1-1¢x, where 
a¢xlV'¢I- I is the "velocity" in the x-direction. Since upwinding is based 
only on the sign of the velocity, we can ignore the positive IV' ¢I denomina
tor, assuming temporarily that it is nonzero. Then the sign of a¢x can be 
used to decide whether ¢;; or ¢; should be used to approximate ¢x. When 
¢;; and ¢; have the same sign, it does not matter which of these is plugged 
into a¢x, since only the sign of this term determines whether we use ¢;; or 
¢;. For example, suppose a > 0. Then when ¢;; > ° and ¢; > 0, a¢x > ° 
and ¢;; should be used in equation (6.2) everywhere ¢x appears, including 
the velocity term. On the other hand, when ¢;; < ° and ¢; < 0, a¢x < ° 
and ¢; should be used to approximate ¢x. 

This simple upwinding approach works well as long as ¢;; and ¢; have 
the same sign, but consider what happens when they have different signs. 
For example, when ¢;; < ° and ¢; > 0, a¢;; < ° (still assuming a > 0), 
indicating that ¢; should be used, while a¢; > 0, indicating that ¢;; 
should be used. This situation corresponds to a "V" -shaped region where 
each side of the "V" should move outward. The difficulty in approximating 
¢x arises because we are in the vicinity of a sonic point, where ¢x = 0. The 
LLLF interval defined by ¢;; and ¢; includes this sonic point since ¢;; and 
¢; differ in sign. We have to take care to ensure that the expansion takes 
place properly. A similar problem occurs when ¢;; > ° and ¢; < 0. Here 
a¢;; > 0, indicating that ¢;; should be used, while a¢; < 0, indicating that 
¢; should be used. This upside-down "V" is shaped like a carrot (or hat) 
and represents the coalescing of information similar to a shock wave. Once 
again caution is needed to ensure that the correct solution is obtained. 

Simple upwinding breaks down when ¢;; and ¢; differ in sign. Let 
us examine how the Roe-Fix method works in this case. In order to do 
this, we need to consider the Hamilton-Jacobi form of the equation, i.e., 
equation (6.1). Here HI = a¢xlV'¢I-l, implying that the simple velocity 
V = aN we used in equation (6.2) was the correct expression to look at 
for upwinding. The sign of HI is independent of the y and z directions, 
depending only on a¢x. If both ¢;; and ¢; have the same sign, we choose 
one or the other depending on the sign of HI as in the usual upwinding. 
However, unlike simple upwinding, Roe-Fix gives a consistent method for 
treating the case where ¢;; and ¢; differ in sign. In that instance we are in 
the vicinity of a sonic point and switch to the LLF method, adding some 
numerical dissipation to the scheme in order to obtain the correct vanishing 
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viscosity solution. The RF scheme treats the ambiguity associated with up
winding near sonic points by using central differencing plus some artificial 
viscosity. 

Recall that numerical dissipation can smear out fine solution details 
on coarse grids. In order to avoid as much numerical smearing as pos
sible, we have proposed five different versions (LF, SLF, LLF, SLLF, and 
LLLF) of the central differencing plus artificial viscosity approach to solving 
Hamilton-Jacobi problems. While the RF method is a better alternative, 
it too resorts to artificial dissipation in the vicinity of sonic points where 
ambiguities occur. In order to avoid the addition of artificial dissipation, 
one must resort to the Godunov scheme. 

Let us examine the Godunov method in detail. Again, assume a > O. If 
¢;; and ¢;; are both positive, then extx minimizes H when ¢;; < ¢;; and 
maximizes H when ¢;; > ¢;;. In either case, we choose ¢;; consistent with 
upwinding. Similarly, when ¢;; and ¢;; are both negative, extx minimizes 
H when ¢;; < ¢;; and maximizes H when ¢;; > ¢;;. Again, ¢;; is chosen 
in both instances consistent with upwinding. Now consider the "V"-shaped 
case where ¢;; < 0 and ¢;; > 0, indicating an expansion. Here ¢;; < ¢;;, 
so Godunov's method minimizes H, achieving this minimum by setting 
¢x = O. This implies that a region of expansion should have a locally flat ¢ 
with ¢x = O. Instead of adding numerical dissipation to hide the problem, 
Godunov's method chooses the most meaningful solution. Next, consider 
the case where ¢;; > 0 and ¢;; < 0, indicating coalescing characteristics. 
Here ¢;; > ¢;;, so Godunov's method maximizes H, achieving this max
imum by setting ¢x equal to the larger in magnitude of ¢;; and ¢;;. In 
this shock case, information is coming from both directions, and the grid 
point feels the effects of the information that gets there first. The velocities 
are characterized by HI = a¢xlV'¢I-l, and the side with the fastest speed 
arrives first. This is determined by taking the larger in magnitude of ¢;; 
and ¢;;. Again, Godunov's method chooses the most meaningful solution, 
avoiding artificial dissipation. 

Godunov's method for equation (6.1) can be summarized as follows for 
both positive and negative a. If a¢;; and a¢;; are both positive, use ¢x = 
¢;;. If a¢;; and a¢;; are both negative, use ¢x = ¢;;. If a¢;; ::; 0 and 
a¢;; ~ 0, treat the expansion by setting ¢x = O. If a¢;; ~ 0 and a¢;; ::; 0, 
treat the shock by setting ¢x to either ¢;; or ¢;;, depending on which gives 
the largest magnitude for a¢x. Note that when ¢;; = ¢;; = 0 both of the 
last two cases are activated, and both consistently give ¢x = O. We also 
have the following elegant formula due to Rouy and Tourin [139J: 

¢; ~ max (max( ¢;;, 0)2, min( ¢;;, 0)2) (6.3) 

when a > 0, and 

(6.4) 

when a < O. 
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6.3 Adding a Curvature-Dependent Term 

Most flames burn with a speed in the normal direction plus extra heating 
and cooling effects due to the curvature of the front. This velocity field can 
be modeled by setting Vn = a - bK, in the level set equation (4.4) to obtain 

(6.5) 

which has both hyperbolic and parabolic terms. The hyperbolic alV'¢1 term 
can be discretized as outlined above using Hamilton-Jacobi techniques, 
while the parabolic bK,IV'¢1 term can be independently discretized using 
central differencing as described in Chapter 4. 

Once both terms have been discretized, either forward Euler or RK 
time discretization can be used to advance the front forward in time. 
The combined CFL condition for equations that contain both hyperbolic 
Hamilton-Jacobi terms and parabolic terms is given by 

!::'t (IHI! !H2! IH31 + ~ ~ +~) < 1 (6.6) 
!::'x + l::,y + l::,z (!::'x)2 + (!::,y)2 (!::'Z)2 ' 

as one might have guessed from equation (4.12). 

6.4 Adding an External Velocity Field 

Equation (6.5) models a flame front burning through a material at rest, but 
does not account for the velocity of the unburnt material. A more general 
equation is 

(6.7) 

since it includes the velocity iT of the unburnt material. This equation 
combines an external velocity field with motion normal to the interface and 
motion by mean curvature. It is the most general form of the G-equation 
for burning flame fronts; see Markstein [110]. As in equation (6.5), the 
parabolic term on the right-hand side can be independently discretized with 
central differencing. The hyperbolic Hamilton-Jacobi part of this equation 
consists of two terms, iT· V'¢ and alV'¢I. Figure 6.2 shows the evolution 
of a star-shaped interface under the influence of both an externally given 
rigid-body rotation (a iT· V'¢ term) and a self-generated motion outward 
normal to the interface (an alV'¢1 term). 

In order to discretize the Hamilton-Jacobi part of equation (6.7), we first 
identify the partial derivatives of H, i.e., HI = U + a¢xlV'¢I-I and H2 = 
v + wpylV'¢I- I . The first term in HI represents motion of the interface as 
it is passively advected in the external velocity field, while the second term 
represents the self-generated velocity of the interface as it moves normal 
to itself. If u and a¢x have the same sign for both ¢; and ¢t, then the 
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Figure 6.2. A star-shaped interface being advected by a rigid body rotation as it 
moves outward normal to itself. 

background velocity and the self-generated velocity in the normal direction 
are both moving the front in the same direction, and the upwind direction is 
easy to determine. For example, if a, 1>; , and 1>t are all positive, the second 
term in HI indicates that the self-generated normal velocity is moving the 
front to the right. Additionally, when u > 0 the external velocity is also 
moving the front to the right. In this case, both the RF scheme and the 
Godunov scheme set 1>x = 1>;. 

It is more difficult to determine what is happening when u and a1>xl'V1>I-I 
disagree in sign. In this case the background velocity is moving the front in 
one direction while the self-generated normal velocity is moving the front 
in the opposite direction. In order to upwind, we must determine which of 
these two terms dominates. It helps if 1> is a signed distance function, since 
we obtain the simplified HI = u + a1>x. If HI is positive for both 1>; and 
1>t, then both RF and Godunov set 1>x = 1>;. If HI is negative for both 
1>; and 1>t, then both RF and Godunov set 1>x = 1>t. If HI is negative 
for 1>; and positive for 1>;;, we have an expansion. If 1>; < 1>;;, Godunov's 
method chooses the minimum value for H. This relative extremum occurs 
when HI = 0 implying that we set 1>x = -u/a. If 1>; > 1>;; Godunov's 
method chooses the maximum value for H, which is again obtained by 
setting 1>x = -u/a. If HI is positive for 1>; and negative for 1>t, we have a 
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shock. Godunov's method dictates setting ¢x equal to the value of ¢;; or 
¢t that gives the value of HI with the largest magnitude. 

When ¢ is not a signed distance function, the above simplifications can
not be made. In general, HI = u+a¢xl'V¢I-I, and we need to consider not 
only IX, but also the values of ¢y and ¢z in IY and P, respectively. This 
can become rather complicated quite quickly. In fact, even the RF method 
can become quite complicated in this case, since it is hard to tell when sonic 
points are nearby and when they are not. In situations like this, the LLF 
scheme is ideal, since one merely uses both the values of ¢;; and ¢t along 
with some artificial dissipation setting Q: as dictated by equation (5.12). 
At first glance, equation (5.12) might seem complicated to evaluate; e.g., 
one has to determine the maximum value of IHII. However, since Q: is just 
a dissipation coefficient, we can safely overestimate Q: and pay the price 
of slightly more artificial dissipation. In contrast, it is hard to predict how 
certain approximations will affect the Godunov scheme. One way to approx
imate Q: is to separate HI into parts, i.e., using IHII < lui + la¢xll'V¢I-I 
to treat the first and second terms independently. Also, when ¢ is approxi
mately a signed distance, we can look at IHII = lu + a¢x I. This function is 
easy to maximize, since the maximum occurs at either ¢;; or ¢t and the y 
and z spatial directions play no role. 



7 
Constructing Signed Distance 
Functions 

7 .1 Introduction 

As we have seen, a number of simplifications can be made when 1; is a signed 
distance function. For this reason, we dedicate this chapter to numerical 
techniques for constructing approximate signed distance functions. These 
techniques can be applied to the initial data in order to initialize 1; to a 
signed distance function. 

As the interface evolves, 1; will generally drift away from its initialized 
value as signed distance. Thus, the techniques presented in this chapter 
need to be applied periodically in order to keep 1; approximately equal to 
signed distance. For a particular application, one has to decide how sensi
tive the relevant techniques are to 1;'s approximation of a signed distance 
function. If they are very sensitive, 1; needs to be reinitialized to signed 
distance both accurately and often. If they are not sensitive, one can reini
tialize with a lower-order accurate method on an occasional basis. However, 
even if a particular numerical approach doesn't seem to depend on how ac
curately 1; approximates a signed distance function, one needs to remember 
that 1; can develop noisy features and steep gradients that are not amenable 
to finite-difference approximations. For this reason, it is always advisable 
to reinitialize occasionally so that 1; stays smooth enough to approximate 
its spatial derivatives with some degree of accuracy. 
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7.2 Reinitialization 

In their seminal level set paper, Osher and Sethian [126] initialized their 
numerical calculations with ¢ = 1 ± d2 , where d is the distance function and 
the "±" sign is negative in n- and positive in n+. Later, it became clear 
that the signed distance function ¢ = ±d, was a better choice for initializ
ing ¢. Mulder, Osher, and Sethian [115] demonstrated that initializing ¢ to 
a signed distance function results in more accurate numerical solutions than 
initializing ¢ to a Heaviside function. While it is obvious that better results 
can be obtained with smooth functions than nonsmooth functions, there 
are those who insist on using (slightly smeared out) Heaviside functions, 
or color junctions, to track interfaces. 

In [48], Chopp considered an application where certain regions of the 
flow had level sets piling up on each other, increasing the local gradient, 
while other regions of the flow had level sets separating from each other, 
flattening out ¢. In order to reduce the numerical errors caused by both 
steepening and flattening effects, [48] introduced the notion that one should 
reinitialize the level set function periodically throughout the calculation. 
Since only the ¢ = 0 isocontour has any meaning, one can stop the cal
culation at any point in time and reset the other isocontours so that ¢ is 
again initialized to a signed distance function. The most straightforward 
way of implementing this is to use a contour plotting algorithm to locate 
and discretize the ¢ = 0 isocontour and then explicitly measure distances 
from it. Unfortunately, this straightforward reinitialization routine can be 
slow, especially if it needs to be done at every time step. In order to ob
tain reasonable run times, [48] restricted the calculations of the interface 
motion and the reinitialization to a small band of points near the ¢ = 0 
isocontour, producing the first version of the local level set method. We 
refer those interested in local level set methods to the more recent works 
of Adalsteinsson and Sethian [2] and Peng, Merriman, Osher, Zhao, and 
Kang [130]. 

The concept of frequent reinitialization is a powerful numerical tool. In 
a standard numerical method, one starts with initial data and proceeds 
forward in time, assuming that the numerical solution stays well behaved 
until the final solution is computed. With reinitialization, we have a less
stringent assumption, since only our ¢ = 0 isocontour needs to stay well 
behaved. Any problems that creep up elsewhere are wiped out when the 
level set is reinitialized. For example, Merriman, Bence, and Osher [114] 
proposed numerical techniques that destroy the nice properties of the level 
set function and show that poor numerical solutions are obtained using 
these degraded level set functions. Then they show that periodic reini
tialization to a signed distance function repairs the damage, producing 
high-quality numerical results. Numerical techniques need to be effective 
only for the ¢ = 0 isocontour, since the rest of the implicit surface can be 
repaired by reinitializing ¢ to a signed distance function. This greatly in-
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creases flexibility in algorithm design, since difficulties away from the 1> = 0 
isocontour can be ignored. 

7.3 Crossing Times 

One of the difficulties associated with the direct computation of signed 
distance functions is locating and discretizing the interface. This can be 
avoided in the following fashion. Consider a point x E n+. If x does not lie 
on the interface, we wish to know how far from the interface it is so that 
we can set ¢(x) = +d. If we move the interface in the normal direction 
using equation (6.1) with a = 1, the interface eventually crosses over x, 
changing the local value of ¢ from positive to negative. If we keep a time 
history of the local values of ¢ at x, we can find the exact time when ¢ was 
equal to zero using interpolation in time. This is the time it takes the zero 
level set to reach the point x, and we call that time to the crossing time. 
Since equation (6.1) moves the level set normal to itself with speed a = 1, 
the time it takes for the zero level set to reach a point x is equal to the 
distance the interface is from X. That is, the crossing time to is equal to the 
distance d. For points x E n-, the crossing time is similarly determined 
using a = -1 in equation (6.1). 

In a series of papers, [20j, [97], and [100j, Kimmel and Bruckstein intro
duced the notion of using crossing times in image-processing applications. 
For example, [lOOj used equation (6.1) with a = 1 to create shape offsets, 
which are distance functions with distance measured from the boundary of 
an image. The idea of using crossing times to solve some general Hamilton
Jacobi equations with Dirichlet boundary conditions was later generalized 
and rigorized by Osher [123]. 

7.4 The Reinitialization Equation 

In [139j, Rouy and Tourin proposed a numerical method for solving IV'¢I = 
f(x) for a spatially varying function f derived from the intensity of an 
image. In the trivial case of J(x) = 1, the solution ¢ is a signed distance 
function. They added f(x) to the right-hand side of equation (6.1) as a 
source term to obtain 

¢t + IV'¢I = J(x), (7.1) 

which is evolved in time until a steady state is reached. At steady state, 
the values of ¢ cease to change, implying that ¢t = O. Then equation (7.1) 
reduces to IV'¢\ = J(x), as desired. Since only the steady-state solution 
is desired, [139] used an accelerated iteration method instead of directly 
evolving equation (7.1) forward in time. 
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Equation (7.1) propagates information in the normal direction, so infor
mation flows from smaller values of <P to larger values of <p. This equation 
is of little use in reinitializing the level set function, since the interface lo
cation will be influenced by the negative values of <p. That is, the <p = 0 
isocontour is not guaranteed to stay fixed, but will instead mOVe around 
as it is influenced by the information flowing in from the negative values 
of <p. One way to avoid this is to compute the signed distance function for 
all the grid points adjacent to the interface by hand. Then 

(7.2) 

can be solved in n+ to update <p based on those grid points adjacent to 
the interface. That is, the grid points adjacent to the interface are not 
updated, but instead used as boundary conditions. Since there is only a 
single band of initialized grid cells on each side of the interface, one cannot 
apply higher-order accurate methods such as HJ WENO. However, if a 
two-grid-cell-thick band is initialized in n- (in addition to the one-grid
cell-thick band in n+), the total size if the band consists of three grid 
cells and the HJ WENO scheme can then be used. Alternatively, one could 
initialize a three-grid-cell-thick band of boundary conditions in n- and 
use these to update every point in n+ including those adjacent to the 
interface. Similarly, a three grid cell thick band of boundary conditions can 
be initialized in n+ and used to update the values of <p in n- by solving 

<Pt -1V'<p1 = -1 (7.3) 

to steady state. Equations (7.2) and (7.3) reach steady state rather quickly, 
since they propagate information at speed 1 in the direction normal to the 
interface. For example, if D.t = 0.5D.x, it takes only about 10 time steps to 
move information from the interface to 5 grid cells away from the interface. 

In [160J, Sussman, Smereka, and Osher put all this together into a 
reinitialization equation 

(7.4) 

where S(<Po) is a sign function taken as 1 in n+, -1 in n-, and 0 on the 
interface, where we want <p to stay identically equal to zero. Using this 
equation, there is no need to initialize any points near the interface for use 
as boundary conditions. The points near the interface in n+ use the points 
in n- as boundary conditions, while the points in n- conversely look at 
those in n+. This circular loop of dependencies eventually balances out, 
and a steady-state signed distance function is obtained. As long as <p is 
relatively smooth and the initial data are somewhat balanced across the 
interface, this method works rather well. Unfortunately, if <p is not smooth 
or <p is much steeper on one side of the interface than the other, circular 
dependencies on initial data can cause the interface to move incorrectly 
from its initial starting position. For this reason, [160] defined S(<Po) using 
the initial values of <p (denoted by <Po) so that the domain of dependence 
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does not change if the interface incorrectly crosses over a grid point. This 
was addressed directly by Fedkiw, Aslam, Merriman, and Osher in the 
appendix of [63], where incorrect interface crossings were identified as sign 
changes in the nodal values of ¢. These incorrect interface crossings were 
rectified by putting the interface back on the correct side of a grid point X, 
setting ¢(x) = ±E, where ±E is a small number with the appropriate sign. 

In discretizing equation (7.4), the S(¢o)IV'¢1 term is treated as motion in 
the normal direction as described in Chapter 6. Here S(¢o) is constant for 
all time and can be thought of as a spatially varying "a" term. Numerical 
tests indicate that better results are obtained when S(¢o) is numerically 
smeared out, so [160] used 

S(A. ) _ ¢o 
'+'0 - J¢~+(6,x)2 

(7.5) 

as a numerical approximation. Later, Peng, Merriman, Osher, Zhao, and 
Kang [130] suggested that 

S(¢) = J¢2 + 1;¢12(6x)2 
(7.6) 

was a better choice, especially when the initial ¢o was a poor estimate of 
signed distance, i.e., when IV'¢ol was far from 1. In equation (7.6), it is im
portant to update S{¢) continually as the calculation progresses so that the 
IV'¢I term has the intended effect. In contrast, equation (7.5) is evaluated 
only once using the initial data. Numerical smearing of the sign function 
decreases its magnitude, slowing the propagation speed of information near 
the interface. This probably aids the balancing out of the circular depen
dence on the initial data as well, since it produces characteristics that do 
not look as far across the interface for their information. We recommend 
using Godunov's method for discretizing the hyperbolic S(¢o)IV'¢1 term. 
After finding a numerical approximation to S(¢o)IV'¢I, we combine it with 
the remaining S (¢o) source term at each grid point and update the resulting 
quantity in time with a Runge-Kutta method. 

Ideally, the interface remains stationary during the reinitialization pro
cedure, but numerical errors will tend to move it to some degree. In [158], 
Sussman and Fatemi suggested an improvement to the standard reini
tialization procedure. Since their application of interest was two-phase 
incompressible flow, they focused on preserving the amount of material 
in each cell, i.e., preserving the area (volume) in two (three) spatial di
mensions. If the interface does not move during reinitialization, the area is 
preserved. On the other hand, one can preserve the area while allowing the 
interface to move, implying that their proposed constraint is weaker than 
it should be. In [158] this constraint was applied locally, requiring that the 
area be preserved individually in each cell. Instead of using the exact area, 
the authors used equation (1.15) with f(x) = 1 to approximate the area in 
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each cell as 

Ai,j = k . H(¢) dx, 
'.J 

(7.7) 

where Oi,j is an individual grid cell and H is the smeared-out Heaviside 
function in equation (1.22). In both [158] and the related [159] by Sussman, 
Fatemi, Smereka, and Osher this local constraint was shown to significantly 
improve the results obtained with the HJ ENO scheme. However, this local 
constraint method has not yet been shown to improve upon the results ob
tained with the significantly more accurate HJ WENO scheme. The concern 
is that the HJ WENO scheme might be so accurate that the approximations 
made by [158] could lower the accuracy of the method. 

This local constraint is implemented in [158] by the addition of a 
correction term to the right-hand side of equation (7.4), 

(7.8) 

where the multidimensional delta function J = J(¢)IV'¢I from equa
tion (1.19) is used, since the modifications are needed only near the interface 
where Ai,j is not trivially equal to either zero or the volume of Oi,j. The 
constraint that Ai,j in each cell not change, i.e., (Ai,j)t = 0, is equivalent 
to 

(7.9) 

or 

in . J(¢) (-S(¢o)(IV'¢I- 1) + AJ(¢)IV'¢I) dx = 0, 
'oJ 

(7.10) 

using equation (7.8) and the fact that H'(¢) = J(¢) (see equation (1.18)). 
A separate Ai,j is defined in each cell using equation (7.10) to obtain 

In . J(¢) (-S(¢o)(IV'¢I-l)) dx 
Ai,j = - ',J In. J2(¢)IV'¢1 dx ' (7.11) 

',J 

or 

(7.12) 

where equation (7.4) is used to compute ¢n+l from ¢n. In summary, first 
equation (7.4) is used to update ¢n in time using, for example, an RK 
method. Then equation (7.12) is used to compute a Ai,j for each grid 
cell. Sussman and Fatemi in [158] used a nine-point quadrature formula 
to evaluate the integrals in two spatial dimensions. Finally, the initial 
guess for ¢n+l obtained from equation (7.4) is replaced with a corrected 
¢n+l + L-tAJ(¢)IV'¢I. It is shown in [158] that this specific discretization 
exactly cancels out a first order error term in the previous formulation. This 
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procedure is very similar to that used by Rudin, Osher, and Fatemi [142] 
as a continuous in time gradient projection method. In [142] a set of con
straints needs to be preserved under evolution, while in [158] the evolution 
is not inherited from gradient descent on a functional to be optimized. 

Reinitialization is still an active area of research. Recently, Russo and 
Smereka [143J introduced yet another method for computing the signed 
distance function. This method was designed to keep the stencil from in
correctly looking across the interface at values that should not influence it, 
essentially removing the balancing act between the interdependent initial 
data across the interface. Their idea replaces equation (7.4) with a com
bination of equations (7.2) and (7.3) along with interpolation to find the 
interface location. In [143] marked improvement was shown in using low
order HJ ENO schemes, but the authors did not address whether they can 
obtain improved results over the recommended HJ WENO discretization 
of equation (7.4). Moreover, implementing a high-order accurate version of 
the scheme in [143] requires a number of ghost cells, as discussed above. 

7.5 The Fast Marching Method 

In the crossing-time approach to constructing signed distance functions, the 
zero isocontour moves in the normal direction, crossing over grid points at 
times equal to their distance from the interface. In this fashion, each grid 
point is updated as the zero isocontour crosses over it. Here we discuss a 
discrete algorithm that mimics this approach by marching out from the 
interface calculating the signed distance function at each grid point. 

Suppose that all the grid points adjacent to the interface are initialized 
with the exact values of signed distance. We will discuss methods for ini
tializing this band of cells later. Starting from this initial band, we wish 
to march outward, updating each grid point with the appropriate value of 
signed distance. Here we describe the algorithm for marching in the nor
mal direction to construct the positive distance function, noting that the 
method for marching in the direction opposite the normal to construct the 
negative distance function is applied in the same manner. In fact, if the val
ues in the initial band are multiplied by -1, the positive distance function 
construction can be used to find positive distance values in n- that can 
then be multiplied by -1 to obtain appropriate negative distance values in 
this region. 

In order to march out from the initial band, constructing the distance 
function as we go, we need to decide which grid point to update first. This 
should be the one that the zero isocontour would cross first in the crossing
time method, i.e., the grid point with the smallest crossing time or smallest 
value of distance. So, for each grid point adjacent to the band, we calculate a 
tentative value for the distance function. This is done using only the values 
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of ¢ that have already been accepted into the band; i.e., tentative values 
do not use other tentative values in this calculation. Then we choose the 
point with the smallest tentative value to add to the band of accepted grid 
points. Since the signed distance function is created with characteristics 
that flow out of the interface in the normal direction, this chosen point 
does not depend on any of the other tentative grid points that will have 
larger values of distance. Thus, the tentative value of distance assigned 
to this grid point is an acceptable approximation of the signed distance 
function. 

Now that the band of accepted values has been increased by one, we 
repeat the process. Most of the grid points in the tentative band already 
have good tentative approximations to the distance function. Only those 
adjacent to the newly added point need modification. Adjacent tentative 
grid points need their tentative values updated using the new information 
gained by adding the chosen point to the band. Any other adjacent grid 
point that did not yet have a tentative value needs to have a tentative 
value assigned to it using the values in the band of accepted points. Then 
we choose the smallest tentative value, add it to the band, and repeat 
the algorithm. Eventually, every grid point in n+ gets added to the band, 
completing the process. As noted above, the grid points in n- are updated 
with a similar process. 

The slowest part of this algorithm is the search through all the tentative 
grid points to find the one with the smallest value. This search can be 
accelerated using a binary tree to store all the tentative values. The tree 
is organized so that each point has a tentative distance value smaller than 
the two points located below it in the tree. This means that the smallest 
tentative point is always conveniently located at the top of the tree. New 
points are added to the bottom of the tree, where we note that the method 
works better if the tree is kept balanced. If the newly added point has 
a smaller value of distance than the point directly above it, we exchange 
the location of these two points in the tree. Recursively, this process is 
repeated, and the newly added point moves up the tree until it either sits 
below a point with a smaller tentative distance value or it reaches the 
top of the tree. We add points to the bottom of the tree as opposed to 
the top, since newly added points tend to be farther from the interface 
with larger distance values than those already in the tree. This means that 
fewer comparisons are generally needed for a newly added point to find an 
appropriate location in the tree. 

The algorithm proceeds as follows. Remove the point from the top of the 
tree and add it to the band. The vacated space in the tree is filled with the 
smaller of the two points that lie below it. Recursively, the holes opened up 
by points moving upward are filled with the smaller of the two points that 
lie below until the bottom of the tree is reached. Next, any tentative values 
adjacent to the added point are updated by changing their tentative values. 
These then need to be moved up or down the tree in order to preserve the 
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ordering based on tentative distance values. In general, tentative values 
should only decrease, implying that the updated point may have to be 
moved up the tree. However, numerical error could occasionally cause a 
tentative distance value to increase (if only by round-off error) in which 
case the point may need to be moved down lower in the tree. Tentative 
distance values are calculated at each new adjacent grid point that was not 
already in the tree, and these points are added to the tree. The algorithm 
is O( N log N), where N is the total number of grid points. 

This algorithm was invented by Tsitsiklis in a pair of papers, [166] and 
[167]. The most novel part of the algorithm is the extension of Dijkstra's 
method for computing the taxicab metric to an algorithm for computing 
Euclidean distance. In these papers, ¢i,j,k is chosen to be as small as pos
sible by obtaining the correct solution in the sense of first arrival time. 
First, each quadrant is independently considered to find the characteris
tic direction 0 = (01, O2 , (h), where each Os > 0 and :E Os = 1, that gives 
the smallest value for ¢i,j,k. Then the values from all the quadrants are 
compared, and the smallest of these is chosen as the tentative guess for 
¢i,j,k. That is, the characteristic direction is found by first finding the best 
candidate in each quadrant and then comparing these (maximum of eight) 
candidates to find the best global candidate. 

In [166] and [167], the minimum value of ¢i,j,k in a particular quadrant 
is found by minimizing 

¢i,j,k = 7(0) + 01 ¢1 + 02¢2 + (h¢3 

over all directions 0, where 

- / 2 2 2 
7(0) = V (01.6X1) + (02.6x2) + (03.6x3) 

(7.13) 

(7.14) 

is the distance traveled and "'£ f)s¢s is the starting point in the particular 
quadrant. There are eight possible quadrants, with starting points deter
mined by ¢1 = ¢i±l,j,k, ¢2 = ¢i,j±l,k, and ¢3 = ¢i,j,k±l. If any of the arms 
of the stencil is not in the band of updated points, this arm is simply ig
nored. In the minimization formalism, this is accomplished by setting points 
outside the updated band to 00 and using the convention that 0 . 00 = O. 
This sets the corresponding Os¢s term in equation (7.13) to zero for any 
¢ = 00 not in the band of updated points simply by setting Os = 0, i.e., by 
ignoring that direction of the stencil. 

A Lagrange multiplier). is added to equation (7.13) to obtain 

(7.15) 

where 1 - :E Os = O. For each Os, we take a partial derivative and set it to 
zero, obtaining 

(7.16) 
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in standard fashion. Solving equation (7.16) for each ¢s and plugging the 
results into equation (7.13) yields (after some cancellation) ¢i,j,k = A; i.e., 
A is our minimum value. To find A, we rewrite equation (7.16) as 

(7.17) 

and sum over all spatial dimensions to obtain 

(7.18) 

using equation (7.14) to reduce the right-hand side of equation (7.18) to 1. 
In summary, [166] and [167] compute the minimum value of ¢i,j,k in each 

quadrant by solving the quadratic equation 

(7.19) 

Then the final value of ¢i,j,k is taken as the minimum over all the quadrants. 
Equation (7.19) is a first-order accurate approximation of 1'\7¢12 = 1, i.e., 
the square of 1'\7 ¢I = 1. 

The final minimization over all the quadrants is straightforward. For 
example, with ¢2 and ¢3 fixed, the smaller value of ¢i,j,k is obtained as 
¢l = min(¢i-l,j,k, ¢i+l,j,k), ruling out four quadrants. The same considera
tions apply to ¢2 = min(¢i,j-l,k, ¢i,j+l,k) and ¢3 = min(¢i,j,k-l, ¢i,j,k+l). 
Equation (7.19) is straightforward to solve using these definitions of ¢l, 
¢2, and 1>3. This is equivalent to using either the forward difference or the 
backward difference to approximate each derivative of ¢. If these defini
tions give ¢s = 00, than neither the forward nor the backward difference 
is defined since both the neighboring points in that spatial dimension are 
not in the accepted band. In this instance, we set ()s = 0, which according 
to equation (7.17) is equivalent to dropping the troublesome term out of 
equation (7.19) setting it to zero. 

Each of ¢l, ¢2, and ¢3 can potentially be equal to 00 if there are no 
neighboring accepted band points in the corresponding spatial dimension. 
If one of these quantities is equal to 00, the corresponding term vanishes 
from equation (7.19) as we set the appropriate ()s = O. Since there is always 
at least one adjacent point in the accepted band, at most two of the three 
terms can vanish, giving 

( ¢i,j,k-¢S)2 =1, 
DXs 

(7.20) 

which can be solved to obtain ¢i,j,k = ¢s ± Dxs. The larger term, denoted 
by the "+" sign, is the one we use, since distance increases as the algorithm 
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proceeds. When there are two nonzero terms, equation (7.19) becomes 

( ¢i,j,k - ¢Sl)2 + (¢i,j,k - ¢S2)2 = 1, 
~XSl ~XS2 

(7.21) 

where Sl and S2 represent different spatial dimensions. This quadratic equa
tion can have zero, one, or two solutions. While this theoretically should not 
happen, it can be caused by poor initial data or numerical errors. Defining 

P(¢i,j,k) = (¢i,j,k - ¢Sl)2 + (¢i,j,k - ¢S2)2 (7.22) 
~XSl ~XS2 

allows us to write P(max{ ¢sp ¢S2}) ::; 1 as a necessary and suffi
cient condition to find an adequate solution ¢i,j,k of equation (7.21). If 
P(max{¢Sl'¢S2}) > 1, then ¢i,j,k < max{¢SP¢S2} if a solution ¢i,j,k ex
ists. This implies that something is wrong (probably due to poor initial data 
or numerical error), since larger values of ¢ should not be contributing to 
smaller values. In order to obtain the best solution under the circumstances, 
we discard the term with the larger ¢s and proceed with equation (7.20). 
Otherwise, when P(max{¢SP¢S2})::; 1, equation (7.21) has two solutions, 
and we use the larger one, corresponding to the "+" sign in the quadratic 
formula. Similarly, when all three terms are present, we define 

P(¢i . k) = (¢i,j,k - ¢1)2 + (¢i,j,k - ¢2)2 + (¢i,j,k - ¢3)2 (7.23) 
,J, ~x ~y ~z 

and take the larger solution, corresponding to the "+" sign, when 
P(max{¢s}) ::; 1. Otherwise, when P(max{¢s}) > 1 we omit the term 
with the largest ¢s and proceed with equation (7.22). 

Consider the initialization of the grid points in the band about the inter
face. The easiest approach is to consider each of the coordinate directions 
independently. If ¢ changes sign in a coordinate direction, linear interpola
tion can be used to locate the interface crossing and determine a candidate 
value of ¢. Then ¢ is initialized using the candidate with the smallest mag
nitude. Both this initialization routine and the marching algorithm itself 
are first-order accurate. For this reason, the reinitialization equation is of
ten a better choice, since it is highly accurate in comparison. On the other 
hand, reinitialization is significantly more expensive and does not work well 
when ¢ is not initially close to signed distance. Thus, in many situations 
this optimal O(N log N} algorithm is preferable. 

Although the method described above was originally proposed by Tsitsik
lis in [166] and [167], it was later rediscovered by the level set community; 
see, for example, Sethian [148] and Helmsen, Puckett, Colella, and Dorr 
[85], where it is popularly referred to as the fast marching method (FMM). 
In [149], Sethian pointed out that higher-order accuracy could be achieved 
by replacing the first-order accurate forward and backward differences used 
by [166] and [167] in equation (7.19) with second-order accurate forward 
and backward differences whenever there are enough points in the updated 
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band to evaluate these higher-order accurate differences. The second-order 
accurate versions of equations (1.3) and (1.4) are 

acP r::::; cPi+l - cPi + (LX) (cPi+2 - 2cPi+l + cPi) = cPi+2 - 4cPi+l + 3cPi 
ax Lx 2 (Lx)2 2Lx 

and 

(7.24) 

3cPi - 4cPi-l + cPi-2 
2Lx 

(7.25) 

respectively. This lowers the local truncation error whenever more accepted 
band points are available. As pointed out in [149], higher-order accurate 
(higher than second order) forward and backward differences could be used 
as well. One difficulty with obtaining higher-order accurate solutions is that 
the initial band adjacent to the interface is constructed with first-order 
accurate linear interpolation. In [49J, Chopp proposed using higher-order 
accurate interpolants to initialize the points adjacent to the interface. This 
leads to a set of equations that are not trivial to solve, and [49] used a 
variant of Newton iteration to find an approximate solution. When the 
iteration method (occasionally) fails, [49J uses the lower-order accurate lin
ear interpolation to initialize the problematic points. Overall, the iteration 
scheme converges often enough to significantly improve upon the results 
obtained using the lower-order accurate linear interpolation everywhere. 



8 
Extrapolation in the Normal Direction 

8.1 One-Way Extrapolation 

In the last chapter we constructed signed distance functions by following 
characteristics that flow outward from the interface. Similar techniques can 
be used to propagate information in the direction of these characteristics. 
For example, 

(8.1) 

is a Hamilton-Jacobi equation (in S) that extrapolates S normal to the 
interface, i.e. so that S is constant on rays normal to the interface. Since 
H('VS) = N· 'VS, we can solve this equation with the techniques presented 
in Chapter 5 using Hl = n!, H2 = n2, and H3 = n3. 

While central differencing can be used to compute the normal, it is usu
ally advantageous to use upwind differencing here, since this equation is 
propagating information along these characteristics. At a given point Xi,j,k 

where the level set function is ¢i,j,k, we determine ¢x by considering both 
¢i-l,j,k and ¢Hl,j,k' If either of these values is smaller than ¢i,j,k, we use 
the minimum of these two values to compute a one-sided difference. On the 
other hand, if both of these values are larger than ¢i,j,k, we set ¢x = 0; 
noting that no S information should be flowing into this point along the x 
direction. After computing ¢y and ¢z in the same fashion, equation (1.2) 
can be used to define the normal direction. 

Suppose that S is initially defined only in n- and we wish to extend its 
values across the interface from n- into n+. Solving equation (8.1) in n+ 
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using the values of S in n- as boundary conditions extrapolates S across 
the interface constant in the normal direction. This was done by Fedkiw, 
Aslam, Merriman, and Osher in [63] to solve multiphase flow problems with 
a ghost fluid method. We can extrapolate S in the opposite direction from 
n+ to n- by solving 

St - N· V'S = 0 (8.2) 

in n- using the values of S in n+ as boundary conditions. Of course, the 
upwind normal should be computed using the larger neighboring values 
of ¢ instead of the smaller neighboring values. 

8.2 Two-Way Extrapolation 

Just as we combined equations (7.2) and (7.3) to obtain equation (7.4), 
equations (8.1) and (8.2) can be combined to obtain 

(8.3) 

to extrapolate S away from the interface. Here the upwind version of N 
is computed using smaller values of ¢ in n+ and larger values of ¢ in n- . 
Equation (8.3) can be applied to any value S that needs to be smoothed 
normal to the interface. For example, if this equation is solved indepen
dently for each component of the velocity field, i.e., S = u, S = v, and 
S = w, we obtain a velocity field that is constant normal to the interface. 
Velocity fields of this type have a tendency to preserve signed distance 
functions, as discussed by Zhao, Chan, Merriman, and Osher in [175]. This 
velocity extrapolation is also useful when the velocity is known only near 
the interface. For example, in [43], Chen, Merriman, Osher, and Smereka 
computed the velocity field for grid cells adjacent to the interface using 
local information from both sides of the interface. Then the velocity values 
in this band were held fixed, and equation (8.3) was used to extend each 
component of the velocity field outward from this initial band. 

8.3 Fast Marching Method 

As in the construction of signed distance functions, the fast marching 
method can be used to extrapolate S in an efficient manner. For exam
ple, consider a fast marching method alternative to equation (8.1). The 
normal is computed using the smaller neighboring values of ¢ (as above). 
The binary heap structure can be precomputed using all the points in n+, 
as opposed to just using the points adjacent to the initialized band, since ¢ 
is already defined throughout n+. Once the points are ordered, we choose 
the point with the smallest value of ¢ and compute an appropriate value 
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for S. Then we find the next smallest value of ¢, compute S, and continue in 
this fashion. The tentative values play no role, since we already know ¢ and 
thus the characteristic directions, i.e., assuming that ¢ is a signed distance 
function. 

At each grid point, S is determined using the values of S at the neigh
boring points in a fashion dictated by the neighborinJS values of ¢. Since S 
should be constant normal to the interface, we set N . V'S = O. Or equiv
alently, since N and V' ¢ point in the same direction, we set V' ¢ . V'S = 0, 
where the derivatives in V' ¢ are computed in the fashion outlined above for 
computing normals. Then 

(8.4) 

is discretized using V' ¢ to determine the upwind direction. That is, we use 
Sx = D- Si,j,k when ¢x > 0 and Sx = D+ Si,j,k when ¢x < O. When ¢x = 0, 
the neighboring values of ¢ are larger than ¢i,j,k, and no S information can 
be obtained from either of the neighboring nodes. In this case, we drop the 
Sx term from equation (8.4). The Sy and Sz terms are treated in a similar 
fashion. If ¢ is a signed distance function, this method works well. For more 
details on the fast marching alternative to equation (8.1), see Adalsteinsson 
and Sethian [1]. 



9 
Particle Level Set Method 

9.1 Eulerian Versus Lagrangian Representations 

The great success of level set methods can in part be attributed to the 
role of curvature in regularizing the level set function such that the proper 
vanishing viscosity solution is obtained. It is much more difficult to ob
tain vanishing viscosity solutions with Lagrangian methods that faithfully 
follow the characteristics. For these methods one usually has to delete (or 
add) characteristic information "by hand" when a shock (or rarefaction) is 
detected. This ability of level set methods to identify and delete merging 
characteristics is clearly seen in a purely geometrically driven flow where 
a curve is advected normal to itself at constant speed, as shown in Fig
ures 9.1 and 9.2. In the corners of the square, the flow field has merging 
characteristics that are appropriately deleted by the level set method. We 
demonstrate the difficulties associated with a Lagrangian calculation of 
this interface motion by initially seeding some marker particles interior to 
the interface, as shown in Figure 9.3 and passively advecting them with 
Xt = Vex, t); where the velocity field vex, t) is determined from the level 
set solution. Figure 9.4 illustrates that a number of particles incorrectly 
escape from inside the level set solution curve in the corners of the square 
where the characteristic information (represented by the particles them
selves) needs to be deleted so that the correct vanishing viscosity solution 
can be obtained. 

When using level set methods to model fluid flows, one is usually 
concerned with preserving mass (or volume for incompressible flow). Unfor-
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Figure 9.1. Initial square interface location and converging velocity field. 

Figure 9.2. Square interface location at a later time correctly computed by the 
level set method. 
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Figure 9.3. Initial square interface location and the location of a number of 
particles seeded interior to the interface . 
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Figure 9.4. Final square interface location and the final location of the particles 
initially seeded interior to the interface. A number of particles have incorrectly 
escaped from the interior and need to be deleted in order to obtain the correct 
vanishing viscosity solution. 
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tunately, level set methods have a tendency to lose mass in underresolved 
regions of the flow. Attempts to improve mass (or volume) conservation 
in level set methods have led to a variety of reinitialization techniques, as 
discussed in Chapter 7. On the other hand, despite a lack of explicit en
forcement of mass (or volume) conservation, Lagrangian schemes are quite 
successful in conserving mass, since they preserve material characteristics 
for all time; i.e., they are not regularized out of existence to obtain vanish
ing viscosity solutions. The difficulty stems from the fact that the level set 
method cannot accurately tell whether characteristics merge, separate, or 
run parallel in underresolved regions of the flow. This indeterminacy leads 
to vanishing viscosity solutions that can incorrectly delete characteristics 
when they appear to be merging. 

9.2 Using Particles to Preserve Characteristics 

In [61], Enright, Fedkiw, Ferziger, and Mitchell designed a hybrid parti
cle level set method to alleviate the mass loss issues associated with the 
level set method. In the case of fluid flows, knowing a priori that there 
are no shocks present in the fluid velocity field, one can assert that char
acteristic information associated with that velocity field should never be 
deleted. They randomly seed particles ncar the interface and passively ad
vect them with the flow. When marker particles cross over the interface, 
this indicates that characteristic information has been incorrectly deleted, 
and these errors are fixed by locally rebuilding the level set function using 
the characteristic information present in these escaped marker particles. 

Since there is characteristic information on both sides of the interface, 
two sets of marker particles are needed. Initially, particles of both types are 
seeded locally on both sides of the interface, as shown in Figure 9.5. Then 
an equation of the form 

Xnew = X + (1)new -1>(x)) N (9.1) 

is used to attract particles initially located at x on the 1> = 1>(x) isocontour 
to the desired 1> = 1>new isocontour. 1>new is chosen to place the particles on 
the correct side of the interface in a slightly randomized position. Figure 9.6 
shows the initial placement of particles after an attraction step. 

The particles are initially given a fixed radius of influence based on their 
distance from the interface after the seeding and attraction algorithms 
have been employed. As the particles are integrated forward in time using 
Xt = V, their position is continually monitored in order to detect possible 
interface crossings. When a particle crosses over the interface, indicating 
incorrectly deleted characteristic information, the particle's sphere of in
fluence is used to restore this lost information. This is done with a locally 
applied Boolean union operation that simply adds the particle's sphere of 
influence to the damaged level set function; i.e., at each grid point of the 
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Figure 9.5. Initial placement of both types of particles on both sides of the 
interface. (See also color figure, Plate 1.) 
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Figure 9.6. Particle positions after the initial attraction step is used to place them 
on the appropriate side of the interface. (See also color figure, Plate 2.) 
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cell containing the particle, the local value of ¢ is changed to accurately 
reflect the union of the particle sphere with the existing level set function. 

Figures 9.7 and 9.8 show the rigid-body rotation of a notched sphere 
using the level set method and the particle level set method, respectively. 
Similarly, Figures 9.9 and 9.10 show the results of the "Enright test," where 
a sphere is entrained by vortices and stretched out very thin before the flow 
time reverses returning the sphere to its original form. The particle level 
set solution in Figure 9.10 returns (almost exactly) to its original spherical 
shape, while the level set solution in Figure 9.9 shows an 80% volume loss 
on the same 1003 grid. 
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Figure 9.7. Smeared-out level set solution of a rigidly rotating notched sphere. 

Figure 9.8. High-quality particle level set solution of a rigidly rotating notched 
sphere. 
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Figure 9.9. Level set solution for the "Enright test" with 80% volume loss by the 
final frame. 

Figure 9.10. Particle level set solution for the "Enright Test." The sphere returns 
almost exactly to its original shape in the time reversed flow. 



10 
Co dimension-Two Objects 

10.1 Intersecting Two Level Set Functions 

Typically, level set methods are used to model codimension-one objects such 
as points in ~1, curves in ~2, and surfaces in ~3. Burchard, Cheng, Merri
man, and Osher [22] extended level set technology to treat co dimension-two 
objects using the intersection of the zero level sets of two level set func
tions. That is, instead of implicitly representing codimension-one geometry 
by the zero isocontour of a function ¢, codimension-two geometry is rep
resented as the intersection of the zero isocontour of a function ¢1 with 
the zero isocontour of another function ¢2. In one spatial dimension, zero 
isocontours are points, and their intersection is usually the empty set. In 
two spatial dimensions, zero isocontours are curves, and the intersections 
of curves tend to be points which are of codimension two. In three spatial 
dimensions, the zero isocontours are surfaces, and the intersections of these 
surfaces tend to be co dimension two curves. 

10.2 Modeling Curves in ~3 

In order to model curves as the intersection of the ¢1 = 0 and ¢2 = 0 
isocontours of functions ¢1 and ¢2 in ~3, a number of relevant geometric 
quantities need to be defined. To find the tangent vectors f, note that 
'V ¢1 x 'V ¢2, taken on the curve, is tangent to the curve. So the tangent 
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Figure 10.1. Two helices evolving under curvature motion eventually touch and 
merge together. 

vectors are just a normalization of this: 

f = \1 <P1 X \1 <P2 . 
\\1<p1 X \1 <P2\ 

(10.1) 

Note that replacing <P1 with -<PI reverses the direction of the tangent 
vectors. This is also true when <P2 is replaced with -<P2' 

The curvature times the normal, liN, is the derivative of the tangent 
vector along the curve, i.e., with respect to arc length s, 

(10.2) 

Using directional derivatives, this becomes 

(10.3) 
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Figure 10.2. Two rings evolving under curvature motion eventually touch and 
merge together. 

where T1 , T2, and T3 are the components of the tangent vector T. Then 
the normal vectors can be defined by normalizing this quantity, 

- K,N N=-_-, 
IK,NI 

(10.4) 

and the binormal vectors are defined as 

- T x N B= _ _. 
ITxNI 

(10.5) 

The torsion times the normal vector is defined as TN = -\1 ii . T. All these 
geometric quantities can be written in terms of ¢l and ¢2 and computed 
at each grid point one uses similar to the way the normal and curvature 
are computed when using standard level set technology for codimension
one objects. Interpolation can be used to define these geometric quantities 
between grid points. 

Both ¢1 and ¢2 are evolved in time using the standard level set equation. 
A velocity of V = K,N gives curvature motion in the normal direction. 
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Setting V = N or V = jj gives motion in the normal or binormal direction, 
respectively. Figures 10.1 and 10.2 show curves evolving under curvature 
motion in three spatial dimensions. In Figure 10.1 (page 88), two helices 
touch and merge. Similarly, in Figure 10.2 (page 89), two closed curves 
evolve independently until they touch and merge together. 

10.3 Open Curves and Surfaces 

Level set methods are used to represent closed curves and surfaces that 
may begin and end at the boundaries of the computational domain. How
ever, it is not clear how to devise methods for curves and surfaces that 
have ends or edges (respectively) within the computational domain. Curves 
in ~2 have co dimension two ends given by points, while surfaces in ~3 have 
codimension-two edges given by curves. A first step in this direction was 
carried out by Smereka [152] in the context of spiral crystal growth. In two 
spatial dimensions, he used the intersection of two level set functions ¢ 
and 'IjJ to represent the codimension-two points at the beginning and end 
of an open curve. The curve of interest was defined as the ¢ = ° isocontour 
in the region where 'IjJ > 0, while a ghost curve was defined as the ¢ = 0 
isocontour in the region where 'IjJ < 0. Velocities were derived for both the 
curve and the fictitious ghost curve that exists only for computational pur
poses. Figure 10.3 shows an initial configuration where the curve moves 
upward and the ghost curve moves downward, as shown at a later time in 
Figure lOA. Figure 10.5 shows this open curve rolling up and subsequently 
merging with itself, pinching off independently evolving closed curves. 

10.4 Geometric Optics in a Phase-Space-Based 
Level Set Framework 

In [124], Osher et al. introduced a level-set-based approach for ray tracing 
and for the construction of wave fronts in geometric optics. The approach 
automatically handles the multivalued solutions that appear and automat
ically resolves the wave fronts. The key idea, first introduced by Engquist, 
Runborg, and Tornberg [60], but used in a "segment projection" method 
rather than level set fashion, is to use the linear Liouville equation in twice 
as many independent variables, (actually, 2d - 1, using a normalization) 
and solve in this higher-dimensional space via the idea introduced by Bur
chard et al. [22]. In two-dimensional ray tracing this involves solving for an 
evolving curve in x, y, () space, where () is the angle of the normal to the 
curve. This, of course, uses two level set functions and gives codimension-2 
motion in 3-space plus time. A local level set method can be used to make 
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Figure 10.3. The hortizontalline marks the set where ¢ = 0 while the two veritical 
lines mark the set where 'l/J = O. The arrow in the center indicates the motion of 
the real curve while the arrows to the right and left indicate the motion of the 
ghost curves. 
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Figure 10.4. The arrow in the center indicates the motion of the real curve while 
the arrows to the right and left indicate the motion of the ghost curves. 
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Figure 10.5. Four snapshots of the evolving open curve at various times. The curve 
rolls up subsequently merging with itself pinching off independently evolving 
closed curves. 

the complexity tractable, O(n2 Iog(n)), for n the number of points on the 
curve for every time iteration. The memory requirement is O(n2 ). 

In three-dimensional ray tracing this involves solving for an evolving two
dimensional surface in x, y, Z, 0, ¢ space, where 0, ¢ give the angle of the 
normal, and this results in codimension-3 motion in 5-space, plus time. The 
complexity goes up by a power of n over the two-dimensional case, as does 
the memory requirement, where n is the one-dimensional number of points. 
Again, this involves a local level set method, this time using three level set 
functions. 

Standard ray tracing is the ultimate Lagrangian method. Since merg
ing and topological changes are not an issue--we actually want fronts to 
cross through each other without intersecting-the usual level set method 
has difficulties, especially with self-intersecting fronts, see, e.g., Figure 6 
in [124J. However, there are many advantages of an Eulerian fixed-grid ap-
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proach. Ray tracing gives inadequate spatial resolution of the wave front. 
This is due to the fact that points close together may diverge at later 
times, leaving holes in the wave front. Interpolation steps must be added. 
The method in [124] overcomes this resolution problem and also the usual 
Eulerian problem of how to get the solution when waves become multi
valued and singularities such as swallowtails or caustics develop. Eulerian 
approaches such as that in [59] suffer from the second problem, and the 
ingenious dynamic surface extension of Steinhoff et al. [156], with some im
provements in Ruuth et al. [144], needs both interpolation and a method 
to keep track of singularities due to multiple crossing rays. 



Part III 

Image Processing and 
Computer Vision 

The fields of image processing and computer vision are incredibly vast, so 
we do not make any attempt either to survey them or to impart any deep 
insight. In the following chapters we merely illustrate a few applications of 
level set methods in these areas. 

The use of partial differential equations in image processing and com
puter vision, in particular the use of the level set method and dynamic 
implicit surfaces, has increased dramatically in recent years. Historically, 
the field of computer vision was probably the earliest to be affected signif
icantly by the level set method. There are many good general references, 
e.g., [145, 29, 77, 120]. In this section we present three examples that are 
prototypes for a far wider class of applications. 

The first chapter discusses a basic (perhaps the basic) issue in image 
processing, namely restoration of degraded images. The second concerns 
image segmentation with snakes and active contours. The third concerns 
reconstruction of surfaces from unorganized data points. 

Traditionally, these closely related fields, image processing and computer 
vision, have developed independently. However, level set and related PDE
based methods have served to provide both a new common language and 
a new set of tools that have led to increased interaction; 



11 
Image Restoration 

11.1 Introduction to PDE-Based Image 
Restoration 

A basic idea in this field is to view a gray-scale image as a function uo(x, y) 
defined on a square n : {(x, y) 10 ::; x, y ::; I}, with Uo taking on discrete 
values between 0 and 255, which we take as a continuum for the sake of 
this discussion. 

A standard operation on images is to convolve Uo with a Gaussian of 
variance 0' > 0, 

(11.1) 

to obtain 

u(x,y,O') = 11 J(x-x',y-y',CT)uo(x',y')dx'dy'=J*uo. (11.2) 

This has the same effect as solving the initial value problem for the heat 
equation 

Ut = U xx + U yy 

u(x, y, 0) = Uo(X, y) 
(11.3) 

for t > 0 (ignoring boundary conditions) to obtain u(x, y, 0') at t = 0' > 0, 
i.e., the expression obtained in equation (11.2). 
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Thus, one fundamental generalization is merely to replace the heat 
equation with an appropriate flow equation of the form 

Ut = F(u, Du, D2u, X, t) (11.4) 

for t > 0 with intial data u(x, y, 0) = uo(x, y) defining u(x, y, t) as the 
processed image. This is called defining a "scale space" with t > 0 as the 
scale. As t increases, the image is generally (but not always) coarsened in 
some sense. Here 

(11.5) 

and 

UXy ) 
U yy 

(11.6) 

are the gradient and Hessian, respectively. The equation is typically of sec
ond order, as is the heat equation, although the assumption of parabolicity, 
especially strict parabolicity, which implies smoothing in all directions, is 
often weakened. Second order is usually chosen for several reasons: (1) The 
numerical time-step restriction is typically 6.t = Cl (6.X)2 + C2 (6.y)2 for 
explicit schemes, which is reasonable. (2) The method may have a useful 
and appropriate maximum principle. 

These generally nonlinear methods have become popular for the follow
ing reasons. Classical algorithms for image deblurring and denoising have 
been mainly based on least squares, Fourier series, and other L 2-norm ap
proximations. Consequently, the results are likely to be contaminated by 
Gibbs's phenomenon (ringing) and/or smearing near edges. Their compu
tational advantage comes from the fact that these classical algorithms are 
linear; thus fast solvers are widely available. However, the effect of the 
restoration is not local in space. Other bases of orthogonal functions have 
been introduced in order to get rid of these problems, e.g., compactly sup
ported wavelets, but Gibbs's phenomenon and smearing are still present 
for these linear procedures. 

Rudin [140] made the important observation that images are charac
terized by singularities such as edges and boundaries. Thus nonlinearity, 
especially ideas related to the numerical analysis of shocks in solutions of 
systems of hyperbolic conservation laws, should play a key role in image 
analysis. Later, Perona and Malik [131] described a family of nonlinear 
second-order equations of the type given in equation (11.4) which have 
an antidiffusive (hence deblurring) as well as a diffusive (hence denoising) 
capability. This was modified and made rigorous by Catte et al. [41] and 
elsewhere. 

Perona and Malik proposed the following. Consider the equation 

a 1( a 2 
Ut = V . G(Vu) = ax G ux , uy) + ay G (ux , uy) (11. 7) 
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with initial data u(x, y, 0) = u(x, y) in 0 with appropriate boundary con
ditions. This equation is parabolic (hence smoothing) when the matrix of 
partial derivatives 

(11.8) 

is positive definite (or weakly parabolic when it is positive semidefinite). 
When this matrix has a negative eigenvalue, equation (11.7) resembles the 
backwards heat equation. One might expect such initial value problems to 
result in unstable blowup, especially for nonsmooth initial data. However, 
if we multiply equation (11.7) by U 2p- 1 j(2p) for p a positive integer and 
integrate by parts, we arrive at 

! !nIUI2P dO = - J (2P2; 1) (Vu· G(Vu)) lul 2p-2 dO. (11.9) 

So if 

(11.10) 

the solutions stay bounded in all LP, p> 1, spaces, including p = 00, which 
means that the maximum of u is nonincreasing. Then all one needs to do 
is allow G to be backwards parabolic but satisfy equation (11.10) above, 
and a restoring effect is obtained. 

This initial value problem is not well posed; i.e., two nearby initial data 
will generally result in very different solutions. There are many such ex
amples in the literature. In one spatial dimension parabolicity means that 
the derivative of G1(ux) is positive, while equation (11.10) just means that 
uxG1(ux ) 2: O. Obviously, functions that have the same sign as their ar
gument but are sometimes decreasing in their argument will give bounded 
restoring results in those ranges of U x . 

11.2 Total Variation-Based Image Restoration 

The total variation of a function of one variable u(x) can be defined as 

TV(u) = ~~~ J I u(x + hk - u(x) I dx, (11.11) 

which we will pretend is the same as J luxldx (analogous statements are 
made in two or more spatial dimensions). Thus TV(u) is finite for any 
bounded increasing or decreasing function, including functions with jump 
discontinuities. On the other hand, this is not true for J lux IP dx for any 
p > 1. Note that p < 1 results in a nonconvex functional; i.e., the tri
angle inequality is false. For this reason (among others) TV functions are 
the appropriate class for shock solutions to conservation laws and for the 
problems arising in processing images with edges. 
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We also remark that it is very easy to show (formally at least) that 
uxG(ux) ~ 0 implies that the evolution 

a 
Ut = ax G( ux ) (11.12) 

leads to the estimate 

(11.13) 

i.e., the evolution is total variation diminishing or TVD; see e.g., Harten 
[80]. To see this, multiply equation (11.12) by sign U x and proceed for
mally. In fact it is easy to see that the finite difference approximation to 
equation (11.12), 

u,:+1 = u': + D.t (G (Ui+l -Ui) _ G (Ui -Ui_l)) , 
, t D.x D.x !:lx (11.14) 

with a time-step restriction of 

~ (G(Ux)) < ~ 
(!:lx)2 Ux 2 

(11.15) 

satisfies 

(11.16) 

i.e., it is also TVD. 
All this makes one realize that TV, as predicted by Rudin [140], is in some 

sense the right class in which to process images, at least away from highly 
oscillatory textures. The work of Rudin [140] led to the TV preserving 
shock filters of Rudin and Osher [125] and to the successful total variation 
based restoration algorithms of Rudin et al. [142, 141] and Marquina and 
Osher [111]. 

In brief, suppose we are presented with a noisy blurred image 

Uo = J * u+n, (11.17) 

where J is a given convolution kernel (see equation (11.2)) and n represents 
noise. Suppose also that we have some estimate on the mean and variance of 
the noise. We then wish to obtain the "best" restored image. Our definition 
of "best" must include an accurate treatment of edges, i.e., jumps. 

A straightforward approach is just to invert this directly. If the Fourier 
transform of J, j = F J, is nonvanishing, then we could try 

- F-1(J'-1' ) U - Uo . (11.18) 

This gives poor results, even in the absence of noise, because high 
frequencies associated with edges will be amplified, leading to major spu
rious oscillations. Of course, the presence of significant noise makes this 
procedure disastrous. 
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Another approach might be to regularize this procedure. We could try 
adding a penalty term to a minimization procedure; i.e., choose u to solve 
the following constrained minimization problem: 

mJn (IL J lV'ul2dD + IIJ * u - uolli2) , (11.19) 

where 5.. = 1L-1 > 0 is often a Lagrange multiplier. The minimizer is 

U=p-l ( J(~1,6)uo(~1,6) ), 
1L(~r + ~~) + IJ(6, 6) 12 

(11.20) 

where IL can be chosen so that the variance of the noise is given; i.e., we 
can choose IL so that 

J IJ * u - uol2dO = 0'2 = J IJu - uol 2 dO, (11.21) 

which is a simple algebraic equation for 5... Alternatively, IL could be a 
coefficient in a penalty term and could be obtained by trial and error. 
Obviously, this is a very simple and fast procedure, but the effect of it is 
either to smear edges or to allow oscillations. This is because the space of 
functions we are considering does not allow clean jumps. 

Instead, the very simple idea introduced by Rudin et al. [142] is merely 
to replace the power of 2 by a 1 in the exponent of lV'ul in equation (11.19). 
Thus, TV restoration is 

mJn (J lV'ul dD + 5..1iJ * u - uoll2) , (11.22) 

where >. > 0 is a Langrange multiplier and we drop the L2 subscript in 
the second term. This leads us to the nonlinear Euler-Lagrange equations 
(assuming J(x) = J( -x) for simplicity only) 

V' . C~~I) ->'J * (J * u - uo) = 0, (11.23) 

where>. = 25... Of course, Fourier analysis is useless here, so the standard 
method of solving this is to use gradient descent, i.e., to solve 

Ut = V' . ( V'u ) - >'J * (J * u - uo) 
lV'ul 

(11.24) 

for t > 0 to steady state with u(x, y, 0) given. Again>. may be a chosen so 
as to satisfy equation (11.21), although the procedure to enforce this is a 
bit more intricate. First we note that if the mean of the noise is zero, i.e., 
J ndD = 0 and J JdD = 1, it is easy to see that the constraint 

J (J * u(x, y, t) - uo) dD = 0 (11.25) 
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is satisfied for all t > 0 if it is satisfied at t = O. This is true regardless of 
the choice of A. 

In order to satisfy the second constraint, equation (11.21), we use a 
version ofthe projection gradient method of Rosen [138] introduced in [142]. 
We note that a nonvariational version of this idea was used by Sussman and 
Fatemi [158] to help preserve area for the level set reinitialization step; see 
Chapter 7. If we wish to solve minuJ f(u) dO. such that J g(u) dO. = 0, we 
start with a function Va such that J g(Va) dO. = O. Then gradient descent 
leads us to the evolution equation 

(11.26) 

for t > 0 with u(O) = Va. We wish to maintain the constraint under the 
flow, which means 

:t J g(u) dO. = 0 = J guUt dO. = - J fugu dO. - A J g~dn; (11.27) 

thus we merely choose A(t) such that 

A(t) = _ J fugu dO. 
J g~dn . 

(11.28) 

Thus we have 

(11.29) 

and 

(11.30) 

by Schwartz's inequality, so the function to be minimized diminishes 
(strictly, if gu and fu are independent), and convergence occurs when u 
is such that fu + Agu = 0 for some A. These ideas generalize to much more 
complicated situations, e.g., many independent constraints. In our present 
setting this leads us to choosing A in equation (11.24) as 

(11.31) 

Thus we have our TV denoisingjdeblurring algorithm given by equa
tions (11.24) and (11.31). Again, we repeat that in practice J.L is often 
picked by the user to be a fixed constant. Another difficulty with using 
equation (11.31) comes in the initialization. Recall that we need u(x,y,O) 
to satisfy equation (11.25) as well as 

(J * u(x,y,O) - ua)2 = a2. (11.32) 
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11.3 Numerical Implementation of TV Restoration 

We now turn to the issue of fast numerical implementation of this method, 
as well as its connection with the dynamic evolution of surfaces. The evolu
tion equation (11.24) has an interesting geometric interpretation in terms 
of level set evolution. We can view this as a procedure that first moves 
every level set of the function u with velocity equal to its mean curvature 
divided by the norm of the gradient of u and then projects back onto the 
constraint set, for which the variance of the noise is fixed. The first step has 
the effect of removing high-curvature specks of noise, even in the presence 
of steep gradients, and leaving alone piecewise smooth clean functions at 
their jump discontinuities. 

From a finite difference scheme point of view, the effect at edges is easy 
to describe. Suppose we wish to approximate equation (11.24) for ,\ = O. 
The equation can be written as 

a ( U x ) a ( u y ) 
Ut = ax J ui + u~ + 8 + oy J ui + u~ + 8 ' 

(11.33) 

where 8 > 0 is very small, chosen to avoid division by zero at places 
where lV'ul = O. There are serious numerical issues here involving time-step 
restrictions. Intuitively, an explicit scheme should be restricted by 

(11.34) 

for a constant c, which is terribly restrictive near flat (zero) gradients. 
A typical scheme might be 

(11.35) 

where 

(11.36) 
and 
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for 
1 1 

ui+!,j = "2Ui,j + "2 U i+1,j, 

1 1 
(11.38) 

U·· 1 = -U' . + -U' '+1 ',J+2 2 ',J 2 ',J . 

This is a second-order accurate spatial discretization. 
At steady state u~j1 == ui,j == Ui,j, and we can solve for ui,j' obtaining 

the nonlinear relationship 

Ci+!,jUi+1,j + Ci _!,jUi-1,j + Di,j+! Ui,j+1 + Di,j_! Ui,j-1 
U· .---~~--~~--~~----~~~--~----~~-----
',J- C'+1'+C, 1 .+D"+1+D .. 1 ' 

1, 2,J 1,-2') 'L,j 2' 1"J-'2 

(11.39) 
i.e., Ui,j is a weighted convex combination of its four neighbors. This 
smoothing is anisotropic. If, for example, there is a large jump from Ui,j 

to Ui+1,j, then Ci +1/2,j is close to zero, and the weighting is done in an 
almost WENO fashion. This helps to explain the virtues of TV denoising: 
The edges are hardly smeared. Contrast this with the linear heat equation, 
which at steady state yields 

(11.40) 

Severe smearing of edges is the result. For further discussion and 
generalizations, see Chan et al. [31]. 

The explicit time-step restriction in equation (11.34) leads us to believe 
that convergence to steady state might be slow, especially in the presence 
of significant blur and noise. Many attempts have been made to speed 
this up; see e.g., Chan et al. [30]. Another interesting observation is that 
equation (11.24) scales in a strange way. If U is replaced by h(u), with 
h' > 0, h(O) = 0, and h(255) = 255, then equation (11.24) even for A = ° is 
not invariant. This means that the evolution process is not morphological; 
see Alvarez et al. [5]; i.e., it does not depend only on the level sets of the 
intensity, but on their values. One possible fix for these two problems is the 
following simple idea introduced by Marquina and Osher [111]. 

We merely multiply the right-hand side of equation (11.24) by l'Vul and 
drive this equation to steady state. The effect of this is beneficial in various 
aspects. Although the steady states of both models are analytically the 
same, since l'Vul vanishes only in flat regions, there are strong numerical, 
analytical, and philosophical advantages of this newer model. 

(1) The time-step restriction is now b.tj(b.X)2 :::; c for some c > 0, so 
simple explicit-in-time methods can be used. 

(2) We can use ENO or WENO versions of Roe's entropy-condition
violating scheme for the convection term (there is no viscosity or 
entropy condition for images) and central differencing for the reg
ularized anisotropic diffusion (curvature) term. This seems to give 
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better numerical answers; the numerical steady states do not have 
the staircasing effect sometimes seen in TV reconstruction; see, e.g., 
Chambolle and Lions [42J. 

(3) In the pure denoising case, i.e., J * u == u, there is a simple maximum 
principle (analytical as well as numerical). 

(4) The procedure is almost morphological; i.e., if we replace u by h(v) 
and Uo by h(vo) with h'(u) > 0, then the evolution is transformed as 
follows: 

Ut = l\7ul \7 . C~~I) - '\1\7uIJ * (J * u - uo) (11.41) 

transforms to 

Vt = l\7vl\7· C~~I) - '\1\7vIJ * (J * h(v) - h(vo)) (11.42) 

i.e., we still have motion by mean curvature followed by the slightly 
modified projection on the constraint set. 

The maximum principle is a mixed blessing in this case. If J * u = u, 
i.e., we are doing the pure denoising case, then the fact that extrema 
are not amplified is a good thing, and we may take as the initial data 
u(x, y, 0) = uo(x, y); i.e., the noisy image is a good initial guess. This is not 
a good choice for the deblurring case. There we merely use the linear decon
volved approximation in equation (11.20) where 11 is chosen to match the 
constraint equation (11.21). Although this introduces spurious oscillations 
in the initial guess, they seem to disappear rapidly when equation (11.41) 
is used. 

An interesting feature of this new approach is that we can view the right
hand side of equation (11.41) as consisting of an elliptic term added to a 
Hamilton-J acobi term. The elliptic term uses standard central differences, 
while the Hamilton-Jacobi term is upwinded according to the direction 
of characteristics. What is a bit unusual here is that there should be no 
entropy fix in the approximate Hamiltonian. The viscosity criterion does 
not apply, and Roe's entropy-violating scheme is used. For details see [111J. 

To repeat, one consequence of this approach is that although the steady 
states of equations (11.24) and (11.41) are the same, the numerical solutions 
differ, and staircasing, as described in [42J, seems to be minimized using 
equation (11.41). 

We demonstrate the results of our improved algorithms with the following 
experiments. Figure 11.1 shows a noisy piecewise linear one-dimensional 
signal with a signal-to-noise ratio approximately equal to 3. Figure 11.2 
shows the recovered signal wtih denoised edges, but also with staircasing 
effects based on the original TV method developed in [142J. Figure 11.3 
shows the improved result without staircase effects in the linear region; see 
[111J. 
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Figure 11.1. Original versus noisy signal in one spatial dimension. 

Figures 11.4 and 11.5 show an original image and a noisy (signal-to-noise 
ratio approximately 3) image, respectively. Figure 11.6 shows the usual TV 
recovered image, while Figure 11.7 uses the method in [111] and seems to 
do better in recovering smooth regions. 

Figure 11.8 represents an image blurred by a discrete Gaussian blur 
obtained by solving the heat equation with Figure 11.4 as initial data and 
computing the solution at t = 10 on a 128 x 128 grid. Figure 11.9 shows 
the result of an approximate linear deconvolution. Note that in the absence 
of noise the result is oscillatory but greatly improved. Figure 11.10 shows 
the result of using Figure 11.9 as an initial guess for our improved TV 
restoration. Notice the good resolution without spurious oscillations. 

Our most demanding experiment was performed on the blurry and noisy 
image obtained from the original image represented in Figure 11.11. The 
experimental point-spread function j(x, y) is shown in Figure 11.12, and we 
add Gaussian noise, signal-to-noise ratio approximately 5. The blurry noisy 
image is shown in Figure 11.13. The linear recovery is shown in Figure 11.14. 
Finally, the improved TV restoration using Figure 11.14 as initial guess is 
shown in Figure 11.15. 
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150 300 

Figure 11.2. TV recovery using the original method of Rudin et al. [142J. 
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Figure 11.3. Improved TV recovery. 
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Figure 11.4. Original image. 
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Figure 11.5. Noisy image, signal-to-noise ratio approximately equal to 3. 
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Figure 11.6. Usual TV recovered image. 
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Figure 11.7. Improved TV recovered image. 
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Figure 11.8. Image blurred by convolution with a Gaussian kernel. 
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Figure 11.9. Linear deconvolution applied to Figure 11.8. 
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Figure 11.10. Improved TV restoration of Figure 11.8 using Figure 11.9 as an 
initial guess. 
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Figure 11.11. Original image. 
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Figure 11.12. Experimental point-spread function. 
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Figure 11.13. Blurry noisy version of Figure 11.11. 



118 11. Image Restoration 
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Figure 11.l4. Linear restoration of Figure 11.13. 

SO 100 ISO 200 2SO 

Figure 11.15. Improved TV restoration of Figure 11.13 using Figure 11.14 as an 
initial guess. 



12 
Snakes, Active Contours, and 
Segmentation 

12.1 Introduction and Classical Active Contours 

The basic idea in active contour models (or snakes) is to evolve a curve, 
subject to constraints from a given image uo, in order to detect objects in 
that image. Ideally, we begin with a curve around the object to be detected, 
and the curve then moves normal to itself and stops at the boundary of the 
object. Since its invention by Kass et al. [94] this technique has been used 
both often and successfully. The classical snakes model in [94] involves an 
edge detector, which depends on the gradient of the image uo, to stop the 
evolving curve at the boundary of the object. 

Let uo(x, y) map the square 0 :S x, y :S 1 into R, whereuo is the image 
and C(I) : [0,1] --+ R2 is the parametrized curve. The snake model is to 
minimize 

F1(C) = a 11IC'(s)12 ds + (31IC"(s)1 ds - A 111V'uo(C(S)W ds, (12.1) 

where a, (3, and A are positive parameters. The first two terms control the 
smoothness of the contour, while the third attracts the contour toward the 
object in the image (the external energy). Observe that by minimizing the 
energy, we are trying to locate the curve at the points of maximum lV'uol, 
which act as an edge detector, while keeping the curve smooth. 

An edge detector can be defined by a positive decreasing function g(Z), 
depending on the gradient of the image uo, such that 

lim g(Z) = O. 
1;1 ..... 00 
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A typical example is 

g(\7UO(X)) = 1 + jJ ~ \7uolP 

for p 2:: 1, where J is a Gaussian of variance (T. 

Rather than using the energy defined in equation (12.1), we can define a 
compact version as in Caselles et al. [28] or Kichenassamy et al. [95] via 

(12.2) 

Using the variational level set formulation of Zhao et al. [175], we arrive 
at 

4>t = 1\74>1\7 . [g(\7Uo) (I~:I) ] 
= 1\74>1 (g(\7UO)1\: + \7g(\7uo) . I~:I) 
= 1\74>lg(\7uo)1\: + \7g(\7uo) . \74>. 

(12.3) 

This is motion of the curve with normal velocity equal to its curvature 
times the edge detector plus convection in the direction that is the gradient 
of the edge detector. Thus, the image gradient determines the location of 
the snakes. 

The level set formulation of this came after the original snake model was 
invented in [94]. This was first done in Caselles et al. [27] (without the 
convection term), next by Malladi et al. [109], and the variational formula
tion used above came in [28] and [95]. Of course, this level set formulation 
allows topological changes and geometrical flexibility, and has been quite 
successful in two and three spatial dimensions. Most models have the same 
general form as equation (12.3), involving an edge detector times curvature 
plus linear advection. The higher-order terms coming from the term multi
plying f3 in equations (12.1) and (12.2) are usually omitted. We note that 
this model depends on the image gradient to stop the curve (or surface) 
evolution. 

In a sequence of papers beginning with Chan and Vese [35] (see also [34] 
and [32]) the authors propose a different active contour model without a 
stopping i.e. edge function, i.e., a model that does not use the gradient 
of the image Uo for the stopping process. The stopping term is based on 
the Mumford-Shah segmentation technique, which we describe below. The 
model these authors develop can detect contours both with and without 
gradients, for instance objects that are very smooth, or even have discon
tinous boundaries. In addition, the model and its level set formulation are 
such that interior contours are automatically detected, and the initial curve 
can be anywhere in the image. 
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Figure 12.1. A simple case, showing that the fitting term E1(r) is minimized 
when the curve is on the boundary of the object. 

12.2 Active Contours Without Edges 

Define the evolving curve r as the boundary of a region n. We call n the 
inside of r and the complement of n = nc the outside of r. The method 
is the minimization of an energy-based segmentation. Assume that Uo is 
formed by two regions of approximately piecewise constant intensities of 
distinct values ub and uS. Assume further that the object to be detected 
is represented by the region with value ub. Denote its boundary by roo 
Then we have Uo ~ ub inside ro and Uo ~ uS outside roo Now consider the 
"fitting" term 

where r is any curve and Gl , G2 are the averages of Uo inside rand 
outside r. In this simple case it is obvious that ro, the boundary of the 
object, is the minimizer of the fitting term. See Figure 12.1. 

In the active contour model proposed in [35] and [34] the fitting term 
plus some regularizing terms will be minimized. The regularizing terms will 
involve the length of the boundary r and the area of n, the region inside r. 
This is in the spirit of the Mumford-Shah functional [117]. Thus, using the 
variational level set formulation [175], the energy can be written, with ¢ 
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the level set function associated with n, as 

E(C1 , C2 , ¢) = {.t j 6(¢)1V'¢1 dx 

+vjH(¢)dX 

+ Al j luo(x) - C1 12 H(¢) dx 

+ A2 j luo(x) - C2 12 (1- H(¢)) dx. 

This involves the four nonnegative parameters {.t, v, >'1, and A2. 

(12.5) 

The classical Mumford-Shah functional is a more general segmentation 
defined by 

EMS(r, u) = {.t length(r) (12.6) 

+ A j lu - uol 2 dx 

+ v { lV'ul2 dx. Jre 
Here u is the cartoon image approximating uo, u is smooth except for jumps 
on the set r of boundary curves, and r segments the image into piecewise 
smooth regions. The method defined in equation (12.5) differs from that 
in equation (12.6) in that only two subregions are allowed in which u is 
piecewise constant, so we may write 

(12.7) 

This was generalized considerably by Chan and Vese [36, 37]. We also 
mention the approach of Koepfl.er et al. [99], which approximates equa
tion (12.6) by letting v = 0 and A = 1, where {.t is the scale parameter. 
Again, u is piecewise constant, although many constants are allowed; i.e., 
the averages of u will generally be different in different segments of the 
image. The parameter {.t defines the scale for the method in the sense that 
if {.t = 00, then the length of the boundaries should be minimized. So we 
take u to be the average of Uo over the whole image; this is the coarsest 
scale. If {.t = 0, then there is no penalty for length; each grid point (pixel) is 
the average of uo, or just the value of Uo; and the segmentation u is equal 
to the original image. As {.t increases the segmentation coarsens. This is the 
idea behind the segmentation of [99]; it is a split and merge method, not a 
partial differential equations-based approach, as in [36, 37]. 

Returning to the model in equation (12.5), it is easy to see that with 
respect to the constants C1 and C2 it is easy to express these two in terms 
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of cP as 

C ( ) _ J uo(1)H(cp(1)) d1 
1 cP - J H (cp( 1)) d1 ' 

(12.8) 

C (,j.,) = J uo(1)(1 - H(cp(1)) d1 
2 'f' J(1 - H(cp(1)) d1 . 

(12.9) 

This expresses the fact that the best constant value for the segment u is 
just the average of Uo over the subregion. 

In order to compute the Euler-Lagrange equations we use the variational 
level set approach and arrive at 

~~ =1\7cpl [1t\7. C~:I) -V-Al(UO-Cl)2+A2(UO-C2)2] 

(12.10) 

cp(1, 0) = CPo(1). (12.11) 

However, it was found in [35, 34]' that the nonmorphological approach 
was more effective; i.e., l\7cpl is replaced by 6€(cp) in the term multiplying 
the brackets in equation (12.10). Here 

(12.12) 

for E > 0 and small, which gives a globally positive approximation to the 
delta function. This is necessary, as we shall discuss below. Thus the model 
defined in [35, 34] is 

~~ =6€(cp) [1t\7. C~:I) -V-Al(UO-Cl?+A2(UO-C2)2] (12.13) 

with C1 and C2 defined in equations (12.8) and (12.9). Generally, the pa
rameters are taken to be v = 0, Al = A2 = 1, and It > 0 is the scale 
parameter. Although only two regions nand n c can be constructed, they 
can, and generally will, be disconnected into numerous components in the 
fine-scale case, with each component having one of two constant values 
for u. 

One important remark concerning this model as opposed to other level 
set evolutions is its global nature. All level sets of cp have the potential to 
be important. This means that other isocontours corresponding to nonzero 
values of cp might evolve so as to push through the cp = 0 barrier and create 
new segmented regions. Thus reinitialization to the distance function is 
not a good idea here (as pointed out by Fedkiw). One can even begin with 
cp > 0 or cp < 0 throughout the region and watch new zeros develop. Of 
course, this also explains why we need 6€(z) > 0 in equation (12.12). Again, 
the goal here is to detect interior contours. The technical reason why this 
works is that the image Uo acts in a nontrivial and nonlinear way as a 
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forcing function on all the level contours of ¢, forcing some to go through 0 
spontaneously. 

The scale parameter should be small if we have to detect many objects, 
including small objects. If we have to detect only large objects (for example 
a cluster of lights), the scale parameter J.l should be larger. An extremely 
trivial but slightly instructive analytic example is the following. Let J.l = 0 
and .xl = .x2 = .x, so the finest-scale segmentation occurs; i.e., every point 
should be a boundary point and u(i) = uo(i). That this does occur follows 
from the evolution 

(12.14) 

so steady state can occur only if the average of Uo over [2 equals its aver
age over [2c (which is an unstable equilibrium) or if ¢ == 0, which is the 
desired equilibrium. If we take J.l > 0 and take the limit as J.l - 0, we 
believe intuitively that the u = Uo, ¢ == 0 solution is the stable limit, since 
the curvature term will tend to move the boundaries when these averages 
happen to be equal. Numerical experiments indicate that this is true, and 
hence an infinite (actually as many as there are grid points) number of new 
zero-level contours develop in a stable fashion. 

12.3 Results 

We illustrate in Figures 12.2, 12.3, 12.4 and 12.5 the main advantages of 
this active contour model without edges [34]: detection of cognitive contours 
(which are not defined by gradients) in Figure 12.2, detection of contours 
in a noisy image in Figure 12.3, detection of interior contours automatically 
and extension to three dimensions in Figures 12.4 and 12.5. Also, note that 
the initial curve does not need to enclose the objects, as in the classical 
snakes and as in active contour models based on the gradient-edge detector. 

12.4 Extensions 

As in the original Mumford-Shah functional [117] and the implementations 
of [99] and [34], one may propose the use of other channels, e.g., replacing Uo 
by the curvature of its level sets V' . (V'uo/IV'uol), or by their orientations 
Uo = tan-1 ((uo)x/(uo)y), to do texture segmentation. 

Chan et al. [32] extended the method to vector-valued images as fol
lows. Let UO,i be the ith channel of an image on the usual square region 
with N channels and r the evolving curve. See [32] for examples of these 
channels, which include color images. The extension to the vector case is 
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straightforward. The level set evolution becomes 

(12.15) 

Here the Ct are the averages of UO,i on ¢ > 0 and ¢ < 0, respectively. 
Another extension, again using only one level set function, involves re

moving the piecewise constant assumption and allowing piecewise-smooth 
solutions to the variational problem, smooth inside each zero isocontour 
of ¢, with jumps across the edges, as described in Chan and Vese [37]. This 
is in the spirit of the original Mumford-Shah functional, although multi
ple junctions are not yet allowed; see below for that. The minimization 
procedure is 

where 

F(u+, u-, ¢) = J lu+ - uol 2 H(¢)dff 

+ J lu- - uoI2(1- H(¢))dff 

+ v J lV'u+12 H(¢)dff 

+ v f lV'u-1 2(1- H(¢))dff 

+ /l J IV'H(¢)ldff. 

The Euler-Lagrange equations for u+ and u- are 

u+ - Uo = vAu+ on {ff I ¢(ff) > O} 

8;: = 0 on {ff I ¢(ff) = O} 
u- - Uo = vAu- on {ff I ¢(ff) < O} 

8;: = 0 on {ff I ¢(ff) = O}. 

(12.16) 

(12.17) 

(12.18) 

(12.19) 

(12.20) 

(12.21) 

These two sets of elliptic boundary value problems will have a smoothing 
and denoising effect on the image, but only inside homogeneous regions, not 
across edges. The Euler-Lagrange equations for ¢, using gradient descent 
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in artificial time, as usual, is 

~~ = 8e«p) (JL\7 . C~~I) -Iu+ - uol2 + lu- - uol2 (12.22) 

- vl\7u+12 + vl\7u-12). 

The new numerical challenge is to obtain the numerical solution of the set 
of elliptic boundary value problems in equations (12.18) to (12.21) for u
and u+ in multiply connected regions. This is done by first extending u- on 
{x I ¢(x) > O} while retaining boundary conditions, and similarly for u+. 
There are several methods suggested; see [37] for a brief description. (One 
is the ghost fluid method of Fedkiw et al. [63].) See [37] for some interesting 
results. 

The last extension is to get several, or indeed many, different regions 
corresponding to different level set functions. The idea is as follows. Based 
on the four color theorem, we can "color" all regions in a partition using 
only four colors such that any two adjacent regions have different colors. 
Therefore, using two level set functions we can identify the four colors by 
the four possibilities ¢i > 0, ¢i < 0, i = 1,2. This automatically gives a 
segmentation of the image. However, as we shall see below, this modifies 
the minimization problem a bit. 

As above, the link between the four regions can be made by introducing 
four functions u++, u+-, u-+, and u++ in an obvious fashion: 

(12.23) 

This gives us 

U =u++ H(¢1)H(¢2) + u+-H(¢l)(l - H(¢2)) (12.24) 

+ u-+(l - H(¢d)H(¢2) + u--(1- H(¢l)(l- H(¢2)). 

The energy in level set formulation based on the Mumford-Shah functional 
is 

F(u, ¢) = j lu++ - uol2 H(¢dH(¢2) dx 

+v jl\7u++ 12H(¢1)H(¢2)dX 

+ j lu+- - uol2 H(¢l)(l - H(¢2)) dx 

+ v j l\7u+-12 H(¢d(l - H(¢2)) dx 

(12.25) 
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+ J lu-+ - uo12(1 - H(¢>I))H(¢>2) dx 

+ V J lY'u-+12(1 - H(¢>I))H(¢>2) dx 

+ J lu-- - uo12(1 - H(¢>I))(1 - H(¢>2)) dx 

+ v J lY'u--12(1- H(¢>I))(1- H(¢>2)) dx 

+ It J IY'H(¢>I)I dx + It J IY'H(¢>2)I dx. 

As the authors themselves note in [37], the last expression J I Y' H (¢>r) I dx+ 
J I Y' H ( ¢>2) I dx is not the length of the free boundary. However, it is certainly 
between one and two times that quantity. Some segments are counted once, 
some twice. However, this releases the Mumford-Shah functional from the 
well-known restriction that only 120°-angle functions are possible, within 
the class of multiple junctions. If one wishes to minimize the precise term 
proportional to length in a multi phase problem, one can use the technique 
involving constraints and more level set functions that was introduced by 
Zhao et al. [175]. For the segmentation active contours problem described 
here, this technique involving 2 (or [log2 n] if one does not use the four color 
result and n is the number of separate regions desired) level set functions 
seems to work quite well for the piecewise constant case (see [36]). 

The Euler-Lagrange equations for the four u functions are as in the two
phase case which means that they decouple. The time-dependent coupled 
gradient descent equations for ¢>1 and ¢>2 are easily solved with very simple 
changes over the two-phase, one-¢> case. 

In Figures 12.6 and 12.7 the vector-valued active contour model from 
[32J is used, where objects are recovered from combined channels with 
missing information in each channel. In Figures 12.9, 12.10, and 12.11, 
the piecewise-constant four-phase segmentation model from [36J is used, as 
a particular case of the piecewise-smooth four-phase model from [37J. A 
similar result from [36J is shown in Figure 12.12, where triple junctions are 
also detected in a color image, with the piecewise-constant segmentation 
model using three level set functions. 
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Figure 12.2. Europe night-lights [34]. 
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Figure 12.3. Detection of the contours of a plane in a noisy environment [34]. 
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Figure 12.4. Evolution of an active surface using the 3D version of the active 
contour without edges from [33] on volumetric MRI brain data. We show here 
only a 61 x 61 x 61 cube from the 3D calculations performed on a larger domain 
containing the brain. 
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Figure 12.5. Cross-sections of the previous 3D calculations showing the evolv
ing contour and the final segmentation on a slice of the volumetric image. We 
illustrate here how interior boundaries are automatically detected. 
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Figure 12.6. Numerical results using the multichannel version of the active con
tour model without edges (from [32]) to detect the full contour of an airplane from 
two channels. Note that channell has an occlusion, while channel 2 is noisy. 
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Figure 12.7. Color image, its gray-level version, and the three RGB channels. (See 
also color figure, Plate 3.) 
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Figure 12.8. Recovered objects without well-defined boundaries, using the multi
channel version of the active contour model without edges from [32] . The three 
objects could not be recovered using only one channel or the intensity image. 
(See also color figure , Plate 4.) 
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Figure 12.9. Original and segmented images (top row); final segments (second 
and third rows) [36J. 
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Figure 12.10. Evolution of the four-phase segmentation model using two level 
set functions. Left: the evolving curves. Right: corresponding piecewise-constant 
segmentations. Initially, we seed the image with small circles to speed up the 
numerical calculation [36]. 
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Figure 12.11. Segmentation of an outdoor picture using two level set functions 
and four phases. In the bottom row we show the four segments obtained [36]. 
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Figure 12.12. Color picture with junctions. Three level set functions representing 
up to eight regions. Six segments are detected. We show the final zero level sets 
[36]. (See also color figure, Plate 5.) 



13 
Reconstruction of Surfaces from 
Unorganized Data Points 

13.1 Introduction 

Surface reconstruction from an unorganized data set is very challenging. 
The problem is ill-posed, i.e., there is no unique solution. Furthermore, the 
ordering or connectivity of the data set and the topology of the real surface 
can be rather complicated. A desirable reconstruction procedure should be 
able to deal with complicated topology and geometry as well as noise and 
nonuniformity of the data to construct a surface that is a good approxi
mation of the data set and has some smoothness (regularity). Moreover, 
the reconstructed surface should have a representation and data structure 
that is not only good for static rendering but also good for deformation, 
animation, and other dynamic operations on surfaces. 

For parametric surfaces such as NURBS (see Peigl and Tiller [128] or 
Rogers [137]), the reconstructed surface is smooth, and the data set can 
be nonuniform. However, this requires one to parameterize the data set 
in a nice way such that the reconstructed surface is a graph in the pa
rameter space. The parameterization and patching can be difficult for 
surface reconstruction from an arbitrary data set. Also, noise in the data is 
difficult to deal with. Another popular approach is to reconstruct a trian
gulated surface using Delaunay triangulations and Voronoi diagrams. The 
reconstructed surface is typically a subset of the faces of the Delaunay tri
angulations. A lot of work has been done along these lines (see, for example, 
Amenta and Bern [6], Boissonat and Cazals [17], and Edelsbrunner [58]), 
and efficient algorithms are available to compute Delaunay triangulations 
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and Voronoi diagrams. Although this approach is more versatile in that 
it can deal with more general data sets, the constructed surface is only 
piecewise linear, and it is difficult to handle nonuniform and noisy data. 
Furthermore, the tracking of large deformations and topological changes 
can be difficult using explicit surfaces. 

Recently, implicit surfaces, or volumetric representations, have attracted 
significant attention. The traditional approach (see Bloomenthal et al. [16]) 
uses a combination of smooth basis function primitives such as blobs to 
find a scalar function such that all data points are close to an isocontour 
of that scalar function. This isocontour represents the constructed implicit 
surface. However, computation costs are very high for large data sets, since 
the construction is global, which results in solving a large linear system; 
i.e., the basis functions are coupled together, and a single data point change 
can result in globally different coefficients. This makes human interaction, 
incremental updates, and deformation difficult. However, recently, Carr et 
al. [26] used polyharmonic radial basis functions (RBF) to model large 
data sets by a single RBF. The key new idea here is the use of the Fast 
Multipole Method (FMM) of Greengard and Rokhlin [76] to greatly reduce 
the storage and computational costs of the method. Another crucial idea is 
the use of off-surface points on both sides of the point cloud. However, the 
ability to interpolate curves and surface patches, the ability to do dynamic 
deformation, the performance on coarse data sets, and the speed of the 
method all seem to be inferior to the method we describe below. On the 
other hand, the method proposed by [26] does give an analytic, grid-free 
expression and exact control of the filtering error. 

Zhao et al. [177, 176] proposed a new weighted minimal surface model 
based on variational formulations. Only the unsigned distance function to 
the data set is used, and the reconstructed surface is smoother than piece
wise linear. The formulation is a regularization that is adaptive to the local 
sampling density that can keep sharp features if a local sampling condi
tion is satisfied. The method handles noisy as well as nonuniform data and 
works well in three spatial dimensions. 

13.2 The Basic Model 

Let S denote a general data set, which can include data points, curves, and 
pieces of surfaces. Define d(x) = dist(x, S) to be the distance function to S. 
The following surface energy is defined for the variational formulation: 

1 

E(r) = [l dP(x) dS]", 1 '5. p '5. 00, (13.1) 

where r is an arbitrary surface and ds is the surface area. The energy 
functional is independent of parameterization and is invariant under ro-
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tation and translation. When p = 00, E(f) is the value of the distance 
of the point i on f furthest from S. We take the local minimizer of our 
energy functional, which mimics a weighted minimal surface or an elastic 
membrane attached to the data set, to be the reconstructed surface. 

The gradient flow of the energy functional in equation (13.1) is 

! = - [[ dP(i) dS] ~-~P-l(i) [\7d(i).N +~d(i)~] N, (13.2) 

and the minimizer or steady-state solution of the gradient flow satisfies the 
Euler-Lagrange equation 

dP- 1 (i) [\7 d(i) . N + ~d(i)~] = O. (13.3) 

We see a balance between the attraction \7d(i)· N and the surface tension 
d(i)~. Moreover, the nonlinear regularization due to surface tension has a 
desirable scaling d(i). Thus the reconstructed surface is more flexible in the 
region where the sampling density is high and is more rigid in the region 
where the sampling density is low. We start with an initial surface that 
encloses all the data and follow the gradient flow in equation (13.2). When 
p = 1, the surface energy defined in equation (13.1) has the dimension 
of volume and the gradient flow in equation (13.2) is scale-invariant. In 
practice we find that p = 1 is a good choice. 

We use the same motion law for all level sets of the level set function, 
which results in a morphological partial differential equation. The level set 
formulation becomes 

(13.4) 

If the data contain noise, we can use a simple postprocessing for the 
implicit surface. There are many ways to view this process, derived by 
Whitaker [172], but perhaps the most relevant here is based on TV denois
ing of images described in Chapter 11. Consider 1>0, the level set function 
whose zero isocontour is the surface we wish to smooth. Then we let 
Uo = H(1)o) (H is the Heaviside function) be the noisy image, which we 
input into the TV denoising algorithm. Then we minimize 

where J.,l > 0 is the regularization parameter that balances between fidelity 
and regularization. The variational level set method of Zhao et al. [175] 
gives 

(13.5) 

and we take 1>0 as the initial guess. 
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13.3 The Convection Model 

The evolution equation (13.2) involves the mean curvature of the surface, 
and it is a nonlinear parabolic equation. A time-implicit scheme is not 
currently available. A stable time-explicit scheme requires a restrictive-time 
step size, f).t = O(l:;x2 ). Thus it is desirable to have an efficient algorithm 
to find a good approximation before we start the gradient flow for the 
minimal surface. We propose the following physically motivated convection 
model for this purpose. 

If a velocity field is created by a potential field F, then if = -\7:F. In 
our convection model the potential field is the distance function d( i) to 
the data set S. This leads to the convection equation 

~~ = \7d(i) . \7¢. (13.6) 

For a general data set S, a particle will be attracted to its closest point 
in S unless the particle is located an equal distance from two or more data 
points. The set of equal distance points has measure zero. Similarly, points 
on our surface, except those equal distance points, are attracted by their 
closest points in the data set. The ambiguity at those equal distance points 
is resolved by adding a small surface tension force, which automatically 
exists as numerical viscosity in our finite difference schemes. Those equal 
distance points on the curve or surface are dragged by their neighbors, and 
the whole curve or surface is attracted to the data set until it reaches a 
local equilibrium, which is a polygon or polyhedron whose vertices belong 
to the data set as the viscosity tends to zero. 

The convection equation can be solved using a time step f).t = O(l:;x), 
leading to significant computational savings over typical parabolic f).t = 
O(l:;x2 ) time-step restrictions. The convection model by itself very often 
results in a good surface construction. 

13.4 Numerical Implementation 

There are three key numerical ingredients in our implicit surface recon
struction. First, we need a fast algorithm to compute the distance function 
to an arbitrary data set on rectangular grids. Second, we need to find a good 
initial surface for our gradient flow. Third, we have to solve time-dependent 
partial differential equations for the level set function. 

We can use an arbitrary initial surface that contains the data set such as 
a rectangular bounding box, since we do not have to assume any a priori 
knowledge for the topology of the reconstructed surface. However, a good 
initial surface is important for the efficiency of our method. We start from 
any initial exterior region that is a subset of the true exterior region. All 
grid points that are not in the initial exterior region are labeled as interior 
points. Those interior grid points that have at least one exterior neighbor 
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are labeled as temporary boundary points. Then we use the following pro
cedure to march the temporary boundary inward toward the data set. We 
put all the temporary boundary points in a heap-sort binary tree structure, 
sorting according to distance values. Take the temporary boundary point 
that has the largest distance (on the heap top) and check to see whether 
it has an interior neighbor that has a larger or equal distance value. If it 
does not have such an interior neighbor, turn this temporary boundary 
point into an exterior point, take this point out of the heap, add all this 
point's interior neighbors into the heap, and re-sort according to distance 
values. If it does have such an interior neighbor, we turn this temporary 
boundary point into a final boundary point, take it out of the heap, and 
re-sort the heap. None of its neighbors are added to the heap. We repeat 
this procedure on the temporary boundary points until the the maximum 
distance of the temporary boundary points is smaller than some tolerance, 
e.g., the size of a grid cell, which means that all the temporary boundary 
points in the heap are close enough to the data set. Finally, we turn these 
temporary boundary points into the final set of boundary points, and our 
tagging procedure is finished. Since we visit each interior grid point at most 
once, the procedure will be completed in no more than O(N log N) oper
ations, where log N comes from the heap-sort algorithm. Moreover, since 
the maximum distance for the boundary heap is strictly decreasing, we can 
prove that those interior points that have a distance no smaller than the 
maximum distance of the temporary boundary heap at any time will re
main as interior points; i.e., there is a nonempty interior region when the 
tagging algorithm is finished. We can also show that at least one of the 
final boundary points is within the tolerance distance to the data set. 

Starting from an arbitrary exterior region that is a subset of the final 
exterior region, the furthest point on the temporary boundary is tangent to 
a distance contour and does not have an interior point that is farther away. 
The furthest point will be tagged as an exterior point, and the boundary 
will move inward at that point. Now another point on the temporary bound
ary becomes the furthest point, and hence the whole temporary boundary 
moves inward. After a while the temporary boundary is close to a distance 
contour and moves closer and closer to the data set, following the distance 
contours until the distance contours begin to break into spheres around 
data points. The temporary boundary point at the breaking point of the 
distance contour, which is equally distant from distinct data points, will 
have neighboring interior points that have a larger distance. So this tem
porary boundary point will be tagged as a final boundary point by our 
procedure, and the temporary boundary will stop moving inward at this 
breaking point. The temporary boundary starts deviating from the distance 
contours and continues moving closer to the data set until all temporary 
boundary points either have been tagged as final boundary points or are 
close to the data points. The final boundary is approximately a polyhedron 
with vertices belonging to the data set. 
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Figure 13.1 shows the reconstruction of a torus with missing data. The 
hole is filled nicely with a patch of minimal surface. Figure 13.2 shows the 
reconstruction of a rat brain from MRI data, which is both noisy and highly 
nonuniform between slices. Next we show the reconstruction of a dragon on 
a 300 x 212 x 136 grid using high-resolution data in Figure 13.3(a) and much 
lower resolution data in figure 13.3(b). Figure 13.4 shows the reconstruction 
of a statuette of the Buddha on two different grids using the same data set 
composed of 543,652 points. 

Other extensions are possible. Suppose we are given values of the normal 
to the surface at the same or different set S' of points. The first step, 
analogous to the fast computation of unsigned distance, is to construct 
a unit vector defined throughout the grid that interpolates this set. One 
possibility involves the construction of a harmonic map, which is easier 
than in sounds using any of the techniques developed by Vese and Osher 
[170], Alouges [4], E and Wang [57], or Tang et al. [162]. Given this unit 
vector N(5J) we add to our energy E(r) another quantity cE'(f), where 
c > 0 is a constant whose dimension is length, 

P 1. 

E'(f) = ([ (1- N· C~:I)) dS) P (13.7) 

Again using our variational level set calculus, we see that the gradient 
descent evolution associated with equation (13.7) is 

(13.8) 

for p = 1. See Burchard et al. [21]. 
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(a) data points (b) reconstruction (c) reconstruction 

Figure 13.1. Hole-filling for a torus. 

(a) data points (b) initial guess (c) final reconstruction 

Figure 13.2. Reconstruction of a rat brain from data of MRI slices. 

(a) 437,645 points (b) 100,250 points 

Figure 13.3. Reconstruction of a dragon using data sets of different resolution on 
a 300 x 212 x 136 grid. 
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(a) 146x350x146 grid (b) 63x150x64 grid 

Figure 13.4. Reconstruction of a "Happy Buddha" from 543,652 data points on 
different grid resolutions. 
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Plate l. (Figure 9.5). Initial 
placement of both types of 
particles on both sides of the 
interface. 
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Plate 2. (Figure 9.5). 
Particle positions after the 
initial attraction step is used 
to place them on the appro
priate side of the interface. 

Plate 3 (Figure 12.7). Color image, its gray-level version, 
and the three RGB channels. 
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Plate 4 (Figure 12.8). Recovered objects without well
defined boundaries, using the multi-channel version of the 
active contour model without edges from [32]. The three 
objects could not be recovered using only one channel or 
the intensity image . 



Plate 5 (Figure 12.12) . Color picture with junctions. Three 
level sct functions rcpresenting up to eight regions. Six seg
ments are detected. We show the final zero level sets [36] . 
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Plate 6 (Figure 15.9). The gamma-law gas is depicted in 
red, while the stiff Tait equation of state water is depicted 
in green. Note that the log of the density is shown, since 
the density ratio is approximately 1000 to 1. This calcula~ 
tion uses only 100 grid cells. 
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Plate 7 (Figure 15.10). This is the same calculation as in 
Figure 15.9, except that 500 grid cells are used. 
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Plate 8 (Figure 15.11). In this calculation two interfaces are 
present , since the air surrounds the water on both sides. 
This calculation uses only 100 grid cells. 
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Plate 9 (Figure 15.12). This is the same calculation as in 
Figure 15.11, except that 500 grid cells are used. 
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Plate 10 (Figure 17.1). A shock wave propagating through a 
gas bounded on top and bottom by Lagrangian materials 
with strength. 



Plate 11 (Figure 18.1) . A warm smoke plume injected from 
left to right rises under the influence of buoyancy. 

Plate 12. (Figure 18.2). Small-scale eddies are generated as 
smoke flows past a sphere. 
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Plate 13. (Figure 19.1). A splash is generated as a sphere is 
thrown into the water. 
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Plate 14. (Figure 19.2). An interesting spray effect is gener
ated as a slightly submerged ellipse slips through the water. 



Plate 15. (Figure 19.3). A thin water sheet is generated by 
a sphere thrown into the water. 

Plate 16 (Figure 19.4). Pouring water into a cylindrical 
glass using the particle level set method. 



Plate 17. (Figure 19.5). Pouring water into a cylindrical 
glass using the particle level set method. 



Plate 18. (Figure 20.1). An incompressible droplet traveling 
to the right in a compressible gas flow. Note the lead shock 
wave. 
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Plate 19. (Figure 20.2). A shock wave impinging on an 
incOlnpressible droplet producing a reflected wave and a 
(very) weak transmitted wave. 



Plate 20. (Figure 21.2). A water drop falls through the air 
into the water. Surface tension forces cause the spherically 
shaped region at the top of the water jet in the last frame. 



Plate 21. (Figure 22.4). Typical blue cores rendered using 
the zero isocontour of the level set function. 

Plate 22. (Figure 22.5). The density ratio of the unburnt to 
burnt gas is increased from left to right, illustrating the 
effect of increased expansion. 



Plate 23. (Figure 22.6). A flammable ball catches on fire as 
it passes through a flame. 

Plate 24. (Figure 22.7). Campfire with realistic lighting of 
the surrounding rocks. 



Part IV 

Computational Physics 

While the field of computational fluid dynamics is quite broad, a large por
tion of it is dedicated to computations of compressible flow, incompressible 
flow, and heat flow. In fact, these three classes of problems can be thought 
of as the basic model problems for hyperbolic, elliptic, and parabolic par
tial differential equations. Volumes have been filled with both broad and 
detailed work dedicated to these important flow fields; see, for example, 
[86], [87], [7], [8], and the references therein. One might assume that there 
is little left to add to the understanding of these problems. In fact, many 
papers are now concerned with smaller details, e.g., the number of grid 
points in a shock wave or contact discontinuity. Other papers are devoted 
to rarely occurring pathologies, e.g., slow-moving shock waves and shock 
overheating at solid wall boundaries. 

One area where significant new ideas are still needed is multicomponent 
flow, for example, multicomponent compressible flow where different flu
ids have different equations of state, multicomponent incompressible flow 
where different fluids have different densities and viscosities with surface 
tension forces at the interface, and Stefan-type problems where the individ
ual materials have different thermal conductivities. These problems have 
interfaces separating the different materials, and special numerical tech
niques are required to treat the interface. The most commonly used are 
front tracking, volume of fluid, and level set methods. In the next three 
chapters we discuss the use of level set methods for the canonical equations 
of computational fluid dynamics. 

The first chapter discusses basic one-phase compressible flow, and the 
subsequent chapter shows how the level set method can be used for two
phase compressible flow problems where the equations of state differ across 
the interface. Then, the use of level set techniques for deflagration and det
onation discontinuities is discussed in the third chapter. The fourth chapter 
introduces techniques for coupling an Eulerian grid to a Lagrangian grid. 
This is useful, for example, in compressible solid/fluid structure problems. 
After this, we turn our attention to incompressible flow with a chapter 
focused on the basic one-phase equations including a computer graphics 
simulation of smoke, a chapter on level set techniques for free surface flows 
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including a computer graphics simulation of water, and finally a chapter on 
fully two-phase incompressible flow. We wrap up this incompressible flow 
material with a chapter on incompressible flames, including applications in 
computer graphics, and a chapter on techniques for coupling a compressible 
fluid to an incompressible fluid. Finally, we turn our attention to heat flow 
with a chapter discussing the heat equation and a chapter discussing level 
set techniques for solving Stefan problems. 



14 
Hyperbolic Conservation Laws and 
Compressible Flow 

We begin this chapter by addressing general systems of hyperbolic conserva
tion laws including numerical techniques for computing accurate solutions 
to them. Then we discuss the equations for one-phase compressible flow as 
an example of a system of hyperbolic conservation laws. 

14.1 Hyperbolic Conservation Laws 

A continuum physical system is described by the laws of conservation of 
mass, momentum, and energy. That is, for each conserved quantity, the rate 
of change of the total amount in some region is given by its flux (convective 
or diffusive) through the region boundary, plus whatever internal sources 
exist. The integral form of this conservation law is 

dd [ u dV + [ f( u) . dA = [ s( u) dV 
t in ian in (14.1) 

where u is the density of the conserved quantity, /(u) is the flux, and s(u) 
is the source rate. By taking n to be an infinitesimal volume and applying 
the divergence theorem, we get the differential form of the conservation 
law, 

au -at + V' . f(u) = s(u), (14.2) 

which is the basis for the numerical modeling of continuum systems. A 
physical system can be described by a system of such equations, i.e., a 
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system of conservation laws. These also form the basis for their numerical 
modeling. 

A conserved quantity, such as mass, can be transported by convective 
or diffusive fluxes. The distinction is that diffusive fluxes are driven by 
gradients, while convective fluxes persist even in the absence of gradi
ents. For most flows where compressibility is important, e.g., flows with 
shock waves, one needs to model only the convective transport and can ig
nore diffusion (mass diffusion, viscosity and thermal conductivity) as well 
as the source terms (such as chemical reactions, atomic excitations, and 
ionization processes). Moreover, convective transport requires specialized 
numerical treatment, while diffusive and reactive effects can be treated with 
standard numerical methods, such as simple central differencing, that are 
independent of those for the convective terms. Stiff reactions, however, can 
present numerical difficulties; see, for example, Colella et al. [50]. Conserva
tion laws with only convective fluxes are known as hyperbolic conservation 
laws. A vast array of physical phenomena are modeled by such systems, 
e.g., explosives and high-speed aircraft. 

The important physical phenomena exhibited by hyperbolic conserva
tion laws are bulk convection, waves, contact discontinuities, shocks, and 
rarefactions. We briefly describe the physical features and mathematical 
model equations for each effect, and most importantly note the implica
tions they have on the design of numerical methods. For more details on 
numerical methods for conservation laws, see, e.g., LeVeque [105] and Toro 
[164]. 

14.1.1 Bulk Convection and Waves 

Bulk convection is simply the bulk movement of matter, carrying it from 
one spot to another, like water streaming from a hose. Waves are small
amplitude smooth disturbances that are transmitted through the system 
without any bulk transport like ripples on a water surface or sound waves 
through air. Whereas convective transport occurs at the gross velocity 
of the material, waves propagate at the "speed of sound" in the system 
(relative to the bulk convective motion of the system). Waves interact by 
superposition, so that they can either cancel out (interfere) or enhance each 
other. 

The simplest model equation that describes bulk convective transport is 
the linear convection equation 

Ut + v· 'Vu = 0, (14.3) 

where v is a constant equal to the convection velocity. The solution to this 
is simply that u translates at the constant speed v. This same equation can 
also be taken as a simple model of wave motion if u is a sine wave and v is 
interpreted as the speed of sound. The linear convection equation is also an 
important model for understanding smooth transport in any conservation 
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law. As long as f is smooth and u has no jumps in it, the general scalar 
conservation law 

Ut + '\1. feu) = 0 (14.4) 

can be rewritten as 

Ut + leu) . '\1u = 0, (14.5) 

where l (u) acts as a convective velocity. That is, locally in smooth parts 
of the flow, a conservation law behaves like bulk convection with velocity 
J'{u). This is called the local characteristic velocity of the flow. 

Bulk convection and waves are important because they imply that sig
nals propagate in definite directions at definite speeds. This is in contrast 
to diffusion, which propagates signals in all directions at arbitrarily large 
speeds depending on the severity of the driving gradients. Thus we antici
pate that suitable numerical methods for hyperbolic systems will also have 
directional biases in space, which leads to the idea of upwind differencing 
and a definite relation between the space and time steps (discrete propa
gation speed), which will roughly be that the discrete propagation speed 
Ax / At must be at least as large as the physical propagation speeds (char
acteristic speeds) in the problem. The general form of this relation is called 
the Courant-Friedrichs-Lewy (CFL) restriction. 

Wave motion and bulk convection do not create any new sharp features 
in the flow. The other remaining phenomena are all special because they 
involve discontinuous jumps in the transported quantities. Because smooth 
features can be accurately represented by a polynomial interpolation, we 
expect to be able to develop numerical methods of extremely high accuracy 
for the wave and convective effects. Conversely, since jump functions are 
poorly represented by polynomials, we expect little accuracy and perhaps 
great difficulty in numerically approximating the discontinuous phenomena. 

14.1.2 Contact Discontinuities 

A contact discontinuity is a persistent discontinuous jump in mass density 
moving by bulk convection through a system. Since there is negligible mass 
diffusion, such a jump persists. These jumps usually appear at the point 
of contact of different materials; for example, a contact discontinuity sep
arates oil from water. Contacts move at the local bulk convection speed, 
or more generally the characteristic speed, and can be modeled by using 
step-function initial data in the bulk convection equation (14.3). Since con
tacts are simply a bulk convection effect, they retain any perturbations 
they receive. Thus we expect contacts to be especially sensitive to numeri
cal methods; i.e., any spurious alteration of the contact will tend to persist 
and accumulate. 
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14.1.3 Shock Waves 

A shock is a spatial jump in material properties, like pressure and tem
perature, that develops spontaneously from smooth distributions and 
then persists. The shock jump is self-forming and also self-maintaining. 
This is unlike a contact discontinuity, which must be put in the sys
tem initially and will not resharpen itself if it is smeared out by some 
other process. Shocks develop through a feedback mechanism in which 
strong impulses move faster than weak ones, and thus tend to steepen 
themselves up into a "step" profile as they travel through the system. Fa
miliar examples are the "sonic boom" of a jet aircraft and the "bang" 
from a gun. These sounds are our perceptions of a sudden jump in air 
pressure. 

The simplest model equation that describes shock formation is the one
dimensional Burgers' equation 

(14.6) 

which looks like the convection equation (14.3) with a nonconstant convec
tive speed of u, i.e., Ut + UUx = O. Thus larger U values move faster, and 
they will overtake smaller values. This ultimately results in the develop
ment of, for example, a right-going shock if the initial data for u constitute 
any positive, decreasing function. 

Shocks move at a speed that is not simply related to the bulk flow speed 
or characteristic speed, and they are not immediately evident from exam
ining the flux, in contrast to contacts. Shock speed is controlled by the 
difference between influx and outflux of conserved quantity into the region. 
Specifically, suppose a conserved quantity u with conservation law 

Ut + f(u)x = 0 (14.7) 

has a step function profile with constant values extending both to the left, 
UL, and to the right, UR, with a single shock jump transition in between 
moving with speed s. Then the integral form of the conservation law (14.1), 
applied to any interval containing the shock, gives the relation 

(14.8) 

which is just another statement that the rate at which U appears, s( UR -

UL), in the interval of interest is given by the difference in fluxes across 
the interval. Thus we see that the proper speed of the shock is directly 
determined by conservation of U via the flux f. This has an important 
implication for numerical method design; namely, a numerical method will 
"capture" the correct shock speeds only if it has "conservation form," i.e., 
if the rate of change of u at some node is the difference of fluxes that are 
accurate approximations of the real flux f. 
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The self-sharpening feature of shocks has two implications for numerical 
methods. First, it means that even if the initial data are smooth, steep 
gradients and jumps will form spontaneously. Thus, our numerical method 
must be prepared to deal with shocks even if none are present in the ini
tial data. Second, there is a beneficial effect from self-sharpening, because 
modest numerical errors introduced near a shock (smearing or small os
cillations) will tend to be eliminated, and will not accumulate. The shock 
is naturally driven toward its proper shape. Because of this, computing 
strong shocks is mostly a matter of having a conservative scheme in order 
to get their speed correct. 

14.1.4 Rarefaction Waves 

A rarefaction is a discontinuous jump or steep gradient in properties that 
dissipates as a smooth expansion. A common example is the jump in air 
pressure from outside to inside a balloon, which dissipates as soon as the 
balloon is burst and the high-pressure gas inside is allowed to expand. 
Such an expansion also occurs when the piston in an engine is rapidly 
pulled outward from the cylinder. The expansion (density drop) associated 
with a rarefaction propagates outward at the sound speed of the system, 
relative to the underlying bulk convection speed. A rarefaction can be 
modeled by Burgers' equation (14.6) with initial data that start out as 
a steep increasing step. This step will broaden and smooth out during the 
evolution. 

A rarefaction tends to smooth out local features, which is generally ben
eficial for numerical modeling. It tends to diminish numerical errors over 
time and make the solution easier to represent by polynomials, which form 
the basis for our numerical representation. However, a rarefaction often 
connects to a smooth (e.g., constant) solution region and this results in 
a "corner," which is notoriously difficult to capture accurately. The main 
numerical problem posed by rarefactions is that of initiating the expansion. 
If the initial data is are perfect, symmetrical step, such as u(x) = sign(x), 
it may be "stuck" in this form, since the steady-state Burgers' equation is 
satisfied identically (Le., the flux u2 /2 is constant everywhere, and similarly 
in any numerical discretization). However, local analysis can identify this 
stuck expansion, because the characteristic speed u on either side points 
away from the jump, suggesting its potential to expand. In order to get 
the initial data unstuck, a small amount of smoothing must be applied to 
introduce some intermediate-state values that have a nonconstant flux to 
drive expansion. In numerical methods this smoothing applied at a jump 
where the effective local velocity indicates expansion should occur is called 
an "entropy fix," since it allows the system to evolve from the artificial 
low entropy initial state to the proper increased entropy state of a free 
expansion. 
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14.2 Discrete Conservation Form 

To ensure that shocks and other steep gradients are captured by the scheme, 
i.e., that they move at the right speed even if they are unresolved, we must 
write the equation in a discrete conservation form. That is, a form in which 
the rate of change of conserved quantities is equal to a difference of fluxes. 
This form guarantees that we discretely conserve the total amount of the 
states u (e.g., mass, momentum, and energy) present, in analogy with the 
integral form given by equation (14.1). More important, this can be shown 
to imply that steep gradients or jumps in the discrete profiles propagate at 
the physically correct speeds; see, for example, LeVeque [105]. 

Usually, conservation form is derived for control volume methods, that 
is methods that evolve cell average values in time rather than nodal values. 
In this approach, a grid node Xi is assumed to be the center of a grid cell 
(Xi-l/2, Xi+l/2), and we integrate the conservation law (14.7) across this 
control volume to obtain 

(14.9) 

where u is the integral of u over the cell, and Ui±1/2 are the (unknown) 
values of u at the cell walls. This has the desired conservation form in that 
the rate of change of the cell average is a difference of fluxes. The difficulty 
with this formulation is that it requires transforming between cell averages 
of u (which are directly evolved in time by the scheme) and cell wall values 
of u (which must be reconstructed) to evaluate the needed fluxes. While this 
is manageable in one spatial dimension, in higher-dimensional problems the 
series of transformations necessary to convert the cell averages to cell wall 
quantities becomes increasingly complicated. The distinction between cell 
average and midpoint values can be ignored for schemes whose accuracy 
is no higher than second order (e.g., TVD schemes), since the cell average 
and the midpoint value differ by only O(b.x2). 

Shu and Osher [150, 151] proposed a fully conservative finite difference 
scheme on uniform grids that directly evolves nodal values (as opposed 
to the cell average values) forward in time. They defined a numerical flux 
function F by the property that the real flux divergence is a finite difference 
of numerical fluxes 

f(u)x = F(x + b.x/2) - F(x - b.x/2) 
b.x 

(14.10) 

at every point x. We call F the numerical flux, since we require it in our 
numerical scheme, and also to distinguish it from the closely related "phys
ical flux" f(u). It is not obvious that the numerical flux function exists, but 
from relationship (14.10) one can solve for its Taylor expansion to obtain 

(b.x)2 7(b.X)4 
F = f(u) - 24 f(u)xx + 5760 f(u)xxxx - ... , (14.11) 
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which shows that the physical and numerical flux functions are the same 
to second-order accuracy in Llx. Thus, a finite difference discretization can 
be based on 

Ut + F(x + Llx/2) - F(x - Llx/2) = ° 
Llx 

(14.12) 

to evolve point values of U forward in time using numerical flux functions F 
at the cell walls. 

14.3 ENO for Conservation Laws 

14.3.1 Motivation 

Essentially nonoscillatory (EN 0) methods were developed to address the 
special difficulties that arise in the numerical solution of systems of non
linear conservation laws. Numerical methods for these problems must be 
able to handle steep gradients, e.g., shocks and contact discontinuities, 
that may develop spontaneously and then persist in these flows. Classical 
numerical schemes had a tendency either to produce large spurious oscil
lations near steep gradients or to greatly smear out both these gradients 
and the fine details of the flow. The primary goal of the ENO effort was 
to develop a general-purpose numerical method for systems of conservation 
laws that has high accuracy (e.g., third order) in smooth regions and cap
tures the motion of unresolved steep gradients without creating spurious 
oscillations and without the use of problem-dependent fixes or tunable pa
rameters. The philosophy underlying the ENO methods is simple: When 
reconstructing a profile for use in a convective flux term, one should not 
use high-order polynomial interpolation across a steep gradient in the data. 
Such an interpolant would be highly oscillatory and ultimately corrupt the 
computed solution. ENO methods use an adaptive polynomial interpola
tion constructed to avoid steep gradients in the data. The polynomial is also 
biased to use data from the direction of information propagation (upwind) 
for physical consistency and stability. 

The original ENO schemes developed by Harten et al. [81] were based 
on the conservative control volume discretization of the equations, which 
yields discrete evolution equations for grid cell averages of the conserved 
quantities, e.g. mass, momentum, and energy. This formulation has the 
disadvantage of requiring complicated transfers between cell averages and 
cell center nodal values in the algorithm. In particular, the transfer pro
cess becomes progressively more complicated in one, two, and three spatial 
dimensions. The formulation also results in space and time discretizations 
that are coupled in a way that becomes complicated for higher-order accu
rate versions. To eliminate these complications, Shu and Osher [150, 151] 
developed a conservative finite difference form of the ENO method that uses 
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only nodal values of the conserved variables. Their method is faster and eas
ier to implement than the cell-averaged formulation. In addition, the finite 
difference ENO method extends to higher dimensions in a dimension-by
dimension fashion, so that the one-dimensional method applies unchanged 
to higher-dimensional problems. We emphasize that this is not dimensional 
splitting in time, which has accuracy limitations unlike the dimension-by
dimension approach. Shu and Osher also use the method of lines for time 
integration, decoupling the time and space discretizations. 

We consider the treatment of a one-dimensional contact discontinuity 
to illustrate how the method works. Assuming that the time evolution 
takes place exactly, each time step At should rigidly translate the spatial 
profile by the amount vAt as governed by equation (14.3). Spatially, the 
contact is initially represented by a discrete step function, i.e., nodal values 
that are constant at one value UL on nodes Xl, ... , X J, and constant at a 
different value U R on all remaining nodes X J +1, ... , X N. To update the 
value Ui in time at a given node Xi, we first reconstruct the graph of a 
function u(x) near Xi by interpolating nearby nodal U values, shift that 
u(x) graph spatially by vAt (the exact time evolution), and then reevaluate 
it at the node Xi to obtain the updated Ui. We require our local interpolant 
be smooth at the point Xi, since in actual practice we are going to use it to 
evaluate the derivative term U x there. The simplest symmetric approach to 
smooth interpolation near a node Xi is to run a parabola through the nodal 
data at Xi-I, Xi, and Xi+l. This interpolation is an accurate reconstruction 
of u(x) in smooth regions, where it works well. However, near the jump 
between XJ and XJ+l the parabola will significantly overshoot the nodal U 

data by an amount comparable to the jump UL - UR, and this overshoot 
will show up in the nodal values once the shift is performed. Successive 
time steps will further enhance these spurious oscillations. This approach 
corresponds to standard central differencing. 

To avoid the oscillations from parabolic interpolation, we could instead 
use a smooth linear interpolation near Xi, noting that there are two linear 
interpolants to choose from, namely the line through the data at nodes Xi 

and Xi-I, and the line through the data at Xi and xi+ 1. The direction of in
formation propagation determines which should be used. If the convection 
speed v is positive, the data are moving from left to right, and we use Xi 

and Xi-I. This linear interpolation based on upwind nodes will not intro
duce any new extrema in U as long as the shift vAt is less than the width 
of the interval Ax = Xi - Xi-I, which is exactly the CFL restriction on the 
time step. The main problem with the linear upwind biased interpolant is 
that it has low accuracy smearing out the jump over more and more nodes. 
If we naively go to higher accuracy by using a higher-order upwind biased 
interpolant, such as running a parabola through Xi, Xi-I, and Xi-2 to ad
vance Ui, we run into the spurious oscillation problem again. In particular, 
at nodes XJ+I and XJ+2, this upwind parabola will interpolate across the 
jump and thus have large overshoots. By forcing the parabola to cross a 
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jump, it no longer reflects the data on the interval that will be arriving at 
xJ+1 (or XJ+2) during the next time step. 

The motivation for ENO is that we must use a higher-degree polynomial 
interpolant to achieve more accuracy, and it must involve the immediate up
wind node to properly represent the propagation of data. But we must also 
avoid polluting this upwind data with spurious oscillations that come from 
interpolating across jumps. Thus, the remaining interpolation nodes (after 
the first upwind point) are chosen based on smoothness considerations. In 
particular, this approach will, if at all possible, not run an interpolant across 
a jump in the data. However, very small interpolation overshoots do occur 
near extrema in the nodal data, as they must, since any smooth function 
will slightly overshoot its values as sampled at discrete points near extrema. 
This is the sense in which the method is only essentially nonoscillatory. 

14.3.2 Constructing the Numerical Flux Function 

We define the numerical flux function through the relation 

f( .) - Fi+l/2 - F i - 1/ 2 
U~ x - Dox (14.13) 

as in equation (14.12). To obtain a convenient algorithm for computing this 
numerical flux function, we define hex) implicitly through the equation 

1 l x +£::"X/2 
f( u(x)) = -;;::- h(y) dy, (14.14) 

uX x-£::"x/2 

and note that taking a derivative on both sides of this equation yields 

f( ( )) - hex + 6x/2) - hex - 6x/2) 
u x x - 6x ' (14.15) 

which shows that h is identical to the numerical flux function at the cell 
walls. That is, F i ±1/2 = h(Xi±1/2) for all i. We calculate h by finding its 
primitive 

H(x) = r hey) dy 
} X-l/2 

(14.16) 

using polynomial interpolation, and then take a derivative to get h. Note 
that we do not need the zeroth-order divided differences of H that vanish 
with the derivative. 

The zeroth order divided differences, D?+1/2 and all higher-order even 
divided differences of H exist at the cell walls and have the subscript i±1/2. 
The first order divided differences D} and all higher-order odd divided 
differences of H exist at the grid points and will have the subscript i. The 
first-order divided differences of Hare 

D}H = H(Xi+1/2);;:(Xi- 1/2) = f(U(Xi)), (14.17) 
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where the second equality sign comes from 

lX
i+1 /2 i (lXj+1 / 2 ) 

H(Xi+1/2) = X_l/2 h(y) dy = ~ Xj-l/2 h(y) dy (14.18) 

i 

= 6x Lf(u(xj)), (14.19) 
j=O 

and the higher divided differences are 

D2 H - f(U(Xi+l)) - f(U(Xi)) - ~Dl f 
i+l/2 - 26x - 2 i+1/2 , (14.20) 

3 1 2 
DiH='3Dd, (14.21 ) 

continuing in that manner. 
According to the rules of polynomial interpolation, we can take any path 

along the divided difference table to construct H, although not all paths 
give good results. ENO reconstruction consists of two important features. 
First, choose D} H in the upwind direction. Second, choose higher-order 
divided differences by taking the smaller in absolute value of the two pos
sible choices. Once we construct H(x), we evaluate H'(Xi+l/2) to get the 
numerical flux Fi+l/2' 

14.3.3 ENO-Roe Discretization (Third-Order Accurate) 

For a specific cell wall, located at Xio+l/2, we find the associated numerical 
flux function Fio+1/2 as follows. First, we define a characteristic speed 
Aio+l/2 = !'(Uio+l/2), where Uio+1/2 = (Uio + Uio+l)/2 is defined using a 
standard linear average. Then, if Aio+l/2 > 0, set k = io. Otherwise, set 
k = io + 1. Define 

(14.22) 

If IDLl/2HI :::; ID~+1/2HI, then c = DLl/2H and k* = k -1. Otherwise, 

c = D~+1/2H and k* = k. Define 

Q2(X) = c(x - Xk-l/2)(X - Xk+1/2)' (14.23) 

If ID~*HI :::; ID~*+lHI, then c* = D~*H. Otherwise, c* = D~*+lH. Define 

Q3(X) = c*(x - Xk*-1/2)(X - Xk*+1/2)(X - Xk*+3/2)' (14.24) 

Then 

F io+1/ 2 = H'(Xio+l/2) = Q~ (Xio+l/2)+Q;(Xio+1/2)+Q~(Xio+l/2)' (14.25) 

which simplifies to 

Fio+1/ 2 = D~H + c(2(io - k) + 1) 6x + c* (3(io - k*)2 -1) (6x)2. 
(14.26) 
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14.3.4 ENO-LLF Discretization (and the Entropy Fix) 

The ENO-Roe discretization can admit entropy-violating expansion shocks 
near sonic points. That is, at a place where a characteristic velocity changes 
sign (a sonic point) it is possible to have a stationary expansion shock so
lution with a discontinuous jump in value. If this jump were smoothed out 
even slightly, it would break up into an expansion fan (Le., rarefaction) 
and dissipate, which is the desired physical solution. For a specific cell wall 
Xio+l/2, if there are no nearby sonic points, then we use the ENO-Roe dis
cretization. Otherwise, we add high-order dissipation to our calculation of 
F io+1/ 2 to break up any entropy-violating expansion shocks. We call this 
entropy-fixed version of the ENO-Roe discretization ENO-Roe fix or just 
ENO-RF. More specifically, we use Aio = f'(Uio) and Aio+! = f'(uio+d to 
decide whether there are sonic points in the vicinity. If Aio and Aio+! agree 
in sign, we use the ENO-Roe discretization where Aio+l/2 is taken to have 
the same sign as Aio and Aio+!' Otherwise, we use the ENO-LLF entropy 
fix discretization given below. Note that ENO-LLF is applied at both ex
pansions where Aio < 0 and Aio+l > 0 and at shocks where Aio > 0 and 
Aio+! < O. While this adds extra numerical dissipation at shocks, it is not 
harmful, since shocks are self-sharpening. In fact, this extra dissipation pro
vides some viscous regularization which is especially desirable in multiple 
spatial dimensions. For this reason, authors sometimes use the ENO-LLF 
method everywhere as opposed to mixing in ENO-Roe discretizations where 
the upwind direction is well determined by the eigenvalues A. 

The ENO-LLF discretization is formulated as follows. Consider two prim
itive functions H+ and H-. We compute a divided difference table for each 
of them, with their first divided differences being 

1 ± 1 1 
Di H = '2!(Ui) ± '2Qio+l/2Ui, (14.27) 

where 

(14.28) 

is our dissipation coefficient. The second and third divided differences, 
D~+1/2H± and Dr H±, are then defined in the standard way, like those 
ofH. 

For H+, set k = i o. Then, replacing H with H+ everywhere, define 
Ql(X), Q2(X), Q3(X), and finally Fi!+!/2 using the ENO-Roe algorithm 
above. For H-, set k = io + 1. Then, replacing H with H- everywhere, 
define Ql(X), Q2(X), Q3(X), and finally Fi~+1/2 again by using the ENO
Roe algorithm above. Finally, 

(14.29) 

is the new numerical flux function with added high-order dissipation. 



160 14. Hyperbolic Conservation Laws and Compressible Flow 

14.4 Multiple Spatial Dimensions 

In multiple spatial dimensions, the ENO discretization is applied inde
pendently using a dimension-by-dimension discretization. For example, 
consider a two-dimensional conservation law 

Ut + f(u)x + g(u)y = 0 (14.30) 

on a rectangular 2D grid. Here, we sweep through the grid from bottom 
to top performing ENO on 1D horizontal rows of grid points to evaluate 
the f(u)x term. The g(u)y term is evaluated in a similar manner, sweeping 
through the grid from left to right performing ENO on 1D vertical rows 
of grid points. Once we have a numerical approximation to each of the 
spatial terms, we update the entire equation in time with a method-of-lines 
approach using, for example, a TVD Runge-Kutta method. 

14.5 Systems of Conservation Laws 

In general, a hyperbolic system will simultaneously contain a mixture of 
processes: smooth bulk convection and wave motion, and discontinuous 
processes involving contacts, shocks, and rarefactions. For example, if a gas 
in a tube is initially prepared with a jump in the states (density, velocity, 
and temperature) across some surface, as the evolution proceeds in time 
these jumps will break up into a combination of shocks, rarefactions, and 
contacts, in addition to any bulk motion and sound waves that may exist 
or develop. 

The hyperbolic systems we encounter in physical problems are written 
in what are effectively the mixed variables where the apparent behavior 
is quite complicated. A transformation is required to decouple them back 
into unmixed fields that exhibit the pure contact, shock, and rarefaction 
phenomena (as well as bulk convection and waves). In a real system, this 
perfect decoupling is not possible, because the mixing is nonlinear, but it 
can be achieved approximately over a small space and time region, and 
this provides the basis for the theoretical understanding of the structure of 
general hyperbolic systems of conservation laws. This is called a transfor
mation to characteristic variables. As we shall see, this transformation also 
provides the basis for designing appropriate numerical methods. 

Consider a simple hyperbolic system of N equations 

(14.31) 

in one spatial dimension. The basic idea of characteristic numerical schemes 
is to transform this nonlinear system to a system of N (nearly) independent 
scalar equations of the form 

Ut + AUx = 0 (14.32) 
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and discretize each scalar equation independently in an upwind biased 
fashion using the characteristic velocity A. Then transform the discretized 
system back into the original variables. 

14-5.1 The Eigensystem 

In a smooth region of the flow, we can get a better understanding of the 
structure of the system by expanding out the derivative as 

(14.33) 

where J = 8F/8tJ is the Jacobian matrix of the convective flux function. 
If J were a diagonal matrix with real diagonal elements, this system would 
decouple into N independent scalar equations, as desired. In general, J 
is not of this form, but we can transform this system to that form by 
multiplying through by a matrix that diagonalizes J. If the system is indeed 
hyperbolic, J will have N real eigenvalues AP , p = 1, ... , N, and N linearly 
independent right eigenvectors. If we use these as columns of a matrix R, 
this is expressed by the matrix equation 

JR=RA, (14.34) 

where A is a diagonal matrix with the elements AP , p = 1, ... , N, on the di
agonal. Similarly, there are N linearly independent left eigenvectors. When 
these are used as the rows of a matrix L, this is expressed by the matrix 
equation 

LJ=AL, (14.35) 

where Land R can be chosen to be inverses of each other, LR = RL = 
I. These matrices transform to a system of coordinates in which J is 
diagonalized, 

LJR=A, (14.36) 

as desired. 
Suppose we want to discretize our equation at the node Xo, where Land R 

have values Lo and Ro. To get a locally diagonalized form, we multiply our 
system equation by the constant matrix Lo that nearly diagonalizes J over 
the region near Xo. We require a constant matrix so that we can move it 
inside all derivatives to obtain 

(14.37) 

where we have inserted I = RoLo to put the equation in a more recognizable 
form. The spatially varying matrix LoJRo is exactly diagonalized at the 
point Xo, with eigenvalues Ab, and it is nearly diagonalized at nearby points. 
Thus the equations are sufficiently decoupled for us to apply upwind biased 
discretizations independently to each component, with Ab determining the 
upwind biased direction for the pth component equation. Once this system 
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is fully discretized, we multiply the entire system by La1 = Ro to return 
to the original variables. 

In terms of our original equation (14.31), our procedure for discretizing 
at a point Xo is simply to multiply the entire system by the left eigenvector 
matrix Lo, 

(14.38) 

and discretize the N scalar components of this system, indexed by p, 

(14.39) 

independently, using upwind biased differencing with the upwind direction 
for the pth equation determined by the sign of ).p. We then multiply the 
resulting spatially discretized system of equations by Ro to recover the 
spatially discretized fluxes for the original variables 

(14.40) 

where Do stands for the upwind biased discretization operator, i.e., either 
the ENO-RF or ENO-LLF discretization. 

We call ).P the pth characteristic velocity or speed, (LoU)p = Lg . U 
the pth characteristic state or field (here LP denotes the pth row of L, 
i.e., the pth left eigenvector of J), and (LoF(U))p = Lg . F(U) the pth 
characteristic flux. According to the local linearization, it is approximately 
true that the pth characteristic field rigidly translates in space at the pth 
characteristic velocity. Thus this decomposition corresponds to the local 
physical propagation of independent waves or signals. 

14,5.2 Discretization 

At a specific flux location Xio+l/2 midway between two grid nodes, we wish 

to find the vector numerical flux function Fio+1/ 2 . First we evaluate the 

eigensystem at the point Xio+l/2 using the standard average Uio+1/2 = 
(Ui + Ui+l)/2. Note that there are more advanced ways to evaluate the 
eigensystem, as detailed by Donat and Marquina [55] j see also Fedkiw et al. 
[65]. Then, in the pth characteristic field we have an eigenvalue ).P(Uio+1/ 2 ), 

left eigenvector V(Uio+1/ 2 ), and right eigenvector R.P(Uio+1/ 2 )' We put U 
values and F(U) values into the pth characteristic field by taking the dot 
product with the left eigenvector, 

u = LP(Uio +1/2 ) . U (14.41) 

f(u) = LP(Uio+1/ 2 ) • F(U) (14.42) 

where u and f(u) are scalars. Once in the characteristic field we perform a 
scalar version of the conservative ENO scheme, obtaining a scalar numer
ical flux function F io+1/ 2 in the scalar field. We take this flux out of the 



14.6. Compressible Flow Equations 163 

characteristic field by multiplying by the right eigenvector, 

Ffo+l/2 = Fio+l/2 RP(Oio+l/2), (14.43) 

where Ffo+l/2 is the portion of the numerical flux function f io+1/2 from 
the pth field. Once we have evaluated the contribution to the numerical 
flux function from each field, we get the total numerical flux by summing 
the contributions from each field, 

f io+1/2 = L Jt+l/2' (14.44) 
p 

completing the evaluation of our numerical flux function at the point 

14.6 Compressible Flow Equations 

The equations for one-phase compressible flow are a general system of 
convection-diffusion-reaction conservation equations in up to three spatial 
dimensions. For example, in two spatial dimensions, the equations are of 
the form 

(14.45) 

where 0 is the vector of conserved variables, F(O) and CeO) are the vectors 
of convective fluxes, Fd(VO) and Gd(VO) are the vectors of diffusive fluxes, 
and 8(0) is the vector of reaction terms. Again, for high-speed flow with 
shocks, one can usually ignore the diffuse fluxes. We choose to ignore the 
source terms (e.g., the effects of chemical reaction) here as well. For more 
details on the diffuse terms and the source terms, see, for example, Fedkiw 
et al. [68, 67, 69). 

The inviscid Euler equations for one-phase compressible flow in the 
absence of chemical reactions are then 

which can be written in detail as 

( :u 
pv 
pw 
E 

( 

pu 
pu2+p 

+ puv 
puw 

t (E+p)u 

+ 

x 

pv 
puv 

pv2 +p 
pvw 

(E + p)v 

+ 

y 

pw 
puw 
pvw 

pw2 +p 
(E+p)w 

(14.46) 

=0 

z 
(14.47) 

where p is the density, 17 = (u, v, w) are the velocities, E is the total energy 
per unit volume, and p is the pressure. The total energy is the sum of the 
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internal energy and the kinetic energy, 

E = pe + p(u2 + v2 + w 2 )/2, (14.48) 

where e is the internal energy per unit mass. The two-dimensional Euler 
equations are obtained by setting w = 0, while the one-dimensional Euler 
equations are obtained by setting both v = 0 and w = o. 

The pressure can be written as a function of density and internal energy, 
p = pep, e). The speed of sound is defined by 

~ 
C = yPP +--;;:, (14.49) 

where Pp and Pe are partial derivatives of the pressure with respect to the 
density and internal energy, respectively. 

14.6.1 Ideal Gas Equation of State 

For an ideal gas we have p = pRT where R = Ru/M is the specific gas 
constant, with Ru ~ 8.31451 J/(mol K) the universal gas constant and M 
the molecular weight of the gas. Also valid for an ideal gas is cp - Cv = R, 
where cp is the specific heat at constant pressure and Cv is the specific heat 
at constant volume. The ratio of specific heats is given by 'Y = cp/cv . For 
an ideal gas, one can write 

de = cvdT, (14.50) 

and assuming that Cv does not depend on temperature (calorically perfect 
gas), integration yields 

(14.51 ) 

where eo is not uniquely determined, and one could choose any value for e 
at 0 K (although one needs to use caution when dealing with more than 
one material to be sure that integration constants are consistent with the 
heat release in any chemical reactions that occur). For more details, see, 
e.g., Atkins [7]. Note that 

R 
p = pRT = -pee - eo) = ("( - 1)p(e - eo), (14.52) 

Cv 

and equation (14.51) are used frequently with eo = 0 arbitrarily for 
simplicity. 

14.6.2 Eigensystem 

For brevity we consider only the two-dimensional eigensystem here. The 
two-dimensional Euler equations can be obtained by setting w = 0 so that 
both the fourth equation in equations (14.47) and the entire ii(iJ)z term 
vanish. 
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The eigenvalues and eigenvectors for the Jacobian matrix of FCU) are 
obtained by setting A = 1 and B = 0 in the following formulas, while those 
for the Jacobian of O(U) are obtained with A = 0 and B = l. 

The eigenvalues are 

..\ 1 = U - e, ..\ 2 = ..\3 = u, ..\4 = U + e, 

and the eigenvectors are 

f1 = (b2 + U _ b1 U _ A _ b1 V _ B b1 ) 

2 2e' 2 2c' 2 2c' 2 ' 
~2 
L = (1- b2 , b1 U, b1 v, -b1), 

~3 A 

L = (v,B,-A,O), 

i.4 _ (b2 _ U _ b1 U A _ b1 V B b1 ) 

- 2 2c' 2 + 2c' 2 + 2c' 2 ' 

.... 1 (U ! Ac ) .... 2 ( ~ ) R= B' R= , 
~ ~ u~ H _v1/ b1 

R3=( ~) R4 =(U:AC) -A ' v + Be ' 
-v H +uc 

where 

u= Au+Bv, v = Av - Bu, 

r=Pe/P, 
r.r; 

c= VPp+ p' H=(E+p)/p, 

b2 = 1 + b1q2 - b1H. 

(14.53) 

(14.54) 

(14.55) 

(14.56) 

(14.57) 

(14.58) 

(14.59) 

(14.60) 

(14.61) 

(14.62) 

The choice of eigenvectors one and four is unique (up to scalar multi
pIes), but the choice for eigenvectors two and three is not unique. Any two 
independent vectors from the span of eigenvectors two and three could be 
used instead. In fact, the numerical method designed by Fedkiw et al. [67] 
exploits this fact. 

The eigensystem for the one-dimensional Euler equations is obtained by 
setting v = O. 

14.6.3 Numerical Approach 

Since the three-dimensional Euler equations are a system of conservation 
laws, the methods outlined earlier in this chapter can be applied in a 
straight-foward fashion. That is, each of FCO)x, O(U)y, and ii(U)z can 
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Figure 14.1. Standard shock tube test case. The solution computed with 100 grid 
cells is depicted by circles, while the exact solution is drawn as a solid line. 

be independently approximated using either an ENO-RF or ENO-LLF dis
cretization scheme. A sample calculation in one spatial dimension is shown 
in Figure 14.1. The initial data consisting of two constant states form (from 
left to right) a rarefaction wave, a contact discontinuity, and a shock wave. 
The solution computed with 100 grid cells is depicted by circles, while the 
exact solution is drawn as a solid line. The figures show solutions at a later 
time for density, velocity, temperature, and pressure. 



15 
Two-Phase Compressible Flow 

15.1 Introduction 

Chronologically, the first attempt to use the level set method for flows in
volving external physics was in the area of two-phase inviscid compressible 
flow. Mulder et al. [115] appended the level set equation 

(15.1) 

to the standard equations for one-phase compressible flow, equation (14.47). 
Here V is taken to be the velocity of the compressible flow field, so that the 
zero level set of ¢ corresponds to particle velocities and can be used to track 
an interface separating two different compressible fluids. The sign of ¢ is 
used to identify which gas occupied which region, i.e., to determine the local 
equation of state. In [115], only gamma law gas models were considered, 
with I = 11 for ¢ > 0 and I = 12 for ¢ S o. Later, Karni [93J pointed 
out that this method suffered from spurious oscillations at the interface. 
Figure 15.1 shows a sample calculation using the method proposed in [115]. 
Here a right going shock wave impinges upon the interface, producing both 
reflected and transmitted shock waves. Note the spurious oscillations in 
both the pressure and the velocity profiles near the centrally located contact 
discontinuity that separates the two different gamma-law gases. 
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Figure 15.1. Spurious oscillations in pressure and velocity obtained using the 
method proposed by Mulder et al. [115J. The solution computed with 100 grid 
cells is depicted by circles, while the exact solution is drawn as a solid line. 

15.2 Errors at Discontinuities 

The exact solution in Figure 15.1 clearly shows that the pressure and ve
locity are continuous across the contact discontinuity (in fact, they are 
constant in this case), while the density and entropy are discontinuous. 
Since discontinuous quantities indicate the absence of spatial derivatives 
needed in equation (14.47), one should be suspicious of the behavior of nu-
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merical methods in that region. In fact, even the supposedly well-behaved 
solution shown in Figure 14.1 (page 166) is not entirely adequate near the 
discontinuities. While the rarefaction wave (to the left) is continuous in na
ture, both the contact discontinuity and the shock wave should have jump 
discontinuities in the computed solution. However, the computed solution 
smears out these discontinuities over a number of grid cells, leading to 
0(1) errors. Turning our attention to Figure 15.1 we note that the density 
profile near the contact discontinuity (near the center) should only have 
values near 1.5 on the left and values near 4.75 on the right; i.e., none of 
the intermediate values should be present. Intermediate values, such as the 
one near 2.5, represent a rather significant 0(1) error. In light of this, the 
oscillations in the pressure and velocity shown in Figure 15.1 are no worse 
than should be expected given the significant errors in the density profile. 
The only difference is that the density errors are dissipative in nature, while 
the pressure and velocity errors are dispersive in nature. 

Of course, one could argue that dispersive errors are worse than dissi
pative errors, since dispersive errors produce new extrema, changing the 
monotonicity of the solution, while dissipative errors only connect two ad
missible states, producing no new extrema. While this argument is valid for 
the shock and the contact discontinuity in Figure 14.1 and valid for both 
of the shocks in Figure 15.1, it is not valid for the contact discontinuity. 
The gas to the left should never take on values above p = 1.5, and the 
gas to the right should never take on values below p = 3, except at the 
smeared-out contact discontinuity, which can produce new extrema for the 
gas to the left and for the gas to the right. Since both of these gases are well
behaved gamma-law gases, it turns out that the oscillations in pressure and 
velocity can be removed without removing the numerical smearing of the 
density. However, if one of these gases is replaced with a compressible (and 
stiff) Tait equation of state for water (that cavitates for densities less than 
around 999 kg/m3), it becomes rather difficult to remove the oscillations 
in the pressure and velocity while still allowing the rather large dissipative 
errors in the density profile. On the other hand, we will see (below) that it 
is rather easy to remove all these errors at once. 

15.3 Rankine-Hugoniot Jump Conditions 

As can be seen in Figure 15.1, the pressure and velocity are continuous 
across the contact discontinuity, while the density and entropy are discon
tinuous. If we wish to remove the numerical errors caused by nonphysical 
smearing of discontinuous quantities, we need to identify exactly what is 
and what is not continuous across the interface. 

In general, conservation of mass, momentum, and energy can be applied 
to an interface in order to abstract continuous variables. One can place a 
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flux on the interface-oriented tangent to the interface so that material that 
passes through this flux passes through the interface. If the interface is 
moving with speed D in the normal direction, this flux will also move with 
speed D. From conservation, the mass, momentum, and energy that flow 
into this flux from one side of the interface must flow back out the other side 
of the interface. Otherwise, there would be a mass, momentum, or energy 
sink (or source) at the interface, and conservation would be violated. This 
tells us that the mass, momentum, and energy flux in this moving reference 
frame (moving at speed D) are continuous variables. We denote the mass, 
momentum, and energy flux in this moving reference frame by Fp, Fpy, 
and FE, respectively. The statement that these variables are continuous 
is equivalent to the Rankine-Hugoniot jump conditions for an interface 
moving with speed D in the normal direction. 

To define Fp, Fpy, and FE, we write the equations in conservation form 
for mass, momentum, and energy as in equation (14.47). The fluxes for 
these variables are then rewritten in the reference frame of a flux that is 
tangent to the interface by simply taking the dot product with the normal 
direction, 

(15.2) 

where Vn = V· N is the local fluid velocity normal to the interface, and the 
superscript "T" designates the transpose operator. Then the measurements 
are taken in the moving reference frame (speed D) to obtain 

( p(VT_~D~T) ) (Vn- D)+ (p~T), 
+ plV-DNI + 0 pe 2 p 

(15.3) 

from which we can define 

Fp = P(Vn - D), (15.4) 

(15.5) 

(15.6) 

as continuous variables across the interface. That is, these quantities should 
be continuous across the interface in order to enforce conservation. 

We define the jump in a quantity across the interface as [a] = a 1 - a2 , 

where a 1 is the value of a in fluid 1, and a 2 is the value of a in fluid 2. 
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Then we can summarize by stating that [FpJ = 0, [FpvJ = 0, and [Fel = 0 
across an interface moving with speed D in the normal direction. 

15.4 Nonconservative Numerical Methods 

Traditionally, Eulerian-based numerical methods for compressible flow are 
based on the Lax-Wendroff theorem [104J, which dictates that numerical 
methods should be fully conservative, and it is well known that noncon
servative methods produce shocks with incorrect speeds and strengths. 
However, Karni [92] advocated nonconservative form at lower-dimensional 
(e.g., one-dimensional in a two-dimensional calculation) material interfaces 
(contact discontinuities) in order to alleviate the oscillations observed in 
[115J. In [92], full conservation was applied away from interfaces, and a 
nonconservative method was applied near the interface without adversely 
affecting the shock speeds or strengths. Since shocks do not move at the 
local interface velocity, any portion of a shock is in contact only with an 
interface, and thus the nonconservative discretization employed there, on 
a set of measure zero in space and time, minimizing the accumulation of 
error. 

While it is true that others have used nonconservative discretizations, 
Karni [92] is responsible for markedly increasing their popularity in the 
shock-capturing community, where practitioners usually required conser
vation at all cost. It is interesting to note that many front-tracking and 
volume-of-fluid schemes are actually nonconservative; Le., they do not sat
isfy the strict flux-differencing conservation form usually thought to be 
required by the Lax-Wendroff theorem. In this sense, many of these schemes 
share similar properties with the ideology proposed in [92]. For example, 
consider the front-tracking approach of Pember et al. [129], where a high
order Godunov method is used to obtain a nonconservative update near the 
tracked interface and a fully conservative update away from the tracked in
terface. All flow features including shock speeds and strengths as well as 
the speed of the tracked front are correctly determined, as is ensured by the 
solutions of the appropriate Riemann problems. Then the authors go one 
step further and correct the lack of conservation at the interface using a re
distribution procedure due to Chern and Colella [45J that is (presumably) 
not necessary for obtaining a grid-resolved solution, but is used only to 
maintain exact conservation. In fact, the nature of this redistribution pro
cedure does not allow strict application of the Lax-Wendroff theorem, and 
one must assume that the correct solutions are obtained because the numer
ical method is fully conservative except at the lower-dimensional tracked 
interface, which is updated correctly based on solutions of Riemann prob
lems. Similar loss of exact conservation occurs in volume-of-fluid methods, 
where nonphysical overshoots may occur in the volume fraction equation; 
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see Puckett et al. [134J. These overshoots can be ignored when they violate 
conservation, or redistributed in a manner similar to [45J to preserve exact 
conservation. 

15.5 Capturing Conservation 

In summary, conservation of mass, momentum and energy at a disconti
nuity tells us which variables are continuous across the interface, although 
as pointed out by Karni [92J one does not necessarily need exact flux
differenced conservative form in order to obtain the correct weak solution. 
That is, one can instead obtain the correct weak solution in a different man
ner, for example by solving an associated Riemann problem as in [129J. 
Therefore, Fedkiw et al. [63J proposed implicitly capturing the Rankine
Hugoniot jump conditions at the interface in order to avoid the intricate 
details (e.g., multidimensional solution of Riemann problems) that are in
volved in explicitly enforcing the conservation at the interface. This idea 
of implicitly capturing conservation as opposed to explicitly enforcing it is 
in the flavor of level set methods that implicitly capture the location of an 
interface as opposed to explicitly tracking it. Similar to level set methods, 
this implicit capturing method for enforcing conservation gives rise to a 
simple-to-implement numerical algorithm. 

This implicit approach to capturing conservation is applied by creating a 
set of fictitious ghost cells on each side of the interface corresponding to the 
real fluid on the other side. These ghost cells are populated with a specially 
chosen (ghost) fluid that implicitly captures the Rankine-Hugoniot jump 
conditions across the interface. In [63], this method was referred to as the 
ghost fluid method (GFM). 

15.6 A Degree of Freedom 

A contact discontinuity (or material interface) has speed D = Vn . Rewriting 
[FpJ = 0 as pl(V~ - D) = p2(V~ - D) using equation (15.4) and choosing 
either D = V~ or D = V~ leads directly to V~ = V~ or [VnJ = O. This 
is our first jump condition, [VnJ = 0, implying that the normal velocity is 
continuous across the interface. Setting D = V~ = V~ in [FpvJ = 0 leads to 

[PJNT = 0, using equation (15.5) and the fact that the normal is the same 
on both sides of the interface, i.e., [NJ = O. Multiplying [PJNT = 0 by N 
leads to our second jump condition, [PJ = 0, implying that the pressure is 
continuous across the interface. Note that multiplying [PJNT = 0 by any 
tangent vector (there are two of these in three spatial dimensions) leads to 
o = 0 and the failure to produce a jump condition or a continuous variable. 
Plugging D = V~ = V~ into [FEJ = 0 also leads to 0 = 0 and again a failure 
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to produce a jump condition or a continuous variable. Thus, at a contact 
discontinuity in three spatial dimensions we have two jump conditions, 
[Vn) = 0 and [P) = 0, along with three degrees of freedom corresponding to 
the ° = 0 trivially satisfied jump conditions. 

There are five eigenvalues present in the equations of compressible flow 
in three spatial dimensions. Two of these correspond to the genuinely 
nonlinear field associated with sound waves, and the other three of these 
correspond to the linearly degenerate particle velocity. Since a contact dis
continuity moves with the linearly degenerate particle velocity, nothing 
represented by the linearly degenerate fields can cross the interface, mean
ing that these quantities, the two-dimensional tangential velocity and the 
entropy, do not cross the interface and may be discontinuous there. In fact, 
since these quantities are uncoupled across the interface, they are usually 
discontinuous there. We can write 

(15.7) 

where S is the entropy, to indicate that entropy is advected along stream
lines. Then since S and the contact discontinuity move at the same speed 
in the normal direction, information associated with S cannot cross the 
interface. (As a disclaimer we note that equation (15.7) is not valid for 
streamlines that cross shock waves, i.e., entropy jumps across a shock wave. 
However, shock waves do not move at the linearly degenerate speed, so this 
equation is true except for a lower-dimensional subset of space and time.) 

Note that in the case of the full viscous Navier-Stokes equations, 
the physical viscosity imposes continuity of the tangential velocities and 
thermal conductivity imposes continuity of the temperature. 

15.7 Isobaric Fix 

In [66], Fedkiw et al. exploited this degree of freedom in order to signifi
cantly reduce errors caused by nonphysical wall heating. The well-known 
"overheating effect" occurs when a shock reflects off of a solid wall bound
ary, causing overshoots in the temperature and density, while the pressure 
and velocity remain constant. In one spatial dimension, a solid wall bound
ary condition can be applied with the aid of ghost cells by constructing a 
symmetric pressure and density reflection and an asymmetric normal ve
locity reflection about the solid wall. Then a shock wave impinging on the 
wall will collide with a shock in the ghost cells that has equal strength 
traveling in the opposite direction, producing the desired shock reflection. 
Menikoff [113) and Noh [122) showed that overheating errors are a symptom 
of smeared-out shock profiles and that sharper shocks usually produce less 
overheating. They also showed that the pressure and velocity equilibrate 
quickly, while errors in the temperature and density persist. In order to 
dissipate these errors in temperature and density, [122) proposed adding 
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artificial heat conduction to the numerical method in a form similar to ar
tificial viscosity. Later, Donat and Marquina [55] proposed a flux-splitting 
method with a built-in heat conduction mechanism that dissipates these 
errors throughout the fluid. 

For the one-dimensional Euler equations, the Rankine-Hugoniot jump 
conditions for the solid wall moving at the local flow velocity D = VN are 
[VN] = 0, [P] = 0, and 0 = O. These describe the relationship between the 
external flow field and the internal one; Le., both the normal velocity and 
the pressure must be continuous across the solid wall boundary extending 
into the ghost cells. Since these jump conditions are inherently part of 
the equations and thus part of any consistent numerical method, jumps 
in pressure and velocity are hard to maintain for any duration of time at 
a solid wall boundary; Le., jumps between the fluid values and the ghost 
cell values are quickly dissipated. In this sense, one can think of pressure 
and velocity equilibration at a solid wall boundary as an intrinsic action of 
the boundary conditions. There is no such condition for the temperature 
or the density. In the case of a complete equation of state (see Davis [54]) 
only one variable in the linearly degenerate field need be defined, and all 
other variables can be determined from the equation of state relations. In 
this sense, there is no boundary condition for the linearly degenerate field, 
as is emphasized by the trivially satisfied jump condition 0 = O. Since a 
solid wall boundary is an initial boundary value problem, the value of the 
temperature at the wall must come from the initial data, as one can see from 
equation (15.7) which states that entropy is advected along streamlines of 
the fluid. This implies that the entropy near the wall stays near the wall, 
since the wall moves with the local fluid velocity. 

In [66], equation (15.7) was used to develop the isobaric fix, which is a 
boundary condition type of treatment for the linearly degenerate field at a 
solid wall boundary. The isobaric fix modifies the linearly degenerate field 
at a solid wall without changing the values of the pressure or the normal 
velocity. Noting that entropy is advected along streamlines and that the 
entropy within a fluid is usually continuous, we see that the entropy errors 
at the wall are repaired using new values of entropy extrapolated from 
the surrounding flow. For example, replacing the entropy at the wall with 
the entropy of the neighboring cell gives a first-order accurate value of 
the entropy at the wall for smooth entropy profiles. Higher-order accurate 
extrapolation can be used as well, but this has been found to be quite 
dangerous in practice due to the presence of discontinuous shock waves 
that can cause large overshoots when one extrapolates with higher than 
first-order accuracy. In multiple spatial dimensions the solid wall can be 
represented as the zero isocontour of a level set function and moved rigidly 
using the level set equation (3.2) where the velocity is chosen as the rigid
wall velocity (or even the velocity of a deforming wall). Then the isobaric 
fix can be applied using extrapolation of entropy in the normal direction, 
as discussed in Chapter 8. Note that one does not have to deal with the 
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entropy directly, which can sometimes be difficult to compute for general 
equations of state, but one can choose any variable corresponding to the 
equation of state degree of freedom in the linearly degenerate field, e.g., 
density or temperature. 

Although the overheating effect is traditionally discussed in the context 
of shock reflection from stationary walls, more significant cumulative over
heating effects are generated by moving walls. Figure 15.2 shows the errors 
generated in density and temperature by a solid wall moving from left to 
right. The wall, initially at rest, is instantaneously accelerated to a velocity 
of 1000 mls forming the shock wave seen in the figure. The isobaric fix does 
not completely eliminate all of the density and temperature errors, but does 
reduce them by at least an order of magnitude, as shown in Figure 15.3. 

15.8 Ghost Fluid Method 

In [63J, Fedkiw et al. pointed out that a two-phase contact discontinuity 
could be discretized with techniques similar to those used for the solid
wall boundary, except that they are applied twice, i.e., once for each fluid. 
Conceptually, each grid point corresponds to one fluid or the other, and 
ghost cells can be defined at every point in the computational domain so 
that each grid point contains the mass, momentum, and energy for the 
real fluid that exists at that point (according to the sign of the level set 
function) and a ghost mass, momentum, and energy for the other fluid that 
does not really exist at that grid point (the fluid from the other side of the 
interface). Once the ghost cells are defined, standard one-phase numerical 
methods can be used on the entire domain for each fluid; i.e., we now have 
two separate single-fluid problems. After each fluid is advanced in time, 
the level set function is updated using equation (3.2) to advect the level 
set with the local fluid velocity il, and the sign of the level set function 
is used to determine the appropriate real fluid values at each grid point. 
While ghost cells are defined everywhere for the sake of exposition, only a 
band of 3 to 5 ghost cells is actually needed in practice. 

Contact discontinuities move at the local fluid velocity, and the Rankine
Hugoniot jump conditions are [VN J = 0, [PJ = 0, and 0 = 0 three times. Only 
the pressure and normal velocities can be determined from the boundary 
conditions, while the entropy and both tangential velocities remain unde
termined. Since certain properties are discontinuous across the interface, 
one should be careful in applying finite difference methods across the inter
face, since differencing discontinuous quantities leads erroneously to terms 
of the form 1/6.x that increase without bound as the grid is refined. There
fore, the layer of ghost cells should be introduced so that there is continuity 
with the neighboring fluid that needs to be discretized. For variables that 
are already continuous across the interface, e.g., pressure and normal ve-
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Figure 15.2. Overheating errors in density and temperature generated by a piston 
moving to the right. 

locity, the ghost fluid values can be set equal to the real fluid values at each 
grid point, implicitly capturing the correct interface values of these vari
ables. This is the key mechanism in coupling the two distinct sets of Euler 
equations. On the other hand, the discontinuous variables move with the 
speed of the interface, and information in these variables does not cross the 
interface and is not coupled to the corresponding information on the other 
side of the interface. Moreover, in order to avoid numerical smearing or 
spurious oscillations, these discontinuous variables should not be nonphys-
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Figure 15.3. The isobaric fix significantly reduces the overheating errors in both 
density and temperature. 

ically coupled together or forced to be continuous across the interface. The 
most obvious way of defining the discontinuous variables in the ghost cells 
is by extrapolating that information from the neighboring real fluid nodes; 
e.g., the entropy can be extrapolated into the ghost cells using extrapo
latation in the normal equation in the same fashion as it was in applying 
the isobaric fix. Again, as with to the isobaric fix, one does not have to 
deal with the entropy directly, but can choose any variable in the linearly 
degenerate field, e.g., density or temperature. 
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In order to to extrapolate the tangential velocity, we first extrapolate 
the entire velocity field iT. Then, at every cell in the ghost region we have 
two separate velocity fields, one from the real fluid and one from the ex
trapolated fluid. For each velocity field, the normal component of velocity, 
VN, is put into a vector of length three, VNN, and then the tangential 
velocity field is defined by another vector of length three, iT - VN N. We 
add together the normal component of velocity, VNN, from the real fluid 
and the tangential component of velocity, iT - VNN, from the extrapo
lated fluid. This new velocity is our ghost fluid velocity. For the full viscous 
Navier-Stokes equations, the physical viscosity imposes continuity of the 
tangential velocities, so that the entire velocity field is continuous. In this 
case the entire velocity field can be copied over into the ghost cells in a 
node-by-node fashion. Similar statements hold for the temperature in the 
presence of a nonzero thermal conductivity. 

Next, we describe the one-dimensional method in more detail. Suppose 
that the interface lies between nodes i and i + 1. Then fluid 1 is defined to 
the left and includes node i, while fluid 2 is defined to the right and includes 
node i + 1. In order to update fluid 1, we need to define ghost fluid values of 
fluid 1 at nodes to the right, including node i + 1. For each of these nodes we 
define the ghost fluid values by combining fluid 2's pressure and velocity at 
each node with the entropy of fluid 1 from node i; see Figure 15.4. Likewise, 
we create a ghost fluid for fluid 2 in the region to the left, including node i. 
This is done by combining fluid 1's pressure and velocity at each node with 
the entropy of fluid 2 from node i + 1. In order to apply the isobaric fix 
technique, we change the entropy at node i to be equal to the entropy at 
node i - 1 without modifying the values of the pressure and velocity at 
node i; see Figure 15.5. Likewise, we change the entropy at node i + 1 to 
be equal to the entropy at node i + 2. 

An important aspect of this method is its simplicity. We do not need to 
solve a Riemann problem, consider the Rankine-Hugoniot jump conditions, 
or solve an initial boundary value problem at the interface. We capture the 
appropriate interface conditions by defining a fluid that has the pressure 
and velocity of the real fluid at each point, but the entropy of some other 
fluid. Consider the case of air and water. In order to solve for the air, 
we replace the water with ghost air that acts like the water in every way 
(pressure and velocity) but appears to be air (entropy). In order to solve 
for the water, we replace the air with ghost water that acts like the air in 
every way (pressure and velocity) but appears to be water (entropy). Since 
the ghost fluids behave in a fashion consistent with the real fluids that they 
are replacing, the appropriate boundary conditions are captured. Since the 
ghost fluids have the same entropy as the real fluid that is not replaced, we 
are solving a one-phase problem. 

Figure 15.6 shows how the ghost fluid method removes the spurious os
ciallations in the pressure and velocity obtained using the method proposed 
in [115] as shown in Figure 15.1. Note that the density profile remains sharp 
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Figure 15.4. Fluid 1's ghost fluid values are constructed by combining fluid 2's 
pressure and velocity with the entropy of fluid 1 from node i. 
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Figure 15.5. In applying the isobaric fix in conjunction with the ghost fluid 
method, the entropy from node i - 1 is used instead of the entropy from node i. 
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Figure 15.6. The spurious oscillations are removed using the ghost fluid method. 
Moreover, the density profie remains sharp at the contact discontinuity. The 
solution computed with 100 grid cells is depicted by circles, while the exact 
solution is drawn as a solid line. 

across the contact discontinuity. While Figure 15.6 is computed using only 
100 grid cells, Figure 15.7 is computed with 400 grid cells to illustrate the 
behavior of the method under mesh refinement. A two-dimensional exam
ple of an air shock hitting a helium bubble is shown in Figure 15.8. The 
black circle indicates the initial location of the Helium bubble before it was 
hit by the air shock. Figures 15.9, 15.10, 15.11, and 15.12 show two phase
flow calculations where one phase is a gamma-law gas model of air with a 
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Figure 15.7. This figure illustrates how the ghost fluid method converges as the 
grid is refined. The solution computed with 400 grid cells is depicted by circles, 
while the exact solution is drawn as a solid line. 

density around 1 kg/m3 and the other phase is a stiff Tait equation of state 
model for water with a density around 1000 kg/m3 . In the figures the air 
is depicted in red and the water is depicted in green. Note that there is no 
numerical smearing of the density at the interface itself which is fortunate, 
since water cavitates when it drops to a density slightly above 999 kg/m3 , 

leading to host of nonphysical problems near the interface. Note that the 
pressure and velocity are continuous across the interface, although there 
are kinks in both of these quantities. 
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Figure 15.8. Schlieren image for an air shock impinging upon a helium bubble 
using the ghost fluid method to resolve the contact discontinuity. The black circle 
indicates the initial location of the helium bubble. This image was generated by 
Tariq Aslam, of Los Alamos National Laboratory. 
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15.9 A Robust Alternative Interpolation 

The interface values of pressure and normal velocity need to be determined 
using some sort of interpolation technique, where we note that these vari
ables are continuous but may possess kinks due to differing equations of 
state across the interface. Copying these variables into the ghost cells in a 
node-by-node fashion, as proposed above (and in [63]) corresponds to one 
choice of interpolation. Using the fluid on one side of the interface to deter
mine the interface pressure and the fluid on the other side of the interface 
to determine the interface normal velocity corresponds to another choice. 
Different interpolation techniques lead to O(.0.x) differences in the interface 
values of pressure and normal velocity, which vanish as the mesh is refined, 
guaranteeing convergence as the Rankine-Hugoniot jump conditions are 
implicitly captured. 

It is not clear exactly which interpolation technique should be used, and 
the answer is most likely problem related. For smooth well-behaved prob
lems with commensurate equations of state, the method proposed above 
(and in [63]) is probably superior, while using one fluid to define the pres
sure and the other fluid to define the normal velocity is probably superior 
when one fluid is very stiff compared to the other. For example, consider 
interactions between a stiff Tait equation-of-state for water and a gamma
law gas model for air as shown, for example, in Figures 15.9, 15.10, 15.11, 
and 15.12. Since the technique discussed in the last section gives equal 
weighting to the values of the pressure and normal velocity on both sides 
of the interface, any kinks in these values will be smeared out to some ex
tent, causing small errors in the captured interface values of these variables. 
Small errors in the normal velocity of the water create small density errors 
when the equation for conservation of mass in updated. In turn, these small 
density errors can lead to large spurious pressure oscillations in the water, 
since the Tait equation of state is quite stiff. While small errors in the ve
locity of the air cause the same small density errors, these have little effect 
on the gas, since the gamma-law gas equation of state is rather robust. 
Again, since the Tait equation of state is rather stiff, one can expect large 
variations in the pressure of the water near the interface, which in turn 
can lead to poor predictions of the interface pressure. While these errors 
in the interface pressure have a relatively small effect on the heavier water, 
they can have a rather large effect on the lighter gas. Conversely, since the 
gamma-law gas equation of state is rather robust, the gas pressure tends 
to be smooth near the interface and is therefore a good candidate for the 
interface pressure. 

The aforementioned difficulties can be removed in large part by using the 
water to determine the interface normal velocity and the air to determine 
the interface pressure, producing a more robust version of the interpolation. 
When the stiffer fluid (in this case the Tait equation of state water) is 
updated, pressure is still copied over node by node in the ghost region, while 
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Figure 15.9. The gamma-law gas is depicted in red, while the stiff Tait equation 
of state water is depicted in green. Note that the log of the density is shown, 
since the density ratio is approximately 1000 to 1. This calculation uses only 100 
grid cells. (See also color figure, Plate 6.) 

the total velocity and the entropy are extrapolated into the ghost cells. In 
updating the fluid with the more robust equation of state (in this case the 
gamma-law gas air), the normal velocity is still copied over node by node 
in the ghost region, while the pressure, entropy, and tangential velocity are 
extrapolated into the ghost cells. This new robust interpolation technique 
was first proposed by Fedkiw in [62]. Numerical results have shown that 
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Figure 15.10. This is the same calculation as in Figure 15.9, except that 500 grid 
cells are used. (See also color figure, Plate 7.) 

this new method behaves in a fashion similar to the original method, except 
for the increased interface dissipation, which leads to greater stability. 

In Figures 15.9 and 15.10 an interface separates gas on the left from 
water on the right. Solid-wall boundary conditions are enforced on both 
sides of the domain. Initially, a right-going shock wave is located in the 
gas, and a left-going shock wave is located in the water. These shock waves 
propagate toward the interface, producing a complex wave interaction. In 
the figures one can see reflected shock waves traveling outward near x = 1 
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and x = 8. The robustnesss of the new interpolation technique is illustrated 
by the high quality of the solution obtained with as few as 100 grid cells, 
as shown in Figure 15.9. 

In Figures 15.11 and 15.12 interfaces separate gas on the outside of the 
domain from water on the inside of the domain. A solid-wall boundary is 
enforced on the left, and an outflow boundary condition is enforced on the 
right. Initially, all the fluids are moving to the right at 500m/s causing 
a rarefaction wave to start at the solid wall on the left. This rarefaction 
wave propagates to the right, slowing down the fluids. Note that it is much 
easier to slow down the lighter gas as opposed to the heavier water. The 
figures show the steep pressure profile that forms in the water and acts to 
to slow the water down. One of the difficulties encountered in [63] was a 
nonphysical pressure overshoot in the water near the interface on the left. 
This new robust interpolation technique removes the overshoot, producing 
a monotone pressure profile near the interface even in the coarse 100-grid
cell solution in Figure 15.11. 
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16 
Shocks, Detonations, and Deflagrations 

16.1 Introduction 

For a contact discontinuity we separated the variables into two sets based on 
their continuity across the interface. The continuous variables were copied 
into the ghost fluid in a node-by-node fashion, capturing the correct in
terface values, while the discontinuous variables were extrapolated in a 
one-sided fashion to avoid numerical dissipation errors. In order to apply 
this idea to a general interface moving at speed D in the normal direction, 
we need to correctly determine the continuous and discontinuous variables 
across the interface. For example, consider a shock wave where all variables 
are discontinuous, and extrapolation of all variables for both the preshock 
and postshock fluids obviously gives the wrong answer, since the physical 
coupling is ignored. We generally state, For each degree of freedom that is 
coupled across a discontinuity, one can define a variable that is continu
ous across the discontinuity, and all remaining degrees of freedom can be 
expressed as discontinuous variables that can be extrapolated across the dis
continuity in a one-sided fashion, as the key to extending the GFM. For 
the Euler equations, conservation of mass, momentum, and energy can be 
applied to any discontinuity in order to abstract continuous variables; i.e., 
the Rankine-Hugoniot jump conditions always dictate the coupling between 
the prediscontinuity and postdiscontinuity fluids. This idea was proposed 
by Fedkiw et al. [64J to create sharp profiles for shock waves, detonation 
waves, and deflagration waves. 
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16.2 Computing the Velocity of the Discontinuity 

For a contact discontinuity, we use equation (15.1) to update the interface 
location, but a more general discontinuity moving at speed D in the normal 
direction is governed by 

(16.1) 

where W = DN is the velocity of the discontinuity. The authors of [64] 
proposed a capturing method to compute W without explicitly computing 
it on the interface. Suppose 0(1) and 0(2) represent states on different sides 
of the interface. Then, in general, the velocity of the interface is defined 

- - -(1) -(2) by W = W(Uint , Uint ) where the "int" subscript designates a variable 
that has been interpolated to the interface in a one-sided fashion. Gen
erally, W is a continuous function of its arguments, and application of 
W = W(O(1), 0(2)) in a node-by-node fashion will implicitly capture the 
correct value ofW at the interface. This computation ofW = W(O(1), 0(2)) 
in a node-by-node fashion requires values of 0(1) and 0(2) at every node. 
We accomplish this by extrapolating 0(1) across the interface into the re
gion occupied by 0(2) (using equation (8.1)), and likewise extrapolating 
0(2) across the interface into the region occupied by 0(1). Of course, we 
only need to extrapolate values in a thin band of grid cells near the in-

- -. - - -(1) -(2) - -(1) -(2) -terface. When W = DN, I.e., W = W(Uint> Uint ) = D(Uint , Uint)N, we 
can compute D in a node-by-node fashion and obtain W by multiplying D 
byN. 

When using the ghost fluid method for general discontinuities, we need 
to accurately determine the interface speed D. For shock waves and deto
nation waves, D can be found by solving an appropriate Riemann problem 
in a node-by-node fashion [64]. In fact, there is no reason one cannot solve 
a Riemann problem in the case of a contact discontinuity as well, using 
W = DN in equation (16.1) to update the level set function as opposed 
to using equation (15.1) with the less-accurate local fluid velocity. In fact, 
a combination of ghost cells and Riemann problems is commonly used in 
front tracking algorithms; see, e.g., Glimm et al. [73, 72], where a Rie
mann problem is solved at the interface and the results are extrapolated 
into ghost cells. The difference between the ghost fluid method and typi
cal front-tracking algorithms is in the order of operations. Front-tracking 
algorithms first solve a Riemann problem using flow variables interpolated 
to the (possibly) multidimensional interface and then extrapolate the re
sults into ghost cells, while the ghost fluid method first extrapolates into 
ghost cells and then solves the Riemann problem in a node-by-node fashion, 
removing complications due to interface geometry. 

For a deflagration wave, the Riemann problem is not well posed unless 
the speed of the deflagration (D) is given. However, the G-equation for 
flame discontinuities, see Markstein [110], represents a flame front as a dis-
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continuity in the same fashion as the level set method, so that one can easily 
consult the abundant literature on the G-equation to obtain deflagration 
wave speeds. 

16.3 Limitations of the Level Set Representation 

The level set function is designed to represent interfaces where the interface 
crosses material at most once due to an entropy condition; see Sethian [147] 
and Osher and Seian [126]. Contact discontinuities move with the local 
material velocity, and thus never cross over material. On the other hand, if 
one material is being converted into another, then the interface may include 
a regression rate for this conversion. When the regression rate is based on 
some sort of chemical reaction, the interface can pass over a material exactly 
once, changing it into another material. The same chemical reaction cannot 
occur to a material more than once, and the reverse reaction is usually 
not physically plausible due to an entropy condition. However, for readily 
reversible chemical reactions, the zero level set may pass over a material in 
one direction (the reaction) and then pass back over the same material in 
the opposite direction (the reverse reaction). 

Shocks can be interpreted as the conversion of an uncompressed material 
into a compressed material. Here D is the shock speed, and the ghost fluid 
method can be used to follow a lead shock, but since shocks can pass over a 
material more than once in the same direction, all subsequent shocks must 
be captured or modeled by separate level set functions. 

16.4 Shock Waves 

Consider the representation of a lead shock by a level set function where the 
positive values of </.> correspond to the unshocked material and the negative 
values of </.> correspond to the shocked material. Then the normal N points 
from the shocked material into the unshocked material. 

In one spatial dimension, the normal velocity is defined as Vn = V . N, 
and equations (15.4), (15.5) and (15.6) become 

Fp = P(Vn - D) 

Fpv = p(u - DNT)(Vn - D) + pNT 

FE ~ (pe + pl. -2DNI' +p) (V. - D) 

where it is useful to define 

(16.2) 

(16.3) 

(16.4) 

(16.5) 
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and to rewrite equation (16.4) as 

FE = (pe + p(Vn ; D)2 + p) (Vn - D) (16.6) 

using the fact that N = ±1 in one spatial dimension. 
Our goal is to implicitly capture the Rankine-Hugoniot jump conditions 

by implicitly enforcing continuity of Fp, Fpvn' and FE. These quantities 
can be evaluated at each real grid node by plugging the local values of the 
conserved variables into equations (16.2), (16.5) and (16.6) to obtain Ff}, 
F{!vn' and FC', respectively, where the "R" superscript designates a real 
grid node value. In order to implicitly capture the values of these variables 
with ghost node values, we want the ghost node values to result exactly in 
Ff}, F{!vn' and FC' when plugged into equations (16.2), (16.5) and (16.6), 
That is, we want ghost node values of density, velocity, internal energy, and 
pressure such that 

pG(VnG - D) = Ff}, (16.7) 

PG(v:G _ D)2 + pG = FR 
n pVn ' 

(16.8) 

(pGeG + pG(VnG2 - D)2 + pG) (vrf _ D) = FC', (16.9) 

at each grid node, where the "G" subscript designates a ghost node value. 
Adding the equation of state for the ghost fluid as 

pG = (,p _l)pGeG (16.10) 

yields four equations for four unknowns, which can be arranged into a 
quadratic equation for vrf - D, where 

expresses the two solutions. Choosing one of these two solutions for VnG 

allows us to obtain pG from equation (16.7), pG from equation (16.8), and 
eG from equation (16.10). In addition, uG = vrf N. 

In order to choose the correct solution (of the two choices) from equa
tion (16.11), we have to determine whether the ghost fluid is an unshocked 
(preshock) fluid or a shocked (postshock) fluid. Node by node, we use the 
real values of the unshocked fluid to create a shocked ghost fluid. Likewise, 
we use the real values of the shocked fluid to create an unshocked ghost 
fluid. If the ghost fluid is a shocked fluid, then D is subsonic relative to 
the flow; i.e., vrf - cG < D < vrf + cG or IVrf - DI < cG. If the ghost 
fluid is an unshocked fluid, then D is supersonic relative to the flow; i.e., 
IVnG - DI > cG. Therefore, the "±" sign in equation (16.11) should be cho
sen to give the minimum value of IVrf - DI when a shocked ghost fluid is 
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constructed and the maximum value of IVnG - DI for an unshocked ghost 
fluid. 

For a simple nonreacting shock, the shock speed D can be defined directly 
from the mass balance equation as 

p(l)u(1) _ p(2)u(2) 
D='-----,.-,---'-=:--

p(l) _ p(2) 
(16.12) 

in a node-by-node fashion. However, this simple definition of the shock 
speed will erroneously give D = 0 in the case of a standard shock tube 
problem where both fluids are initially at rest. A somewhat better estimate 
of the shock speed can be derived by combining equation (16.12) with the 
momentum balance equation to obtain 

p(l) (u(l)) 2 + p(l) _ p(2) (u(2)) 2 _ p(2) 

p(l) _ p(2) D= (16.13) 

where the shock speed is now dependent on the pressure as well. Note that 
equations (16.12) and (16.13) are only approximations of D. Clearly, these 
approximations will lead to nonphysical values of D in certain situations. 
In fact, D could be infinite or even imaginary. A more robust, but still 
approximate, value for D can be obtained by evaluating D = Vn + c with 
the Roe average of 0(1) and 0(2) (see, for example, LeVeque [105]), since 
this is the exact shock speed for an isolated shock wave and never becomes 
ill-defined. Of course, the best definition of the shock speed can be derived 
by solving the Riemann problem for the states 0(1) and 0(2), although this 
generally requires an iterative procedure. The interested reader is referred 
to the ongoing work of Aslam [9J for more details. 

Figure 16.1 depicts a standard shock tube test case that was computed 
using the level set method to track the location of the shock wave and the 
ghost fluid method to accurately capture the boundary conditions across 
that shock wave. Note the sharp (nonsmeared) representation of the shock 
wave. 

16.5 Detonation Waves 

Strong detonations and Chapman-Jouguet detonations can be approxi
mated as reacting shocks under the assumption that the reaction zone 
has negligible thickness. Again, assume that jij points from the reacted 
material into the unreacted material. 

Equations (16.7), (16.8) and (16.9) are still valid, while equation (16.10) 
becomes 

(16.14) 
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Figure 16.1. Standard shock-tube test case using the ghost fluid method to keep 
the shock wave sharp. The computed solution is depicted by circles, while the 
exact solution is drawn as a solid line. 

where one can no longer set eo = 0 for both fluids. In detonations, the jump 
in eo across the reaction front indicates the energy release in the chemical 
reaction. Equation 16.11 becomes 

(F: _ eG ) 
FR 0 

p 

(16.15) 



16.6. Deflagration Waves 195 

where the "±" sign is chosen to give the minimum value of 1V2 - D I for a 
reacted ghost fluid and the maximum value of 1V2 - DI for an unreacted 
ghost fluid. Equation (16.13) is used for the detonation speed D, although 
one might want to use a Riemann solver; see, for example, Teng et al. 
[163]. 

Figure 16.2 shows an overdriven detonation wave traveling from left to 
right. A solid-wall boundary condition is enforced on the left, creating a rar
efaction wave that will eventually catch up with the overdriven detonation 
and weaken it to a Chapman-Jouguet detonation. The circles depict the 
pressure profile calculated with 200 grid cells, while the solid line depicts 
the computed profile with 800 grid cells. Note that there is no numerical 
smearing of the leading wave front, which is extremely important when one 
attempts to eliminate spurious wave speeds for stiff source terms on coarse 
grids; see, for example, Colella et al. [50]. 

16.6 Deflagration Waves 

For a deflagration wave, equations (16.7), (16.8), (16.9) and (16.14) are used 
with the jump in eo equal to the energy release in the chemical reaction. 
Equation (16.15) is used as well. However, since a deflagration is subsonic, 
the "±" sign is chosen to give the minimum value of IV~ - DI for both the 
reacted and the unreacted ghost fluids. 

For a deflagration, the Riemann problem is not well posed unless the 
speed of the deflagration is given. Luckily, there is abundant literature on 
the G-equation for flame discontinuities, and one can consult this literature 
to obtain appropriate deflagration speeds. For example, using a deflagration 
velocity from Mulpuru and Wilkin [116], 

P .1( T )1.721 
D = VN + 18.5 (101000pJ 298K mls (16.16) 

evaluated with the velocity, pressure, and temperature of the unreacted gas, 
we compute the shock deflagration interaction shown in Figure 16.3. Here a 
left-going shock wave intersects a right-going deflagration wave (unreacted 
gas to the right), resulting in four waves: a shock, contact, deflagration, 
and rarefaction from left to right. All the waves are captured, except the 
deflagration wave, which is tracked with the level set function and resolved 
with the ghost fluid method. The circles depict the computed solution, 
while the solid line depicts the exact solution. Note that the pressure drops 
slightly across a deflagration wave, as opposed to the pressure rise across 
shock and detonation waves. 



196 16. Shocks, Detonations, and Defiagrations 

J 

3 

2 

o 

o 2 3 5 6 7 8 

Figure 16.2. Overdriven detonation wave traveling from left to right with a 
solid-wall boundary condition on the left. The circles depict the pressure profile 
calculated with 200 grid cells. 

16.7 Multiple Spatial Dimensions 

In multiple spatial dimensions we use equations (16.2), (16.5), and (16.14) 
along with 

(16.17) 
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Figure 16.3. Interaction of a left-going shock wave with a right-going defiagration 
wave, producing four waves: a shock, contact, defiagration, and rarefaction from 
left to right. The circles depict the computed solution using 400 grid cells, while 
the solid line depicts the exact solution. 

which is valid when Vn f. D, i.e., except for the case of a contact discontinu
ity. The necessary continuity of this expression i:. .plies the well-known fact 
that tangential velocities are continuous across shock, detonation, and de
fiagration waves. Note that tangential velocities are not continuous across 
contact discontinuities unless viscosity is present. 
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Combining 

IV - DNI2 = IVI2 - 2DVn + D2 = IVI2 - V; + (Vn - D)2 (16.18) 

with 

(16.19) 

where VTl and VT2 are the velocities in the tangent directions Tl and T2 , 

yields 

IV - DNI2 = vi1 + vi2 + (Vn - D)2, (16.20) 

which can plugged into equation (15.6) to obtain 

FE = (pe + p(Vi1 : ViJ + p(Vn ; D)2 + p) (Vn _ D) (16.21) 

as a rewritten version of equation (15.6). We then write 

FE = FE - Fp (Vi12+ ViJ = (pe + P(Vn ; D)2 + p) (Vn - D), (16.22) 

which (not coincidently) has the same right-hand side as equation (16.6). In 
fact, we eventually derive equation (16.15) again, except with F: replaced 
by the identical F:. 

The main difference between one spatial dimension and multiple spatial 
dimensions occurs in the treatment of the velocity. The ghost cell veloc
ity VG is obtained by combining the normal velocity of the ghost fluid with 
the tangential velocity of the real fluid using 

V G = VnG N + V R - VnRN, (16.23) 

where V R - VnRN is the tangential velocity of the real fluid. 
Figure 16.4 shows two initially circular deflagration fronts that have 

merged into a single front. The light colored region surrounding the de
flagration fronts is a precursor shock wave that causes the initially circular 
deflagration waves to deform as they approach each other. Figure 16.5 
shows the smooth level set representation of the deflagration wave. 
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Figure 16.4. Two initially circular defiagration fronts that have recently merged 
into a single front. The light colored region surrounding the defiagration fronts 
is a precursor shock wave that causes the initially circular defiagration waves to 
deform as they approach each other. 
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Figure 16.5. Two initially circular deflagration fronts that have recently merged 
into a single front. Note the smooth level set representation of the deflagration 
wave. 



17 
Solid-Fluid Coupling 

17.1 Introduction 

Solid-fluid interaction problems are still rather difficult for modern compu
tational methods. In general, there are three classical approaches to such 
problems: One can treat both the solid and the fluid with Eulerian numer
ical methods, the fluid with an Eulerian numerical method and the solid 
with a Lagrangian numerical method, or both the solid and the fluid with 
Lagrangian numerical methods. 

Many fluid flows, e.g., high-speed gas flows with strong shocks and large 
deformations, are difficult to simulate with Lagrangian numerical methods 
that use artificial viscosity to smear out shock profiles over a number of 
zones in order to reduce postshock oscillations or ringing. The artificial 
viscosity can be both problem- and material-dependent. Flows with sig
nificant deformations can cause large mesh perturbations and subsequent 
numerical errors that can be removed only with complicated remeshing 
and/ or mesh generation procedures that tend to be low-order accurate. 
In particular, vorticity can cause the mesh to tangle and sometimes in
vert, in which case the calculation needs to be stopped. Eulerian numerical 
methods intrinsically avoid these mesh-associated difficulties by using a 
stationary mesh. Furthermore, these schemes capture shocks in a straight
forward fashion using conservation and robust limiters, eliminating the need 
for problem-dependent artificial viscosity formulations. This allows shocks 
to be modeled with as few as one grid cell without oscillations, whereas La
grangian numerical methods usually suffer from some amount of postshock 
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oscillations until the shock is spread out over about six grid cells; see, e.g., 
Benson [14, 15]. 

While Eulerian numerical methods are superior for high-speed gas flows, 
they can perform poorly for solid mechanics calculations. The capturing 
nature of Eulerian methods generally leads to algorithms that are not ac
curate or robust enough to track time-history variables or material response 
to loading and damage. On the other hand, Lagrangian numerical methods 
are extremely accurate and well tested in this area. 

Many researchers agree that it is preferable to use Eulerian numerical 
methods for fluids and Lagrangian numerical methods for solids. Then there 
are two popular approaches for treating the soli~-fluid interface. First, one 
can smear out the nature of the numerical approximations using a La
grangian method in the solid and an Eulerian method in the fluid with a 
"mushy" region in between where the grid moves with an intermediate ve
locity. That is, the grid velocity is smoothly varying between the Lagrangian 
mesh velocity and the zero-velocity Eulerian mesh. This is the fundamen
tal idea behind arbitrary Lagrangian-Eulerian (ALE) numerical algorithms; 
see, e.g., [14]. The problem with this approach is that the variable velocity 
mesh has not been well studied, and the numerical algorithms employed 
on it tend to be low-order accurate and suspect. The second approach for 
treating the solid-fluid interface is to keep the mesh representation sharp so 
that the Eulerian and Lagrangian meshes are in direct contact. The problem 
with this approach is that the Lagrangian mesh moves, causing Eulerian 
mesh points to appear and disappear. In addition, the Eulerian cells tend 
to have irregular shapes, referred to as cut cells. These cut cells can lead to 
numerical errors and stiff time-step restrictions; see, e.g., [14] and the ref
erences therein, specifically Hancock [78], Noh [121], and McMaster [112], 
which discuss the PISCES, CEL, and PELE programs, respectively. 

In [62], the author took the second approach for the treatment of the 
solid-fluid interface. However, problems with cut cells were avoided by us
ing ghost cells for the Eulerian mesh. These ghost cells are covered (or 
partially covered) by the Lagrangian mesh, but are used in the Eulerian 
finite difference scheme in order to circumvent small time-step restrictions. 
The ghost cells are defined in a way consistent with a contact discontinuity 
so that the interface boundary conditions or jump conditions are properly 
captured. This method also avoids the blending problems associated with 
covering and uncovering of grid points, since covered real grid nodes are 
subsequently treated as ghost nodes, and uncovered ghost nodes are sub
sequently treated as real grid nodes. Moreover, the numerical treatment of 
the solid-fluid interface does not compromise the solution techniques for 
the solid or the fluid. That is, once the ghost cells' values are specified, a 
standard Eulerian program can be used to advance the fluid (and its ghost 
nodes) in time. A standard Lagrangian program can be used to advance the 
solid in time as well as to acquire boundary conditions from the Eulerian 
mesh using both the real grid nodes and the ghost nodes in a standard 
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interpolation procedure. Aivazis et al. [3] successfully used this method 
to couple an Eulerian hydroprogram to a highly sophisticated Lagrangian 
materials program designed by Ortiz. 

17.2 Lagrange Equations 

While there are a number of sophisticated Lagrangian programs, we par
ticularly like the approach of Caramana et al. [24] which allows for 
implementation of arbitrary forces in a straightforward fashion. 

The Lagrange equations are written in nonconservative form with po
sition, velocity, and internal energy as the independent variables. In one 
spatial dimension, both x and u are defined at the grid nodes, while e is 
defined at the cell centers located midway between the nodes. To initialize 
the calculation, the mass of each zone, M Z , is determined, and then the 
subzonal masses m Z are defined as half the zonal mass. The nodal mass MP 
is defined as the sum of the neighboring subzonal masses. The nodal, zonal, 
and subzonal masses all remain fixed throughout the calculation. At each 
time step, the location of each grid node is updated according to 

(17.1) 

where !::::.t is the size of the time step. The velocity at each node is updated 
using 

un+1 _ un pn 

!::::.t = MP' (17.2) 

where pn is the net force on the grid node. The internal energy in each 
zone is updated with 

en+1 _ en Hn 

!::::.t = Mz' (17.3) 

where Hn is the heating rate of the zone. One can apply either force or 
velocity boundary conditions to the grid nodes on the boundary. Velocity 
boundary conditions are enforced by setting the velocity of a boundary 
node to the desired boundary velocity instead of solving equation (17.2). 
Force boundary conditions are applied by adding the boundary force to the 
net nodal force pn in equation (17.2). 

In two spatial dimensions, both X = (x, y) and iT = (u, v) are defined 
at the grid nodes, which are connected in the same fashion as an Eulerian 
grid, producing quadrilateral zones. Each quadrilateral zone is split into 
four subzones by connecting the midpoints of opposite edges of the zone. 
The internal energy is defined at the zone center located at the intersec
tion of the four subzones. To initialize the calculation, the mass of each 
zone, MZ, is determined, and then the subzonal masses m Z are defined as 
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one-fourth the zonal mass. The nodal mass MP is defined as the sum of the 
(at most four) neighboring subzonal masses. Once again, the nodal, zonal, 
and subzonal masses all remain fixed throughout the calculation. The in
dependent variables are updated with equations (17.1), (17.2) and (17.3) 
with x, u, and pn replaced with X, if, and F, respectively. Either force or 
velocity boundary conditions are applied to the nodes on the boundary. 

For three spatial dimensions we refer the reader to Caramana et al. [25]. 

17.3 Treating the Interface 

Boundary conditions need to be imposed on both the Eulerian and La
grangian grids where the Lagrangian grid partially overlaps the Eulerian 
grid. First the interface itself needs to be defined, and since the Lagrangian 
grid nodes move at the local material velocity, these nodes can be used 
to determine the position of the interface. This interface divides the Eule
rian mesh into separate regions, a region populated by real grid nodes and 
a region populated by ghost nodes. Interface boundary conditions for the 
Eulerian mesh are imposed by defining mass, momentum, and energy in 
the ghost nodes. Interface boundary conditions for the Lagrangian mesh are 
imposed by either specifying the velocity of the grid nodes on the boundary 
or by specifying the force applied to that boundary. 

Since the interface moves with the local material velocity, it can be 
treated as a contact discontinuity. The pressure and the normal velocity are 
continuous across the interface, while the entropy and tangential velocities 
are uncoupled across the interface. The interface values of the uncoupled 
variables are captured by extrapolating these variables across the interface 
into the ghost cells. The continuous or coupled variables are determined 
using the values from both the Eulerian and the Lagrangian meshes. 

The interface normal velocity can be determined by applying any num
ber of interpolation techniques to the Eulerian and Lagrangian mesh values. 
However, one should be careful to define the interface normal velocity in a 
way that is consistent with the material in the Lagrangian mesh. Pertur
bations to the velocity of the Lagrangian grid nodes can provide enormous 
stress due to resistive forces such as material strength. For this reason, in 
order to determine an accurate (and Lagrangian mesh-consistent) value of 
the normal velocity at the interface, only the Lagrangian mesh is used to 
determine the interface velocity, as was done in [78], [112], and [121]. Both 
calculations use this interface normal velocity, so that [VN ] = 0 is enforced. 
That is, the Lagrangian mesh uses the computed velocities of its boundary 
nodes, while the Eulerian calculation captures this interface normal veloc
ity by assigning to each ghost node the interface normal velocity of the 
nearest Lagrangian mesh point on the interface. 



17.3. Treating the Interface 205 

Since the interface normal velocity is defined as the velocity of the nodes 
on the Lagrangian mesh boundary with no contribution from the Eulerian 
mesh, velocity boundary conditions cannot be enforced on the Lagrangian 
mesh at the interface. Instead, force boundary conditions are applied by 
interpolating the Eulerian grid pressure to this Lagrangian interface. In this 
fashion, the interface pressure is determined using only the Eulerian grid 
values, ignoring contributions from the Lagrangian mesh, as in [78J, [112], 
and [121). Both calculations use this interface pressure, so that [P) = 0 is 
enforced. The interface pressure is captured by the Eulerian calculation by 
extrapolating the pressure across the interface into the ghost cells which 
is similar to the treatment of entropy and tangential velocity. Then the 
interface pressure is interpolated from the Eulerian grid in order to apply 
force boundary conditions to the Lagrangian mesh. 

Noh [121) suggested that it might be better to use some average of the 
Lagrangian and Eulerian grid values for determining the pressure at the 
interface. For Lagrangian calculations with artificial viscosity and mate
rial strength, the jump condition implies that the net stress in the normal 
direction is continuous, not just the pressure. Therefore, this advocated 
averaging procedure would need to take place between the pressure in the 
fluid and the normal component of the net stress in the normal direction 
in the solid. However, this can be dangerous, for example, when the La
grangian material is in tension, since near-zero or negative stress might be 
calculated at the interface. While Lagrangian methods can be quite robust 
under tension, Eulerian methods can suffer a number of problems in treat
ing near-zero or negative pressures associated with rarefied or cavitated 
fluids. 

The one-dimensional interface is defined by the location of the La
grangian boundary nodes that are adjacent to grid nodes of the Eulerian 
mesh. This interface location is used to construct a signed distance function 
in order to apply level set methods near the interface. Before defining values 
in the Eulerian ghost nodes, a check is performed to see whether enough 
ghost nodes are present. That is, since the Lagrangian mesh is moving, one 
needs to ensure that there is adequate overlap between the two meshes. 
This is done by examining the values of ¢ on the computational bound
aries of the Eulerian mesh. If the computational boundary is an Eulerian 
ghost node, then the value of ¢ gives the distance to the interface and 
can be used to estimate the number of ghost nodes that exist between the 
interface and the computational boundary. Then the size of the Eulerian 
mesh can be increased if there are not enough ghost nodes. 

The Eulerian ghost nodes are defined by first extrapolating Sand p. 
Then u at each ghost node is assigned the value of u at the nearest La
grangian boundary node that lies on the interface between the Eulerian 
and Lagrangian grids. Force boundary conditions are applied to the La
grangian interface using the pressure from the Eulerian grid. First, the 
pressure at the interface is determined using linear interpolation from the 
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Eulerian mesh. This linear interpolation requires valid pressure values in 
both the real and the ghost nodes. Therefore, the pressure extrapolation 
step needs to be carried out before this linear interpolation step. This Eu
lerian interface pressure makes a contribution of ±p to the net force on the 
Lagrangian boundary node, depending on whether the Lagrangian mesh 
lies to the right or to the left of the interface, respectively. 

With boundary conditions specified on both the Eulerian and Lagrangian 
meshes, both can be advanced one Euler step in time. Both the Eulerian 
real grid nodes and a band of Eulerian ghost nodes are advanced in time. 
These ghost nodes are advanced in time so that they have valid values in 
case they are uncovered by the Lagrangian mesh. 

The two-dimensional interface is defined by the line segments of the La
grangian mesh boundary that are adjacent to grid nodes of the Eulerian 
mesh. This interface is used to construct a signed distance function defined 
at every Eulerian grid node. Once again, ¢ is examined on the computa
tional boundaries of the Eulerian mesh to ensure that enough ghost nodes 
are present, and the size of the Eulerian mesh is increased when necessary. 

The Eulerian ghost nodes are defined by first extrapolating S, p, and V 
across the interface into the ghost nodes. Then for each ghost node, the 
closest point on the Lagrangian interface is determined. If the closest point 
happens to be on the end of a linear segment, i.e., a Lagrangian grid node, 
then that velocity can be designated the closest interface velocity. Other
wise, the closest point is on an edge connecting two Lagrangian grid nodes, 
and the closest interface velocity is determined using linear interpolation 
between those two nodes. The normal component of the interface velocity 
is combined with the tangential component of the extrapolated velocity 
to determine the velocity at each ghost node. Once the Eulerian ghost 
nodes have valid values for the extrapolated pressure, force boundary con
ditions can be determined at the Lagrangian interface. The midpoint of 
each linear interface segment is defined as a control point, and bilinear in
terpolation is used to determine the Eulerian mesh pressure at each of these 
control points. Then this pressure is multiplied by both the length and the 
inward-pointing normal of the line segment to determine the magnitude 
and direction of the Eulerian pressure force on this segment. Finally, half 
of this Eulerian pressure force is added to each of the two nodes that make 
up the segment. 

Figure 17.1 shows the velocity field obtained as a shock wave propagates 
through an Eulerian gas sandwiched between two Lagrangian materials 
with strength. 
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velocity Ileid 

0 .9 

Figure 17.1. A shock wave propagating through a gas bounded on top and bottom 
by Lagrangian materials with strength. (See also color figure, Plate 10.) 



18 
Incompressible Flow 

18.1 Equations 

Starting from conservation of mass, momentum, and energy, the equations 
for incompressible flow are derived using the divergence-free condition V . 
if = 0, which implies that there is no compression or expansion in the flow 
field, The equation for conservation of mass becomes 

Pt+ if· '1p=o, (18.1) 

indicating that the (possibly spatially varying) density is advected 
along streamlines of the flow. The Navier-Stokes equations for viscous 
incompressible flow are 

- Px (2/-lux)x + (/-l(Uy + vX))y + (/-l(uz + wX»)z 
Ut + V . '1u + - = , (18.2) 

P P 
- Py (/-l(Uy + vx»x + (2/-lvy)y + (/-l(vz + wy»)z 

Vt + V . '1v + - = + g, 
p p 

(18.3) 

- pz (/-l(uz + wx»x + (/-l(vz + wy»y + (2/-lwz)z 
Wt + V . '1w + - = , (18.4) 

P P 
where /-l is the viscosity and 9 is the acceleration of gravity. These equations 
are more conveniently written in condensed notation as a row vector 

- (- ) - '1p (V· rf lit + V· V V + P = p + g, (18.5) 
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where "T' is the transpose operator, 9 = (0, g, 0), and T is the viscous 
stress tensor 

( 
2ux u y + Vx Uz + Wx 

T = J.t u y + Vx 2vy Vz + Wy 

Uz + Wx Vz + Wy 2wz 

(18.6) 

which can be expressed in a more compact form as 

(18.7) 

The incompressible flow equations model low-speed fluid events, includ
ing many interesting liquid and gas flows observed in everyday life. A 
number of classic texts have been written about both the analytical and nu
merical approaches to these equations, including Landau and Lifshitz [101] 
and Batchelor [11]. A rather inspiring collection of photographs obtained 
from various experiments was assembled by Van Dyke [169]. A standard in
troduction to numerical methods for the Navier-Stokes equations is Peyret 
and Taylor [133], which discusses both the artificial compressibility method 
of Chorin [46] and the projection method of Chorin [47]. Some of the most 
popular modern-day numerical methods were introduced by Kim and Moin 
[96], Bell, Colella, and Glaz [13], and E and Liu [56]. A rather intriguing 
look at all three of these methods was recently presented by Brown, Cortez, 
and Minion [19]. 

18.2 MAC Grid 

Harlow and Welch [79] proposed the use of a special grid for incompressible 
flow computations. This specially defined grid decomposes the computa
tional domain into cells with velocities defined on the cell faces and scalars 
defined at cell centers. That is, Pi,j,k, Pi,j,k, and J.ti,j,k are defined at cell 
centers, while ui±l 3' k' Vi 3'±1 k' and Wi J' k±.! are defined at the appropriate 

2' , '2' "2 
cell faces. 

Equation (18.1) is solved by first defining the cell center velocities with 
simple averaging: 

(18.8) 

(18.9) 

(18.10) 

Then the spatial derivatives are evaluated in a straightforward manner, for 
example using third order accurate Hamilton-Jacobi ENO. 
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In order to update, u, v, and w on the appropriate cell faces, equations 
(18.2), (18.3) and (18.4) are written and evaluated on those appropriate 
cell faces. For example, in order to discretize the convective V . Vu term at 
Xi±l J" k we first use simple averaging to define V at Xi±l J' k; i.e., 

2' , 2' , 

V" 1 k + V'" 1 k + V'+l" 1 k + V'+l '+1 k 1.')-2' 1,J+2' 'l, ')-2' i ,) 2' 
V'+l "k = 

• 2,J, 4 
(18.11) 

and 

W, 'k 1 +W, 'k+l +W'+l 'k 1 +W'+l 'k+l 1,,), -2' '1.,), '2 t ,l, -'2 t ,J, 2' 
W"+l 'k = 

• 2')' 4 
(18.12) 

define v and w, while u is already defined there. Then the V· Vu term on 
the offset Xi ± 1 J' k grid is discretized in the same fashion as the V . V P 

2' , 

term on the regular Xi,j,k grid, for example with third order accurate 
Hamilton-Jacobi ENO. The convective terms in equations (18.3) and (18.4) 
are discretized similarly. 

The viscous terms are discretized using standard central differencing. For 
example, 

u"+ 1 'k - U' 1 'k 
(u )., _ t 2')' 'l,-2'}' 

x ',J,k - t:.x ' (18.13) 

(18.14) 

and 

(18.15) 

are used to compute the first derivatives of u. The functions p and IL are 
defined only at the grid points, so simple averaging is used to define them 
elsewhere, e.g., 

lLi,j,k + lLi+l,j,k 
1Li+~,j,k = 2 (18.16) 

and 

lLi,),k + lLi+l,j,k + lLi,j+1,k + lLi+l,j+l,k 
1L.+~,j+!,k = 4 (18.17) 

Then the second-derivative terms are calculated with central differencing 
a''l well. For example, (IL(Uy + vX))y in equation (18.2) is discretized as 

lLi+!,j+!,k(Uy + VX)i+!,j+!,k -1Li+!,j-!,k(Uy + vX)i+!,j-!,k (18.18) 
t:.y 
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18.3 Projection Method 

The projection method is applied by first computing an intermediate 
velocity field V*, ignoring the pressure term 

v*-vn (~ ) ~ ('1.r)T ~ 
-L:,-t-+ V·'1 V= p +g, 

and then computing a divergence-free velocity field vn+l, 
VnH - V* '1p 

L:,t +-p =0, 

(18.19) 

(18.20) 

using the pressure as a correction. Note that combining equations (18.19) 
and (18.20) to eliminate V* results in equation (18.5) exactly. 

Taking the divergence of equation (18.20) results in 

'1. ('1P) = '1. V* (18.21) 
P 6t 

after we set '1. vnH to zero, i.e., after we assume that the new velocity 
field is divergence free. Equation (18.21) defines the pressure in terms of the 
value of L:,t used in equation (18.19). Defining a scaled pressure of p* = p6t 
leads to 

(18.22) 

and 

(18.23) 

in place of equations (18.20) and (18.21), where p* does not depend on 6t. 
When the density is spatially constant, we can define p = p6t/ p, leading 
to 

(18.24) 

and 

(18.25) 

where p does not depend On 6t or p. 
Boundary conditions can be applied to either the velocity or the pressure. 

In order to apply boundary conditions to vn+l, we apply them to V* after 
computing V* in equation (18.19) and before solving equation (18.21). 
Then in equation (18.21), we set '1p. N = 0 on the boundary, where N 
is the local unit normal to the boundary. Since the flow is incompressible, 
the compatibility condition 

£ V* . N = 0 (18.26) 
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needs to be satisfied when the boundary condition on y* is specified in 
order to guarantee the existence of a solution. Here, r represents the 
boundary of the computational domain and N is the unit normal to that 
boundary. See, for example, [133J for more details. 

18.4 Poisson Equation 

In order to update the intermediate velocity y* obtained with equation 
(18.19) to the divergence-free yn+1 using equation (18.20), we need to first 
find the pressure by solving equation (18.21). This equation is elliptic, since 
the incompressibility condition is equivalent to assuming an infinite speed 
of propagation for the sound waves. This elliptic treatment of the acoustic 
waves gives a CFL condition that depends only on the fluid velocity; i.e., the 
sound waves do not playa role. Note that one should include the viscosity 
and gravity terms in the time-step restriction as well, unless, of course, the 
viscosity is treated implicity. 

The right-hand side of equation (18.21) can be evaluated at each cell 
center using central differencing; for example, 

u* 1· - u* 1 . 

(u*).. - t+"2,),k t-"2,J,k 
x ,,],k - 6x (18.27) 

is used to compute u~. The components of the 'Vp/ p term are computed 
at cell faces, for example 

( ) . 1. = Pi+l,j,k - Pi,j,k 
Px t+"2 ,],k 6x (18.28) 

is used to compute the pressure derivative at Xi+! J' k' This discretization of 
2' , 

the pressure derivatives is used both in equation (18.20) to update the ve-
locity field and in equation (18.21) to find the pressure. In equation (18.21) 
a second derivative is needed as well. Once again, central differencing is 
used; for example, 

(( /) ) .. = (Px/p)i+!,j,k - (Px/P)i-!,j,k 
Px P x t] k " " L.:l.X 

(18.29) 

is used to compute the second derivative in the x-direction. 
Discretization of equation (18.21) at each cell center leads to a coupled 

linear system of equations for the unknown pressures (one equation at each 
cell center). This system is symmetric and can be solved in a straightfor
ward manner using a preconditioned conjugate gradient (PCG) method 
with an incomplete Choleski preconditioner. The interested reader is re
ferred to the comprehensive computational linear algebra text of Golub 
and Van Loan [75J. After the iterative PCG method is used to compute 
the pressure at each cell center, the derivatives can be computed at the cell 
faces and used to update the velocity field in equation (18.20). 
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18.5 Simulating Smoke for Computer Graphics 

For computer graphics applications one is less concerned with overall accu
racy and more concerned with computational efficiency, as long as visually 
believable results can be obtained. For this reason, computer graphics sim
ulations are usually undertaken on relatively coarse grids using methods 
that allow for large time steps. A popular numerical method in the at
mospheric sciences community is the semi-Lagrangian method; see, e.g., 
Staniforth and Cote [155] for a review. Semi-Lagrangian methods consist 
in backward tracing of characteristic information from grid points to arbi
trary points in space with subsequent interpolation of data from the grid 
points to the backward-traced origins of the characteristics. This method 
was first proposed by Courant et al. [51] and is guaranteed to be stable for 
any time step as long as monotone interpolation is used. 

In [70], Fedkiwet al. used a first-order accurate semi-Lagrangian method 
to produce visually convincing simulations of smoke. Since this method is 
highly dissipative, the viscous terms were ignored in order to artificially 
increase the Reynolds number on a coarse grid. To further amplify the 
numerical Reynolds number, a vorticity confinement term was added as 
an artificial forcing function on the right-hand side of the equations. This 
vorticity confinement method was invented by Steinhoff; see, e.g., [161] for 
more details. Since the air was assumed to have constant density, equa
tion (18.1) was not needed to model the air. On the other hand, since 
equation (18.1) can be used to model any passive scalar, it was used to 
independently track the concentration of smoke within the air. Figure 18.1 
shows a warm smoke plume injected from left to right rising under the 
effects of buoyancy, while Figure 18.2 depicts the flow of smoke past a 
sphere. 
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Figure 18.1. A warm smoke plume injected from left to right rises under the 
influence of buoyancy. (See also color figure, Plate 11.) 

Figure 18.2. Small-scale eddies are generated as smoke flows past a sphere. (See 
also color figure, Plate 12.) 



19 
Free Surfaces 

19.1 Description of the Model 

Consider a two-phase incompressible flow consisting of water and air. The 
two phase interface separating these fluids has rather complicated dynamics 
that we will discuss later (in Chapter 21). In many situations the behavior of 
the heavier fluid significantly dominates the behavior of the lighter fluid. In 
these situations, the model can be simplified by treating the air as a simple 
constant-pressure fluid that exerts no other stress (i.e., except pressure 
forces) on the interface. This removes any relevant dynamic effects from 
the air, leaving only a simple uniform pressure force normal to the interface 
independent of the interface topology or motion. 

Harlow and Welch [79] used marker particles to identify which grid cells 
contained water and which grid cells contained air. Later, Raad et al. [136] 
improved the treatment of the pressure boundary conditions at the in
terface, introducing a sub cell treatment of the pressure. Chen et al. [39] 
improved the velocity boundary conditions at the free surface to obtain a 
more accurate flow field. Furthermore, Chen et al. [40] reduced the need 
to resolve the three-dimensional volume with particles by introducing a 
method that required particles only near the free surface itself. 

Particle locations give only a rough indication of the location of the 
free surface. We instead prefer to use the level set function ¢ to more 
accurately model the free surface. Then the Navier-Stokes equations are 
solved on the water side of the interface only. In order to discretize both 
the level set equation and the Navier-Stokes equations, ghost cell values of 
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the velocity are needed on the air side of the interface. These are defined 
by extrapolating the velocity field across the interface using equation (8.1). 
Dirichlet pressure boundary conditions can be applied at the free surface by 
setting the pressure to atmospheric pressure at every cell center located in 
the air. This use of Dirichlet boundary conditions on the pressure reduces 
the need to enforce the compatibility condition. 

The atmospheric pressure boundary condition should be applied directly 
on the free surface, not at cell centers that are a finite distance away 
from the surface. Setting the pressure to atmospheric pressure at every 
cell center in the air causes an overprediction of the pressure at the in
terface itself. Raad et al. [136] reduces this problem to some degree by 
using micro cells near the interface, lowering the size of the error constant 
in this first-order accurate approximation of the boundary condition. Re
cently, Cheng et al. [44) devised a fully second-order accurate method for 
enforcing the atmospheric pressure boundary conditions on the free surface. 
This is accomplished by setting the pressure at cells in the air to specially 
calculated values that are lower than atmospheric pressure. This implicitly 
enforces the atmospheric pressure boundary condition exactly on the free 
surface to second-order accuracy. Notably, this method does not disturb 
the symmetric nature of the coefficient matrix that needs to be inverted to 
find the pressures. 

19.2 Simulating Water for Computer Graphics 

One of the difficulties associated with using level set methods to simulate 
free surfaces (and fluids in general) is that level set methods tend to suffer 
from mass loss in underresolved regions of the flow. Foster and Fedkiw [71] 
addressed this problem in the context of splashing water by devising a new 
numerical approach that hybridizes the particle method and the level set 
method using the local interface curvature as a diagnostic. The curvature 
was used to monitor the interface topology by classifying regions of high 
curvature as underresolved. In these underresolved regions, the particles are 
used to rebuild the level set function, reducing mass loss to a large degree. 
On the other hand, in regions of relatively low curvature the high-order 
accurate level set solution is preferred. A sample calculation of a splash 
generated by a sphere is shown in Figure 19.1. In some regions of the flow 
the grid is too coarse to capture the splashing behavior, even with the aid 
of the particles, and some particles will inevitably escape from the water 
side of the interface and appear on the air side. These escaped particles can 
be used to generate an interesting spray effect, as shown in Figure 19.2, 
where a slightly submerged ellipse slips through the water. 

Although the local interface curvature is a good diagnostic of potential 
mass loss in level set methods, the approach in [71] is still somewhat ad hoc 
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Figure 19.1. A splash is generated as a sphere is thrown into the water. (See also 
color figure, Plate 13.) 

in nature. A more thorough approach to hybridizing particle methods and 
level set methods (the particle level set method) was presented in Chap
ter 9. Figure 19.3 shows the highly realistic thin water sheet generated as 
a sphere splashes into the water. This highlights the ability of the particle 
level set method to accurately capture thin interfacial regions that may be 
underresolved by the Cartesian grid. Figure 19.4 shows the impressive re
sults generated using this method to model water flowing into a cylindrical 
glass. A close-up view of the bottom of the glass is shown in Figure 19.5. 
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Figure 19.2. An interesting spray effect is generated as a slightly submerged ellipse 
slips through the water. (See also color figure, Plate 14.) 
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Figure 19.3. A thin water sheet is generated by a sphere thrown into the water. 
(See also color figure, Plate 15.) 

Figure 19.4. Pouring water into a cylindrical glass using the particle level set 
method. (See also color figure, Plate 16.) 
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Figure 19.5. Pouring water into a cylindrical glass using the particle level set 
method. (See also color figure, Plate 17.) 



20 
Liquid-Gas Interactions 

20.1 Modeling 

Liquid-gas interactions, e.g., the vaporization and subsequent combustion 
of liquid fuel droplets or the shock-induced mixing of liquids, are rather 
difficult problems in computational fluid dynamics. These problems ad
dress the interaction of liquid droplets with a compressible gas medium. 
There are three classical approaches to such problems: Both phases can be 
treated as compressible fluids (as we did in Chapter 15), both phases can 
be treated as incompressible fluids (as we did in Chapter 21), or the gas can 
be treated as a compressible fluid while the liquid is treated as an incom
pressible fluid. A completely incompressible treatment can be ruled out any 
time one is interested in shock waves or other compressible phenomena. A 
completely compressible treatment is not desirable, since a relatively high 
sound speed in the liquid phase can impose a restrictive (and inefficient) 
CFL condition. Moreover, a completely compressible approach is limited to 
liquids for which there are acceptable models for their compressible evolu
tion. To overcome these difficulties, Caiden et al. [23] modeled the gas as a 
compressible fluid and the liquid as an incompressible fluid. They coupled 
a high-resolution shock-capturing scheme for the compressible gas flow to 
a standard incompressible flow solver for the liquid phase. 
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20.2 Treating the Interface 

Since the interface is a contact discontinuity moving with the local fluid ve
locity, the Rankine-Hugoniot jump conditions imply that both the pressure 
and the normal velocity are continuous across the interface. An incompress
ible liquid can be thought of as the limiting case obtained by increasing 
the sound speed of a compressible liquid to infinity. In this sense, an in
compressible fluid can be thought of as a very stiff compressible fluid, in 
fact, the stiffest. The interface separating the compressible flow from the 
incompressible flow is treated using the robust interpolation procedure out
lined in Section 15.9. That is, the compressible gas is used to determine 
the interface pressure, while the incompressible liquid is used to determine 
the interface normal velocity. 

Advancing the solution forward in time consists of four steps. First, the 
entire incompressible velocity field is extrapolated across the interface. The 
ghost cell values are used to find the intermediate incompressible velocity 
field V*. Second, the entire compressible state vector is extrapolated across 
the interface, and the extrapolated tangential velocity is combined with the 
incompressible normal velocity to obtain a ghost cell velocity for the com
pressible fluid. Then the compressible gas is updated in time. Third, the 
level set function is advanced forward in time using the incompressible ve
locity field only, since the interface velocity is defined by the incompressible 
flow. The extrapolated ghost cell values of the incompressible velocity field 
are useful in this step. Fourth, the intermediate incompressible flow veloc
ity V* is projected into a divergence-free state using the updated level set 
location and the updated values of the compressible pressure as Dirichlet 
boundary conditions at the interface. This last step accounts for the in
terface forces imposed by the pressure of the compressible fluid. Surface 
tension effects are easily included in this last step using Dirichlet pressure 
boundary conditions of P = Pc + (TK" where Pc is the compressible pressure, 
(T is a constant, and K, is the local interface curvature. This accounts for 
the jump in pressure due to surface tension forces, i.e., [P] = (TK,. 

Figure 20.1 shows an incompressible liquid droplet moving from left to 
right in a compressible gas flow. Notice the lead shock in the compressible 
gas. Figure 20.2 shows a shock wave impinging on an incompressible liquid 
droplet. A reflected wave can be seen to the left, and a faint transmitted 
wave can be seen to the right. 
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Figure 20.1. An incompressible droplet traveling to the right in a compressible 
gas flow. Note the lead shock wave. (See also color figure, Plate 18.) 
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velocity field 
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Figure 20.2. A shock wave impinging on an incompressible droplet producing 
a reflected wave and a (very) weak transmitted wave. (See also color figure, 
Plate 19.) 



21 
Two-Phase Incompressible Flow 

21.1 Introduction 

The earliest real success in the coupling of the level set method to problems 
involving external physics came in computing two-phase incompressible 
flow, in particular see the work of Sussman et al. [160] and Chang et al. 
[38]. In two-phase incompressible flow, the Navier-Stokes equations are used 
to model the fluids on both sides of the interface. Generally, the fluids 
have different densities and viscosities, so these quantities are discontinuous 
across the interface. Both the discontinuous viscosity and surface tension 
forces cause the pressure to be discontinuous across the interface as welL 
In addition, a discontinuous viscosity leads to kinks in the velocity field 
across the interface. 

In [132], Peskin introduced the "immersed boundary" method for simu
lating an elastic membrane immersed in an incompressible fluid flow. This 
method uses a <5-function formulation to smear out the numerical solution 
in a thin region about the immersed interface. This concept has been used 
by a variety of authors to solve a number of interface-related problems. For 
example, [160] defined a numerically smeared-out density and viscosity as 
functions of the level set function, 

p(cp) = p- + (p+ - p-) H(1)), 

p,(cp) = p,- + (p,+ - p,-) H(cp), 

(21.1) 

(21.2) 

where H(1)) is the numerically smeared-out Heaviside function defined by 
equation (1.22). This removes all discontinuities across the interface, except 



228 21. Two-Phase Incompressible Flow 

the jump in pressure due to surface tension, lP] = (7/';', where (j is a constant 
coefficient and /'l, is the local curvature of the interface. Using the immersed 
boundary method to smear out the pressure across the interface leads to 
continuity of the pressure, lP] = 0, and loss of all surface-tension effects. 
This was remedied by Brackbill et al. [18] in the context of volume of fluid 
(VOF) methods and by Unverdi and Tryggvason [168] in the context of 
front-tracking methods by adding a new forcing term to the right-hand 
side of the momentum equations. In the context of level set methods (see 
[160]) this new forcing term takes the form 

b(¢)(jK,N 
(21.3) 

p 

where b(¢) is the smeared-out delta function given by equation (1.23). In 
the spirit of the immersed boundary method, [18] referred to this as the 
continuum surface force (CSF) method. 

In the interest of solving for the pressure jump directly, Liu et 
al. [106] devised a new boundary-condition-capturing approach for the 
variable-coefficient Poisson equation to solve problems of the form 

v (~vp) = J, (21.4) 

where the jump conditions lP] = 9 and [(1/ p)Vp· N] = h are given. Here, 
p can be discontinuous across the interface as well. Figure 21.1 shows a 
typical example of the discontinuous solutions obtained using this method. 
Note that both the pressure and its derivatives are clearly discontinuous 
across the interface. Kang et al. [91] applied this technique to multiphase 
incompressible flow, illustrating the ability to solve these equations without 
smearing out the density, the viscosity, or the pressure across the interface. 
Moreover, the b(¢)(j/'l,N / p forcing term was not needed, since the pressure 
jump was modeled directly. Figure 21.2 shows a water drop falling through 
the air into the water. Here, surface tension forces cause the spherically 
shaped region at the top of the resulting water jet in the last frame of the 
figure. 

LeVeque and Li [102] proposed a second-order accurate sharp interface 
method to solve equation (21.4). In general, one needs to solve a linear sys
tem of equations of the form Ap = b, where p are the unknown pressures, A 
is the coefficient matrix, and b is the right-hand side. Unfortunately, the dis
cretization in [102] leads to a complicated asymmetric coefficient matrix, 
making this linear system difficult to solve. So far, this method has not 
been applied to two-phase incompressible flow. In contrast, the discretiza
tion proposed in [106] leads to a symmetric coefficient matrix identical 
to the standard one obtained when both the pressure and its derivatives 
are continuous across the interface. Adding the jump conditions only re
quires modification of the right-hand side, b. This allows the use of standard 
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o -1 

Figure 21.1. Solution of \7 . (~\7p) = f(x,y), with [P] = g(x,y) and 

[~\7p. N] = h(x, y). Note the sharp resolution of the discontinuity. 

black-box linear system solvers even in the presence of complicated jump 
conditions. Recently, Li and Lai [103] extended [106] by adding a second
order accurate correction term to the method. This correction term is valid 
in the presence of an immersed interface, raising the order of accuracy from 
one to two in that instance. Unfortunately, a correction term for two-phase 
incompressible flow does not yet exist. 
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Figure 21.2. A water drop falls through the air into the water. Surface tension 
forces cause the spherically shaped region at the top of the water jet in the last 
frame. (See also color figure, Plate 20.) 

21.2 Jump Conditions 

Applying conservation to the two-phase incompressible flow interface 
results in the jump conditions 

(21.5) 

where nand n are orthogonal unit tangent vectors, I is the identity ma
trix, and T is the viscous stress tensor; see equation (18.6). Equation (21.5) 
states that the net stress on the interface must be zero, since it has no 
mass. 

Since the flow is viscous, the velocities and their tangential derivatives 
are continuous across the interface, i.e., 

[uJ = [vJ = [wJ = 0, 

[V'u . T1J = [V'v . T1J = [V'w . T11 = 0, 

[V'u . T2J = [V'v . T2J = [V'w . T2J = o. 

(21.6) 

(21.7) 

(21.8) 
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This leads to the jump condition 

[( Vu . iV, Vv . iV, Vw . iV) . iV] = 0, (21.9) 

which states that the normal derivative of the normal component of the 
velocity field is continuous across the interface. Using this, the jump 
condition 

[P)- 2 fIL) (Vu. iV, Vv· iV, Vw· iV) . iV = 0"K, (21.10) 

can be written for the pressure. Notice that this reduces to [P) = 0"K, when 
the viscosity is continuous across the interface. Further derivations lead to 

+NTR 0: ) RTR (21.11) 

-( ~ r (~ )( ~: r RTR). 

which is useful for discretizing the viscous terms, especially since the right
hand side of this equation involves only derivatives that are continuous 
across the interface. Notice that all the quantities on the left-hand side of 
this equation become continuous across the interface when [IL) = 0 forces 
the right-hand side to be identically zero. See [106) for details. 

Since the velocity is continuous across the interface, the material 
derivative, or Lagrangian, acceleration is continuous as well, 

[ ~~] = [~:] = [~~] = o. (21.12) 

Since the Navier-Stokes equations (18.2), (18.3), and (18.4) are valid on 
both sides of the interface, these equations do not jump across the interface; 
i.e., 

[ 
_ (_ ) _ Vp (V· r)T ] 

"tit + V· V V + P - p - 9 = o. (21.13) 
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This can be combined with equation (21.12) to obtain 

which is equivalent to 

[p; 1 = [(2~Ux)X + (~(u, + V;)), + (~(ux + wX))x 1 ' 
[p; 1 = [(~(Uy + vx))x + (2~;'), + (~(vx + w'))x 1 ' 

[p; 1 = [(1'( Ux + '"x))x + (p(:x + w,)), + (2~wx)x 1 ' 
in expanded form. 

(21.14) 

(21.15) 

(21.16) 

(21.17) 

The two-phase incompressible flow equations are discretized in the 
same manner as the equations for one-phase incompressible flow. First, 
an intermediate velocity field V* is computed using equation (18.19). 
Then equation (18.21) is solved to find the pressure, which is used in 
equation (18.20) to make the velocity field divergence free. Due to the dis
continuous nature of several quantities across the interface, special care 
is needed in discretizing the viscous terms in equation (18.19) and in 
discretizing the pressure and density in equations (18.21) and (18.20). 

21.3 Viscous Terms 

In the o-function approach the density and the viscosity are numerically 
smeared out, so that they are continuous across the interface. The contin
uous viscosity simplifies the jump conditions, allowing the viscous terms 
to be discretized just as they were for one-phase incompressible flow. The 
only difference is that p and J-L are defined by equations (21.1) and (21.2) 
respectively. Averaging of ¢ is preferred to averaging of other quantities. 
For example, the viscosity at Xi+1 J" k is defined as 

2' , 

(21.18) 

as opposed to 

(21.19) 

as was done in equation (18.16). 
If one prefers to keep the density and viscosity sharp across the interface, 

the sign of the level set function can be used to determine J-L as J-L- or J-L+ 



21.3. Viscous Terms 233 

and to determine p as p- or p+. Consider the case where f.l and p are both 
independently spatially constant on either side of the interface, allowing 
the simplification of the viscous terms to 

f.l (uxx + Uyy + U ZZ ) 

p 
(21.20) 

(21.21) 

(21.22) 

with the aid of V' . if = O. Since the velocities are continuous, their first 
derivatives can be computed directly. However, the jump conditions in 
equation (21.11) are needed to compute the second derivatives. 

The right-hand side of equation (21.11) needs to be computed in order to 
evaluate the jumps across the interface. First, the continuous velocity field is 
averaged from the MAC grid to the cell centers. Then central differencing 
is used to compute the first derivatives at each cell center. These first 
derivatives are multiplied by the appropriate components of the normal 
and tangent vectors to obtain a numerical estimate for the right-hand side 
of equation (21.11), which we denote by the matrix J. Since J is a spatially 
continuous function, spatial averages can be used to define J elsewhere. For 
example, Ji+!,j,k = (Ji,j,k + Ji+l,j,k) /2. 

Once J has been computed, the second derivatives are computed using 
techniques similar to those developed in [106]. For example, consider the 
discretization of f.lUxx at Xi+ 1 J' k using UM = Ui+ 1 J' k and its neighbors 

2' , 2' , 

UL = Ui_l J' k and UR = Ui+2 J' k' We need averaged values of ¢ and pI 
2' , 2' , 

(the appropriate scalar entry of J) at the same three spatial locations as 
the U terms. If ¢ L, ¢ M, and ¢ R are all greater than zero, we define 

(21.23) 

and 

(21.24) 

arriving at 

(21.25) 

in the standard fashion. A similar discretization holds when all three ¢ 
values are less than or equal to zero. 



234 21. Two-Phase Incompressible Flow 

Suppose that ¢>L ::; ° and ¢>M > 0, so that the interface lies between the 
associated grid points. Then 

(21.26) 

can be used to estimate the interface location by splitting this cell into 
two pieces of size Of::::.x on the left and (1 - O)f::::.x on the right. At the 
interface, we denote the continuous velocity by U1 and calculate the jump 
as h = OJM+(1-0)h. Then we discretize the jump condition [J-lUx] = J1 
as 

J-l+ (~~ ;)~x) - J-l- (U~~:L ) = h, (21.27) 

solving for U1 to obtain 

J-l+UMO + J-l-uL(l - 0) - hO(l - O)f::::.x 
U1 = J-l+O + J-l- (1 - 0) , (21.28) 

so that we can write 

( ) _ + ( UM - U1 ) _ A (UM - UL) f-thO 
J-lUx L - J-l (1- O)f::::.x - J-l b.x +~, (21.29) 

where 
A J-l+J-l-

J-l = J-l+O + J-l- (1 - 0) 
(21.30) 

defines an effective J-l. Similarly, if ¢>L > ° and ¢>M ::; 0, then 

(J-lUx)L = J-l- (~~ ;)~x) = f-t (UM f::::.~ UL ) - f-t:!O, (21.31) 

where 
A J-l-J-l+ 

J-l = J-l-O + J-l+(1 - 0) 
(21.32) 

defines an effective J-l. 
In similar fashion, if ¢>R > ° and ¢>M ::; 0, then 

0= I¢>RI 
I¢>RI + I¢>MI 

(21.33) 

is used to estimate the interface location with (1 - O)b.x on the left and 
Ob.x on the right. Then J1 = OJM + (1 - O)JR is used to discretize the 
jump condition as 

+ (UR - U1) _ ( U1 - UM ). _ 
J-l Ob.x - J-l (1 _ O)f::::.x - h, (21.34) 

resulting in 

J-l-UMO + J-l+UR(1- 0) - hO(l - O)b.x 
U1 = J-l-O + J-l+(1- 0) 

(21.35) 
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and 

(21.36) 

where 

• J.L- J.L+ 
J.L = {L-O + J.L+(1 - 0) 

(21.37) 

defines an effective J.L. If ¢>R :::; ° and ¢>M > 0, then 

+ (UI-UM) • (UR-UM) {thO 
(J.LUx)R = J.L (1 _ O)6.x = J.L 6.x . + --;;::-' (21.38) 

where 

• J.L+ J.L-
J.L = {L+O + J.L- (1 - 0) 

(21.39) 

defines an effective {L. 

21.4 Poisson Equation 

Consider solving 

\7. ((3''Vp) = I (21.40) 

for the pressure P with specified jump conditions of [PJ = a and [{3PnJ = b 
across the interface. In the context of equation (18.21), {3 = 1/ P and 
I = (\7 . V*)/6.t. When the a-function method is used, this equation is 
straightforward to solve, since a and b are set to 0, and equation (21.1) 
is used to define a smeared-out continuous value for p. In this case, one 
obtains a numerically smeared-out pressure profile that does not include 
surface-tension forces. As discussed above, the forcing function defined 
in equation (21.3) can be added to the momentum equations to recover 
surface-tension effects. On the other hand, if one wants to model the 
surface-tension effects directly, the jump conditions for the pressure cannot 
be ignored. 

First, consider the one-dimensional problem where a standard second-
order accurate discretization of 

(3. 1 (Pit1-Pi) - {3. 1 (Pi -Pi-l) 
'+2" 6.x '-2" 6.x 

6.x = Ii (21.41) 

can be written for each unknown Pi. Suppose that the interface is lo
cated between Xk and Xk+I. As in the treatment of the viscosity term, 
we discretize the jump condition [{3PxJ = b, obtaining, for example, 

{3+ (Pk+1 - PI ) _ {3- (PI - Pk) = b (21.42) 
(1 - O)6.x 06.x' 
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and solve for PI as 

(3+Pk+10 + (3-Pk(l - 0) - bO(l - O)6.x 
PI = (3+0 + (3-(1- 0) , (21.43) 

so that approximations to the derivatives on the left and right sides of the 
interface can be written as 

(3- (PI - Pk) = ~ (PHI - Pk) _ ~b(l- 0) 
06.x 6x (3+ 

(21.44) 

and 

(3+ (PHI - PI) = ~ (Pk+I - Pk) + ~bO 
(1 - 0)6x 6.x (3- , 

(21.45) 

where 
, (3+(3-

(3 = (3+0 + (3-(1- 0) 
(21.46) 

defines an effective (3. 
The new equations for the unknowns Pk and Pk+1 are then 

(3' ((Pk±l-a)-Pk - b(1-9)) - (3 1 (Pk-Pk-l) 
.6.x f3± k - 'i .6.x 

6x = ik (21.47) 

and 

(21.48) 

where we add the a term to correct for the fact the pressure is discontinuous 
across the interface as well. Note that this correction was not necessary 
in treating the viscosity, since the velocity field is continuous across the 
interface. These new equations for Pk and PHI can be rewritten in standard 
form as 

~ (Pk±~~Pk ) - (3k-! ( Pk7:- 1 ) ~a ~b(l- 0) 
6x =fk+(6x)2+ (3+6x (21.49) 

and 

(3k+~ (Pk±2;~k±1 ) - ~ (Pk±~~Pk ) ~a ~bO 
6.x = fk+I - (6x)2 + (3-6x (21.50) 

emphasizing that this discretization yields the standard symmetric linear 
system with (3HI/2 = ~. 

More generally, at each grid point i, we write a linear equation of the 
form 

(21.51 ) 
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and assemble the system of linear equations into matrix form. Each f3k+l/2 
is evaluated based on the side of the interface that Xk and Xk+l lie on, and 
a special J is used when Xk and Xk+1 lie on opposite sides of the interface. 
Then if the left arm of the stencil (the line segment connecting Xi and 
xi-d crosses the interface, a nonzero FL is defined with correction terms 
for [P) = a and [f3Pn) = b. Likewise, if the right arm of the stencil (the 
line segment connecting Xi and xi+d crosses the interface, a nonzero FR 
is defined with correction terms for [P) = a and [f3Pn) = b. 

The multidimensional approach is treated in a dimension-by-dimension 
fashion. While the [P) = a jump condition is trivial to apply, some assump
tions are made in order to obtain a dimension-by-dimension approach for 
[f3Pn) = b. For example, in two spatial dimensions we assume that 

(21.52) 

and 

(21.53) 

where nl and n2 are the components of the local unit normal. Although 
these equations are not generally true, adding nl times the first equation to 
n2 times the second equation leads to the correct [f3Pn) = b jump condition 
and numerically demonstrated convergence to the correct solution. The 
errors in this approach can be characterized by adding tl times the first 
equation to t2 times the second equation to obtain [f3Pt) = 0, implying that 
the tangential derivative is incorrectly smeared out. The two-dimensional 
application of the method consists in writing a linear equation of the form 

f3i+1/2,j (Pi+li~Pi,j ) - f3i-l/2,j (Pi'i 7~-l,j ) 
c::,x 

f3i,j+1/2 (Pi'J+~~Pi,j ) - f3i,j-l/2 (Pi,j7;,;-1 ) 
+ c::,y 

= Aj +Fx +FY (21.54) 

at each grid point, where FX = FL + FR and FY = FB + FT are obtained 
by considering each spatial dimension independently using either [f3px) = 
[f3Pn)nl = bnl or [f3py) = [f3Pn)n2 = bn2, respectively. 

Before using the above-described numerical method to solve equa
tion (18.21), the jump condition given in equation (21.10) needs to be 
computed. This can be done with standard central differencing of the av
eraged cell-centered velocities, analogous to the way that J was computed 
in discretizing the viscous terms. Note that we can set [Px/ p) = [py/ p) = 
[Pz/ p) = 0 in spite of the nonzero jumps in these quantities. Since the full 
equations are continuous across the interface, one can take the divergence 
of the full equations to derive equation (18.21) without the need for correc
tion terms. The jumps in the derivatives of the pressure in equation (18.21) 
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are already balanced out on the right-hand side by the appropriate jumps 
included in the V* term. 

The resulting linear system of equations can still be solved using a PCG 
gradient with an incomplete Choleski preconditioner, just as in the case 
of one-phase incompressible flow. However, one needs to use caution when 
plugging the resulting pressure into equation (18.20), since the pressure 
is discontinuous across the interface. The pressure derivatives in equa
tion (18.20) should be computed in exactly the same fashion as they were 
computed in solving equation (18.21); Le., the correction terms are still 
needed. 



22 
Low-Speed Flames 

22.1 Reacting Interfaces 

In Chapter 21 the interface moved with the local fluid velocity only, 
and individual fluid particles did not cross the interface. In this chap
ter we consider interfaces across which a chemical reaction is converting 
one incompressible fluid into another. The interface moves with the lo
cal velocity of the unreacted fluid plus a reaction term that accounts for 
the conversion of one fluid into the other as material moves across the 
interface. Consider an interface separating liquid and gas regions where 
the liquid is actively vaporizing into the gaseous state. Juric and Ttyg
gvason [90] developed a front-tracking approach to this problem using a 
o-function formulation to treat the interface boundary conditions. Son and 
Dir [153] and Welch and Wilson [171] developed level-set-based and volume
of-fluid-based (respectively) approaches to this same problem also using a 
o-function formulation. 

Another example of reacting interfaces occurs in premixed flames. As
suming an infinitely thin flame front allows us to treat the flame front as a 
discontinuity separating two incompressible flows. The unreacted material 
undergoes reaction as it crosses the interface, producing a lower-density 
(higher-volume) reacted material. Qian et al. [135] devised a front-tracking 
approach to this problem using a o-function formulation. 

Typically, the density is discontinuous across the interface. Thus, mate
rial must instantaneously expand as it crosses the interface, implying that 
the normal velocity is discontinuous across the interface as well (in addition 
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to the discontinuity of the density, viscosity, and pressure). Delta-function 
formulations smear out this velocity jump, forcing a continuous velocity 
field across the interface. This can be problematic, since this numerical 
smearing adds a compressible character to the flow field near the inter
face. The divergence-free condition is not exactly satisfied in the separate 
subdomains. In addition, difficulties arise in computing the interface veloc
ity, which depends on the local velocity of the unreacted material. Near the 
interface, the velocity of the unreacted material contains large 0(1) numer
ical errors where it has been nonphysically forced to be continuous with the 
velocity of the reacted material. Partial solutions to these problems were 
proposed by Helenbrook et al. [84], where the authors were able to remove 
the numerical smearing of the normal velocity, obtaining a sharp interface 
profile. This method works well as long as flame fronts remain well sepa
rated with moderate curvature; see Helenbrook and Law [83]. This method 
cannot treat merging flame fronts or individual fronts with relatively high 
curvature. These drawbacks were recently overcome by Nguyen et al. [119] 
who extended the work of Kang et al. [91] to treat this problem. 

22.2 Governing Equations 

We ignore viscous effects and consider the equations for inviscid incom
pressible flow 

~ + (iT. V7) iT + V7: = 0 (22.1) 

independently for each fluid. The interface velocity is TV = DN, where D is 
the normal component of the interface velocity defined by D = (VN)u + S. 
The "u" subscript indicates that the normal velocity is calculated using 
the velocity of the unreacted material only. This is important to note, 
since VN is discontinuous across the interface. The flame speed is defined 
as S = So + (J"K, where, So and (j are constants and K, is the local curvature 
of the interface. 

Conservation of mass and momentum imply the standard Rankine
Hugoniot jump conditions across the interface 

[P(VN - D)] = 0 

[p(VN - D)2 + p] 0 

(22.2) 

(22.3) 

as well as continuity of the tangential velocities, [VTJ = [VT2 ] = 0, as long 
as S =1= O. Note that S = 0 only in the case of a contact discontinuity (not 
a flame). Denoting the mass flux in the moving reference frame (speed D) 
by 

(22.4) 
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allows us to rewrite equation (22.2) as [M) = 0. Here the "r" subscript 
denotes a reacted material quantity. Substitution of D = (VN)u + S into 
equation (22.4) yields 

M = -PuS, (22.5) 

which is a rather simple quantity for computations. 
Starting with [D] = 0, we derive 

[PVN - P~VN - D)] = 0, (22.6) 

[PVNp- M] 0, (22.7) 

and 

(22.8) 

where the last equation follows from [M] = 0. It is more convenient to write 

(22.9) 

as a summary of equation (22.8) and [VT1] = [VT2] = 0. The dot product of 
equation (22.9) and IV results in equation (22.8), while the dot product of 
equation (22.9) and T1 or T2 results in [VT1) = ° or [VT2 ) = 0, respectively. 
Equation (22.3) can be rewritten as 

[~2 +p] = ° (22.10) 

or 

(22.11) 

again using [M) = 0. 

22.3 Treating the Jump Conditions 

Since the normal velocity is discontinuous across the interface, caution is 
needed in applying numerical discretizations near the interface. For exam
ple, when discretizing the unreacted fluid velocity near the interface, one 
should avoid using values of the reacted fluid velocity. Following the ghost 
fluid methodology, a band of ghost cells on the reacted side of the interface 
is populated with unreacted ghost velocities that can be used in the dis
cretization of the unreacted fluid velocity. This is done using equation (22.9) 
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to obtain 

uG U r - M (~- ~ ) nl, (22.12) u 
Pr Pu 

vG Vr - M ( ~ - ~ ) n2, (22.13) u 
Pr Pu 

wG u Wr - M ( ~ - ~ ) n3, 
Pr Pu 

(22.14) 

where N = (nl' n2, n3) is the local unit normal. Similarly, reacted ghost 
velocities are defined on a band of ghost cells on the unreacted side of the 
interface and used in the discretization of the reacted fluid velocity. 

When solving equation (18.23), 

\7. (\7P*) - \7. V* P - , (22.15) 

for the scaled pressure p*, the jump in pressure given by equation 22.11 as 

(P*] = -6tM2 (~-~) 
Pr Pu 

(22.16) 

is accounted for using the techniques developed in Liu et al. [106] and Kang 
et al. [91]. 

Figure 22.1 shows the time evolution of two initially circular flame fronts 
as they grow to merge together. Figure 22.2 shows a snapshot of the velocity 
field, illustrating its discontinuous nature across the interface. Figure 22.3 
shows the time evolution of two initially spherical flame fronts as they grow 
to merge together. 

Recently, Nguyen et al. [118] extended this approach to model fire for 
computer graphics. In Figure 22.4, the ¢ = 0 isocontour is used to render 
a typical blue flame core. S is smaller for the larger blue core on the right. 
Figure 22.5 illustrates the effect of increased expansion as the density jump 
is increased from left to right. The yellow flame color is calculated using a 
blackbody radiation model based on the temperature profile of the hot gas 
emitted at the flame front. Figures 22.6 shows a ball catching on fire, and 
Figure 22.7 shows a campfire. 
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Figure 22.1. Time evolution of two initially circular flame fronts as they grow to 
merge together. 
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Figure 22.2. Discontinuous velocity field depicted shortly after the two flame 
fronts merge. 
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Figure 22.3. Time evolution of two initially spherical flame fronts as they grow 
to merge together. 
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Figure 22.4. Typical blue cores rendered using the zero isocontour of the level set 
function. (See also color figure, Plate 21.) 

Figure 22.5. The density ratio of the unburnt to burnt gas is increased from 
left to right, illustrating the effect of increased expansion. (See also color figure, 
Plate 22.) 
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Figure 22.6. A flammable ball catches on fire as it passes through a flame. (See 
also color figure, Plate 23.) 
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Figure 22.7. Campfire with realistic lighting of the surrounding rocks. (See also 
color figure, Plate 24.) 



23 
Heat Flow 

23.1 Heat Equation 

Starting from conservation of mass, momentum, and energy one can derive 

pet + pV . \7e + p\7 . V = \7 . (k\7T), (23.1) 

where k is the thermal conductivity and T is the temperature. Assuming 
that e depends on at most temperature, and that the specific heat at con
stant volume,cv is constant leads to e = eo + CV (T - To), where eo is the 
internal energy per unit mass at some reference temperature To (see, for 
example, Atkins [10)). This and the incompressibility assumption \7. V = 0 
simplify equation (23.1) to 

pCvTt + pCv V . \7T = \7 . (k\7T) , (23.2) 

which can be further simplified to the standard heat equation 

(23.3) 

by ignoring the effects of convection, i.e., setting V = O. 
Applying explicit Euler time discretization to equation (23.3) results in 

Tn+l - Tn = _1_\7 . (k\7Tn) , 
l:,t pCv 

(23.4) 

where either Dirichlet or Neumann boundary conditions can be applied on 
the boundaries of the computational domain. Assuming that p and Cv are 
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constants allows us to rewrite this equation as 

Tn+~~ Tn = ~. (k~Tn) (23.5) 

with k = k / (pcv ). Standard central differencing can be used for the spatial 
derivatives and a time step restriction of 

.6.tk (.6.:)2 + (.6.~)2 + (.6.2z)2 ) :::; 1 

is needed for stability. 
Implicit Euler time discretization 

_--,-__ = ~. k~Tn+l Tn+1_ Tn ( ) 
.6.t 

(23.6) 

(23.7) 

avoids this time step stability restriction. This equation can be rewritten 
as 

(23.8) 

where the ~ . (k~Tn+1) term is discretized using central differencing. 

For each unknown Tin +1, equation (23.8) is used to fill in one row of a 
matrix, creating a linear system of equations. Since the resulting matrix is 
symmetric, a number offast linear solvers can be used (e.g., a PCG method 
with an incomplete Choleski preconditioner; see Golub and Van Loan [75]). 
Equation (23.7) is first-order accurate in time and second-order accurate in 
space, and !:::.t needs to be chosen proportional to !:::.x2 , in order to obtain 
an overall asymptotic accuracy of O(.6.x2). However, the stability of the 
implicit Euler method allows one to chose .6.t proportional to !:::'x saving 
dramatically on CPU time. The Crank-Nicolson scheme 

Tn+~~ Tn = ~~. (k~Tn+1) + ~~. (k~Tn) (23.9) 

can be used to achieve second-order accuracy in both space and time with 
!:::'t proportional to .6.x. For the Crank-Nicolson scheme, 

Tn+1 _ ~t~ . (k~Tn+l) = Tn + ~t~ . (k~Tn) (23.lO) 

is used to create a symmetric linear system of equations for the unknowns 
T['+1. Again, all spatial derivatives are computed using standard central 
differencing. 

23.2 Irregular Domains 

Instead of a uniform Cartesian domain, suppose we wish to solve equa
tion (23.3) on an irregularly shaped domain, for example in the interior 
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of the two-dimensional outline depicted in Figure (23.1). If one takes the 
rather simple approach of embedding this complicated domain in a uniform 
Cartesian grid, then a level set function can be used to define the boundary 
of the irregular region. The heat equation 23.3 can then be solved with, for 
example, Dirichlet T = g(1, t) boundary conditions applied to the bound
ary where ¢ = O. More complicated boundary conditions can be used as 
well. 

The spatial derivatives are computed with the aid of the given values of 
T = g(1, t) on the interface. When using explicit Euler time discretization, 
the time-step restriction needed for stability becomes 

(23.11) 

where (h, O2 , and 03 are the cell fractions in each spatial dimension for cells 
cut by the interface with 0 < 0i :S 1. Since the O/s can be arbitrarily small, 
leading to arbitrarily small time steps, implicit methods need to be used, 
e.g., backward Euler or Crank-Nicolson. Then a linear system of equations 
can be solved for the unknowns Tr+l. Since the coefficient matrix depends 
on the details of the spatial discretization, a robust method for treating 
the cut cells is crucial. Below, we outline how to do this for the simpler 
variable-coefficient Poisson equation, which has spatial derivatives identical 
to those of the heat equation. 

23.3 Poisson Equation 

Consider the variable-coefficient Poisson equation 

V'. (!3(1)V'u(x)) = f(x), (23.12) 

where 13(1) is positive and bounded below by some to > o. As above, consider 
an irregularly shaped domain (as in Figure 23.1) defined by a level set 
function on a Cartesian grid with Dirichlet u = g(1, t) boundary conditions 
on the ¢ = 0 isocontour. 

For simplicity consider the one-dimensional case (!3ux)x = f. Since 
j3 and ¢ are known only at the grid nodes, their values between grid 
nodes are defined by the linear average of the nodal values, e.g., j3i+~ = 
(!3i + !3i+l) /2. In the absence of cut cells, the standard discretization 

(23.13) 

can be used to solve this problem. For each unknown Ui, equation (23.13) 
is used to fill in one row of a matrix, creating a linear system of equations. 
The resulting matrix is symmetric and can be solved with a number of fast 
linear solvers. 
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Figure 23.1. Solution of the two-dimensional Poisson equation \7 . ({3\7U) = f 
with Dirichlet boundary conditions. The circles are the computed solution, and 
the solid line contour outlines the irregularly shaped computational domain. 

Suppose that an interface point x I is located between two grid points Xi 

and Xi+! with a Dirichlet U = UI boundary condition applied at XI. Con
sider computing the numerical solution in the domain to the left of X I. 

Equation (23.13) is valid for all the unknowns to the left and including 
Ui-b but can no longer be applied at Xi to solve for Ui, since the sub do
main to the left of XI does not contain a valid value of Ui+l. This can be 
remedied by defining a ghost value of UY+l at Xi+! and rewriting equation 
(23.13) as 

a, 1 (UP+l-Ui) _ a, 1 (Ui-Ui_l) 
1-',+- !:::"x 1-',-- !:::"x 

2 2 - r 
!::'x - , 

in order to solve for Ui. Possible candidates for uY+! include 

(23.14) 

(23.15) 

(23.16) 
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and 

(23.17) 

with constant, linear, and quadratic extrapolation respectively. Here (J E 

[0,1] is defined by (J = (XI - Xi) 16.x, and it can be calculated as (J = 
14>I/6.x, since 4> is a signed distance function vanishing at XI. Since equa
tions (23.16) and (23.17) are poorly behaved for small (J, they are not used 
when (J :::; 6.x. Instead, Ui is set equal to UI, which effectively moves the 
interface location from XI to Xi. This second-order accurate perturbation 
of the interface location does not degrade the overall second-order accuracy 
of the solution obtained using equation (23.13) to solve for the remaining 
unknowns. Furthermore, Ui = UI is second-order accurate as long as the 
solution has bounded first derivatives. 

Plugging equation (23.17) into equation (23.13) gives an asymmetric 
discretization of 

(~)-(~) =fi 
.5 ((J6.x + 6.x) 

(23.18) 

(when f3 = 1). Equation (23.18) is the asymmetric discretization used by 
Chen et al. [43] to obtain second-order accurate numerical methods in the 
context of solving Stefan problems. Alternatively, Gibou et al. [44] pointed 
out that plugging equation (23.16) into equation (23.13) gives a symmetric 
discretization of 

(23.19) 

based on linear extrapolation in the cut cell. It turns out that this sym
metric discretization is second-order accurate as well. Moreover, since the 
discretization is symmetric, the linear system of equations can be solved 
with a number of fast methods such as PCG with an incomplete Choleski 
precondi tioner. 

To see this, assume that the standard second-order accurate discretiza
tion in equation (23.13) is used to obtain the standard linear system of 
equations for U at every grid node except Xi, and equation (23.14) is used 
to write a linear equation for Ui, introducing a new unknown U~l' The sys
tem is closed with equation (23.16) for U~l' In practice, equations (23.16) 
and (23.14) are combined to obtain equation (23.19) and a symmetric lin
ear system. Solving this linear system of equations leads to well-determined 
values of U at each grid node in the subdomain as well as a well-determined 
value of U~l (from equation (23.16)). Designate i1 as the solution vector 
containing all these values of u. 

Next, consider a modified problem where a Dirichlet boundary condi
tion of Ui+l = uf+1 is specified at Xi+l with Uf+l chosen to be the value 
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of U~l from i1 (defined above). This modified problem can be discretized 
to second-order accuracy everywhere using the standard discretization in 
equation (23.13) at every node except at Xi, where equation (23.14) is used. 
Note that equation (23.14) is the standard second-order accurate discretiza
tion when a Dirichlet boundary condition of Ui+l = Uf+l is applied at Xi+!. 

Thus, this new linear system of equations can be solved in standard fashion 
to obtain a second-order accurate solution at every grid node. The realiza
tion that i1 (defined above) is an exact solution to this new linear system 
implies that i1 is a valid second-order accurate solution to this modified 
problem. 

Since i1 is a second-order accurate solution to the modified problem, i1 
can be used to obtain the interface location for the modified problem to 
second-order accuracy. The linear interpolant that uses Ui at Xi and uf+! at 
Xi+! predicts an interface location of exactly x I. Since higher-order accurate 
interpolants (higher than linear) can contribute at most an O(.lx2) pertur
bation of the predicted interface location the interface location dictated by 
the modified problem is at most an O(.lx2) perturbation of the true inter
face location, x I. Thus, i1 is a second-order accurate solution to a modified 
problem where the interface location has been perturbed by O(.lx2). This 
makes i1 a second-order accurate solution to the original problem as well. 

Note that plugging equation (23.15) into equation (23.13) effectively per
turbs the interface location by an O(6x) amount, resulting in a first-order 
accurate algorithm. 

When (3 is spatially varying, f3i+l/2 in equation (23.19) can be determined 
from a ghost value (3a-l and the usual averaging (3i+l/2 = ((3i + f3a-l) /2, 
where the ghost value is defined using linear extrapolation 

(23.20) 

according to equation (23.16). 
In multiple spatial dimensions, the equations are discretized in a 

dimension-by-dimension manner using the one-dimensional discretization 
outlined above independently on ((3ux)x, ((3uy)y, and ((3uz)z' Figure 23.1 
shows a typical solution obtained in two spatial dimensions with a spatially 
varying (3. 

The same techniques can be used to discretize the spatial terms in equa
tion (23.8) or (23.10) to obtain symmetric linear systems of equations for 
the unknown temperatures Tr+l. Again, the symmetry allows us to exploit 
a number of fast solvers such as peG. 

23.4 Stefan Problems 

Stefan problems model interfaces across which an unreacted incompressible 
material is converted into a reacted incompressible material. The interface 
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velocity is W = DR, where D = (VN)u + S for some reaction speed S. 
Here the "u" subscript denotes an unreacted material quantity. Including 
the effects of thermal conductivity, the Rankine-Hugoniot jump condition 
for conservation of energy is 

[(pe + P(VN; D)2 + p) (VN - D)] = [k'VT. R] , (23.21) 

where we have assumed that D #- VN (Le., S #- 0), so that the tangen
tial velocities are continuous across the interface. This equation can be 
rewritten as 

(23.22) 

using the Rankine-Hugoniot jump condition for conservation of mass, 
[P(VN - D)] = O. Assuming that the enthalpy per unit mass h = e + (pip) 
depends on at most temperature, and that the specific heat at constant 
pressure cp is constant leads to h = ho + cp (T - To), where ho is the en
thalpy per unit mass at some reference temperature To; see [10]. This allows 
us to rewrite equation (23.22) as 

-PuS ([ho] + [cp ] (TJ - To) + P~2S2 [;2]) = [k'VT. R] , (23.23) 

where we have used the fact that the temperature is continuous across the 
interface, [T] = 0, and labeled the interface temperature TJ. It is convenient 
to choose the reference temperature To equal to the standard temperature 
at which the reaction takes place; e.g., in the case of freezing water To = 
273 K. 

For the Stefan problem we assume that there is no expansion across 
the front (i.e., [p] = 0), reducing the Rankine-Hugoniot jump conditions 
for mass and momentum to [VN] = 0 and [P] = 0, respectively. Then 
equation (23.23) reduces to 

(23.24) 

where P = Pu = Pro Finally, the standard interface boundary condition of 
TJ = To reduces this last equation to 

-pS rho] = [k'VT. R] , (23.25) 

where rho] is calculated at the reaction temperature of TJ = To. 
The Stefan problem is generally solved in three steps. First, the interface 

velocity is determined using equation (23.25). This is done by first com
puting TN = 'VT· R in a band about the interface, and then extrapolating 
these values across the interface (see equation (8.1)) so that both (TN)u 
and (TN)r are defined at every grid point in a band about the interface, 
allowing the reaction speed S to be computed in a node-by-node fashion. 
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Next, the level set method is used to evolve the interface to its new location. 
Finally, the temperature is calculated in each subdomain using a Dirich
let boundary condition on the temperature at the interface. This Dirichlet 
boundary condition decouples the problem into two disjoint subproblems 
that can each be solved separately using the techniques described earlier 
in this chapter for the heat equation. For more details, see [44]. 

Figure 23.2 shows a sample calculation of an outwardly growing inter
face in three spatial dimensions. Figure 23.3 shows two-dimensional results 
obtained using anisotropic surface tension. The interface condition is the 
fourfold anisotropy boundary condition 

T = -0.001 (~) sin4 (2(0 - ( 0 )) K, 

with (left) 00 = 0 and (right) 00 = 7r / 4. The shape of the crystal in the right 
figure is that of the crystal in the left figure rotated by 7r / 4, demonstrating 
that the artificial grid anisotropy is negligible. 
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Figure 23.2. Stefan problem in three spatial dimensions. A supercooled material 
in the exterior region promotes unstable growth. 
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Figure 23.3. Grid orientation effects with anisotropic surface tension. 
The interface condition is the fourfold anisotropy boundary condition 
T = -0.001 (~)sin4(2(0-00))K; with (left) 00 = 0 and (right) 00 = 7r/4. The 
shape of the crystal in the right figure is that of the crystal in the left figure 
rotated by 7r /4, demonstrating that the artificial grid anisotropy is negligible. 
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