
Applied Mathematical Sciences
Volume 153

Editors
S.S. Antman lE. Marsden L. Sirovich

Advisors
lK. Hale P. Holmes J. Keener
J. Keller B.J. Matkowksy A. Mielke
C.S. Peskin K.R. Sreenivasan

Springer
New York
Berlin
Heidelberg
Hong Kong
London
Milan
Paris
Tokyo

Applied Mathematical Sciences

I. John: Partial Differential Equations, 4th ed
2. Sirovich: Techniques of Asymptotic Analysis.
3. Hale: Theory ofFlDlCtionaI Differential Equations,

2nded
4. Percus: Combinatorial Methods.
5. von Mises/Friedrichs: Fluid Dynamics.
6. Freiberger/Grenander: A Short Comse in

COJqlutationaI Probability and Statistics.
7. Pipkin: Lectures on Viscoelasticity Theory.
8. Giacaglia: Perturbation Methods in Non-linear

Systems.
9. Friedrichs: Spectral Theory of()penltors in

Hilbert Space.
10. Stroud: Numerical Quadrature and Solution of

Ordinary Differential Equations.
II. Wolovich: Linear Multivariable Systems.
12. Berkovitz: Optimal Control Theory.
13. BlumaniCole: Similarity Methods for Differential

Equations.
14. Yoshizawa: Stability Theory and the Existence of

Periodic Solution and Almost Periodic Solutions.
15. Braun: Differential Equations and Their

Applications, 3rd ed
16. Lejschetz: Applications of Algebraic Topology.
17. CollatzlWelterling: Optimization Problems.
18. Gre1UJnder: Pattern Synthesis: Lectures in Pattern

Theory, Vol. I.
19. MarsdenIMcCracken: HopfBifurcation and Its

Applications.
20. Driver: Ordinary and Delay Differential

Equations.
21. Courant/Friedrichs: Supersonic Flow and Shock

Waves.
22. RoucheIHabets/Loloy: Stability Theory by

L~pmwvsDirectMethod

23. Lomperti: Stochastic Processes: A Survey of the
Mathematical Theory.

24. Gre1UJnder: Pattern Analysis: Lectures in Pattern
Theory, Vol. ll.

25. Davies: Integral Transforms and Their
Applications, 2nd ed

26. Kushner/Clark: Stochastic Approximation
Methods for Constrained and Unconstrained
Systems.

27. de Boor: A Practical Guide to Splines: Revised
Edition.

28. Keilson: Markov Chain ModeIs--Rarity and
Exponentiality.

29. de Veubeke: A Comse in Elasticity.
30. Sniatycki: Geometric Quantization and Quantmn

Mechanics.
31. Reid: Stmmian Theory for Ordinary Differential

Equations.
32. MeislMarkowitz: Numerical Solution of Partial

Differential Equations.

33. Gre1UJnder: Regular Structures: Lectures in
Pattern Theory, Vol. ill.

34. KevorkianiCole: Perturbation Methods in Applied
Mathematics.

35. Ca": Applications of Centre Manifold Theory.
36. BengtssoniGhiVK411en: Dynamic Meteorology:

Data Assimilation Methods.
37. Saperstone: Semidynamical Systems in Infinite

Dimensional Spaces.
38. Lichtenberg/Lieberman: Regular and Chaotic

Dynamics, 2nd ed
39. PicciniiStampacchialV"uiossich: Ordinary

Differential Equations in RD.
40. Naylor/Sell: Linear ()penItor Theory in

Engineering and Science.
41. Spa"ow: The Lorenz Equations: Bifurcations,

Chaos, and Strange Attractors.
42. GuckenheimerlHolmes: Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector
Fields.

43. OckendonlIaylor: Inviscid Fluid Flows.
44. Pazy: Semigroups of Linear ()penItors and

Applications to Partial Differential Equations.
45. Glashoff/Gustajson: Linear Operations and

Approximation: An Intrnduction to the Theoretical
Analysis and Numerical Treatment of Semi
Infinite Programs.

46. Wilcox: Scattering Theory for Diffi"action
Gratings.

47. HaleIMagalhiIes/Oliva: Dynamics in Infinite
Dimensions, 2nd ed.

48. Mu"ay: Asymptotic Analysis.
49. Ladyzhenskaya: The Boundary-Value Problems of

Mathematical Physics.
50. Wilcox: Sound Propagation in Stratified Fluids.
51. Golubitslcy/Schaeffer: Bifurcation and Groups in

Bifurcation Theory, Vol. I.
52. Chi pot: V wtionaIlnequaIities and Flow in

PorousMe~.

53. Majda: COJqlressible Fluid Flow and System of
Conservation Laws in Several Space Variables.

54. Wasow: Linear Turning Point Theory.
55. Yosida: Operational Calculus: A Theory of

Hyperfimctions.
56. ChangIHowes: Nonlinear Singular Perturbation

Phenomena: Theory and Applications.
57. Reinhardt: Analysis of Approximation Methods

for Differential and Integral Equations.
58. DwoyerlHussainiIVoigt (eds): Theoretical

Approaches to Twbulence.
59. SanderslVerhulst: Averaging Methods in

Nonlinear Dynamical Systems.

(continued following index)

Stanley Osher Ronald Fedkiw

Level Set Methods and
Dynamic Implicit Surfaces

With 99 Figures, Including 24 in Full Color

, Springer

Stanley Osher Ronald Fedkiw
Department of Mathematics
University of California

Department of Computer Science
Stanford University

at Los Angeles Stanford, CA 94305-9020
USA Los Angeles, CA 90095-1555

USA fedkiw@cs.stanford.edu
sjo@math.ucla.edu

Editors:
S.S. Antman
Department of Mathematics
and
Institute for Physical Science

and Technology
University of Maryland
College Park, MD 20742-4015
USA
ssa@math.umd.edu

J.E. Marsden
Control and Dynamical

Systems, lO7-81
California Institute of

Technology
Pasadena, CA 91125
USA
marsden@cds.caltech.edu

L. Sirovich
Division of Applied

Mathematics
Brown University
Providence, RI 02912
USA
chico@camelot.mssm.edu

Cover photos: Top left and right, hand and rat brain - Duc Nguyen and Hong-Kai
Zhao. Center campfire - Duc Nguyen and Nick Rasmussen and Industrial Light and
Magic. Lower left and center, water glasses - Steve Marschner and Doug Enright.

Mathematics Subject Classification (2000): 65Mxx, 65C20, 65D17, 65-02, 65VI0, 73V

Library of Congress Cataloging-in-Publication Data
Osher, Stanley.

Level set methods and dynamic implicit surfaces / Stanley Osher, Ronald Fedkiw
p. cm. - (Applied mathematical sciences; 153)

Includes bibliographical references and index.
(alk. paper)

1. Level set methods. 2. Implicit functions. I. Fedkiw, Ronald P., 1968- II. Title.
III. Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 153
QA1.A647 vol. 153
[QCI73.4]
5lOs-dc21
[515'.8] 2002020939

Printed on acid-free paper.

ISBN 978-1-4684-9251-4 ISBN 978-0-387-22746-7 (eBook)
DOl 10.1007/978-0-387-22746-7

© 2003 Springer-Verlag New York, Inc.

Softcover reprint of the hardcover 18t edition 2003

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Av
enue, New York, NY lOOlO, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as
to whether or not they are subject to proprietary rights.

98765432 SPIN 10920466

www.8pringer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

Dedicated with love to Katy, Brittany, and Bobbie

Preface

Scope, Aims, and Audiences

This book, Level Set Methods and Dynamic Implicit Surfaces is designed
to serve two purposes:

Parts I and II introduce the reader to implicit surfaces and level set
methods. We have used these chapters to teach introductory courses on the
material to students with little more than a fundamental math background.
No prior knowledge of partial differential equations or numerical analysis
is required. These first eight chapters include enough detailed information
to allow students to create working level set codes from scratch.

Parts III and IV of this book are based on a series of papers published
by us and our colleagues. For the sake of brevity, a few details have been
occasionally omitted. These chapters do include thorough explanations and
enough of the significant details along with the appropriate references to
allow the reader to get a firm grasp on the material.

This book is an introduction to the subject. We have given examples of
the utility of the method to a diverse (but by no means complete) collection
of application areas. We have also tried to give complete numerical recipes
and a self-contained course in the appropriate numerical analysis. We be
lieve that this book will enable users to apply the techniques presented here
to real problems.

The level set method has been used in a rapidly growing number of areas,
far too many to be represented here. These include epitaxial growth, opti
mal design, CAD, MEMS, optimal control, and others where the simulation

viii Preface

of moving interfaces plays a key role in the problem to be solved. A search of
"level set methods" on the Google website (which gave over 2,700 responses
as of May 2002) will give an interested reader some idea of the scope and
utility of the method. In addition, some exciting advances in the technology
have been made since we began writing this book. We hope to cover many of
these topics in a future edition. In the meantime you can find some exciting
animations and moving images as well as links to more relevant research pa
pers via our personal web sites: http://graphics . stanford. edu;-fedkiw
andhttp://www.math.ucla.edu/-sjo/.

Acknowledgments

Many people have helped us in this effort. We thank the following col
leagues in particular: Steve Marschner, Paul Romburg, Gary Hewer, and
Steve Ruuth for proofreading parts of the manuscript, Peter Smereka and
Li-Tien Cheng for providing figures for the chapter on Codimension-Two
Objects, Myungjoo Kang for providing figures for the chapter on Motion
Involving Mean Curvature and Motion in the Normal Direction, Antonio
Marquina and Frederic Gibou for help with the chapter on Image Restora
tion, Hong-Kai Zhao for help with chapter 13, Reconstruction of Surfaces
from Unorganized Data Points, and Luminita Vese for help with the chap
ter on Snakes, Active Contours, and Segmentation. We particularly thank
Barry Merriman for his extremely valuable collaboration on much of the
research described here. Of course we have benefitted immensely from col
laborations and discussions with far too many people to mention. We hope
these colleagues and friends forgive us for omitting their names.

We would like to thank the following agencies for their support during
this period: ONR, AFOSR, NSF, ARO, and DARPA. We are particularly
grateful to Dr. Wen Masters of ONR for suggesting and believing in this
project and for all of her encouragement during some of the more difficult
times.

Finally, we thank our families and friends for putting up with us during
this exciting, but stressful period.

Los Angeles, California
Stanford, California

Stanley Osher
Ronald Fedkiw

Contents

Preface
Color Insert

I Implicit Surfaces

1 Implicit Functions
1.1 Points .
1.2 Curves
1.3 Surfaces
1.4 Geometry Toolbox
1.5 Calculus Toolbox .

2 Signed Distance Functions
2.1 Introduction
2.2 Distance Functions .. .
2.3 Signed Distance Functions
2.4 Examples..........
2.5 Geometry and Calculus Toolboxes.

II Level Set Methods

vii
(facing page 146)

1

3
3
4
7
8

13

17
17
17
18
19
21

23

3 Motion in an Externally Generated Velocity Field 25
3.1 Convection....................... 25

x Contents

3.2 Upwind Differencing
3.3 Hamilton-Jacobi ENO .
3.4 Hamilton-Jacobi WENO
3.5 TVD Runge-Kutta ...

4 Motion Involving Mean Curvature
4.1 Equation of Motion
4.2 Numerical Discretization
4.3 Convection-Diffusion Equations

5 Hamilton-Jacobi Equations
5.1 Introduction
5.2 Connection with Conservation Laws.
5.3 Numerical Discretization

5.3.1 Lax-Friedrichs Schemes.
5.3.2 The Roe-Fix Scheme
5.3.3 Godunov's Scheme ...

6 Motion in the Normal Direction
6.1 The Basic Equation
6.2 Numerical Discretization
6.3 Adding a Curvature-Dependent Term
6.4 Adding an External Velocity Field ..

7 Constructing Signed Distance Functions
7.1 Introduction ..
7.2 Reinitialization
7.3 Crossing Times
7.4 The Reinitialization Equation
7.5 The Fast Marching Method .

8 Extrapolation in the Normal Direction
8.1 One-Way Extrapolation.
8.2 Two-Way Extrapolation
8.3 Fast Marching Method .

9 Particle Level Set Method
9.1 Eulerian Versus Lagrangian Representations
9.2 Using Particles to Preserve Characteristics

10 Codimension-Two Objects
10.1 Intersecting Two Level Set Functions
10.2 Modeling Curves in 3?3
10.3 Open Curves and Surfaces
10.4 Geometric Optics in a Phase-Space-Based Level

Set Framework.

29
31
33
37

41
41
44
45

47
47
48
49
50
52
54

55
55
57
59
59

63
63
64
65
65
69

75
75
76
76

79
79
82

87
87
87
90

90

Contents xi

III Image Processing and Computer Vision 95

11 Image Restoration
11.1 Introduction to PDE-Based Image Restoration.
11.2 Total Variation-Based Image Restoration ...
11.3 Numerical Implementation of TV Restoration

12 Snakes, Active Contours, and Segmentation
12.1 Introduction and Classical Active Contours.
12.2 Active Contours Without Edges
12.3 Results ..
12.4 Extensions.......

13 Reconstruction of Surfaces from Unorganized
Data Points
13.1 Introduction
13.2 The Basic Model .. .
13.3 The Convection Model
13.4 Numerical Implementation

IV Computational Physics

14 Hyperbolic Conservation Laws and

97
97
99

103

119
119
121
124
124

139
139
140
142
142

147

Compressible Flow 149
14.1 Hyperbolic Conservation Laws. . 149

14.1.1 Bulk Convection and Waves 150
14.1.2 Contact Discontinuities. 151
14.1.3 Shock Waves. 152
14.1.4 Rarefaction Waves . 153

14.2 Discrete Conservation Form 154
14.3 ENO for Conservation Laws 155

14.3.1 Motivation. 155
14.3.2 Constructing the Numerical Flux Function. 157
14.3.3 ENO-Roe Discretization

(Third-Order Accurate) 158
14.3.4 ENO-LLF Discretization

(and the Entropy Fix) 159
14.4 Multiple Spatial Dimensions . 160
14.5 Systems of Conservation Laws 160

14.5.1 The Eigensystem . . . 161
14.5.2 Discretization 162

14.6 Compressible Flow Equations 163
14.6.1 Ideal Gas Equation of State 164
14.6.2 Eigensystem 164
14.6.3 Numerical Approach 165

xii Contents

15 Two-Phase Compressible Flow
15.1 Introduction
15.2 Errors at Discontinuities .. .
15.3 Rankine-Hugoniot Jump Conditions.
15.4 Nonconservative Numerical Methods
15.5 Capturing Conservation
15.6 A Degree of Freedom
15.7 Isobaric Fix
15.8 Ghost Fluid Method ..
15.9 A Robust Alternative Interpolation

16 Shocks, Detonations, and Defiagrations
16.1 Introduction
16.2 Computing the Velocity of the Discontinuity
16.3 Limitations of the Level Set Representation
16.4 Shock Waves
16.5 Detonation Waves
16.6 Deflagration Waves
16.7 Multiple Spatial Dimensions

17 Solid-Fluid Coupling
17.1 Introduction...
17.2 Lagrange Equations . .
17.3 Treating the Interface.

18 Incompressible Flow
18.1 Equations
18.2 MAC Grid
18.3 Projection Method
18.4 Poisson Equation .
18.5 Simulating Smoke for Computer Graphics

19 Free Surfaces
19.1 Description of the Model
19.2 Simulating Water for Computer Graphics.

20 Liquid-Gas Interactions
20.1 Modeling
20.2 Treating the Interface .

21 Two-Phase Incompressible Flow
21.1 Introduction ...
21.2 Jump Conditions
21.3 Viscous Terms . .
21.4 Poisson Equation

167
167
168
169
171
172
172
173
175
183

189
189
190
191
191
193
195
196

201
201
203
204

209
209
210
212
213
214

217
217
218

223
223
224

227
227
230
232
235

22 Low-Speed Flames
22.1 Reacting Interfaces
22.2 Governing Equations
22.3 Treating the Jump Conditions

23 Heat Flow
23.1 Heat Equation.
23.2 Irregular Domains.
23.3 Poisson Equation
23.4 Stefan Problems .

References

Index

Contents xiii

239
239
240
241

249
249
250
251
254

259

271

Part I

Implicit Surfaces

In the next two chapters we introduce implicit surfaces and illustrate a
number of useful properties, focusing on those that will be of use to us
later in the text. A good general review can be found in [16J. In the first
chapter we discuss those properties that are true for a general implicit
representation. In the second chapter we introduce the notion of a signed
distance function with a Euclidean distance metric and a "±" sign used to
indicate the inside and outside of the surface.

1
Implicit Functions

1.1 Points

In one spatial dimension, suppose we divide the real line into three distinct
pieces using the points x = -1 and x = 1. That is, we define (-00, -1),
(-1,1), and (1,00) as three separate sub domains of interest, although we
regard the first and third as two disjoint pieces of the same region. We refer
to 0- = (-1,1) as the inside portion of the domain and 0+ = (-00, -1) U
(1,00) as the outside portion of the domain. The border between the inside
and the outside consists of the two points ao = {-I, I} and is called
the interface. In one spatial dimension, the inside and outside regions are
one-dimensional objects, while the interface is less than one-dimensional.
In fact, the points making up the interface are zero-dimensional. More
generally, in 3tn , subdomains are n-dimensional, while the interface has
dimension n 1. We say that the interface has codimension one.

In an explicit interface representation one explicitly writes down the
points that belong to the interface as we did above when defining ao =
{-I, I}. Alternatively, an implicit interface representation defines the inter
face as the isocontour of some function. For example, the zero isocontour
of ¢(x) = x2 - 1 is the set of all points where ¢(x) = 0; i.e., it is ex
actly ao = {-I, I}. This is shown in Figure 1.1. Note that the implicit
function ¢(x) is defined throughout the one-dimensional domain, while the
isocontour defining the interface is one dimension lower. More generally,
in 3tn , the implicit function ¢(x) is defined on all x E 3tn , and its isocon
tour has dimension n - 1. Initially, the implicit representation might seem

4 1. Implicit Functions

outside

interface

\ outside

an
¢=o

interface

x

Figure 1.1. Implicit function ¢(x) = x2 - 1 defining the regions n- and n+ as
well as the boundary an

wasteful, since the implicit function ¢(x) is defined on all of ~n, while the
interface has only dimension n - 1. However, we will see that a number of
very powerful tools are readily available when we use this representation.

Above, we chose the ¢(x) = 0 isocontour to represent the lower
dimensional interface, but there is nothing special about the zero
isocontour. For example, the (/>(x) = 1 isocontour of (/>(x) = x2 , defines
the same interface, an = {-I, I}. In general, for any function (/>(x) and
an arbitrary isocontour (/>(x) = a for some scalar a E ~, we can define
¢(x) = (/>(x) a, so that the ¢(x) = 0 isocontour of ¢ is identical to the
(/>(x) a isocontour of (/>. In addition, the functions ¢ and (/> have identical
properties up to a scalar translation a. Moreover, the partial derivatives
of ¢ are the same as the partial derivatives of (/>, since the scalar vanishes
upon differentiation. Thus, throughout the text all of our implicit functions
¢(x) will be defined so that the ¢(x) = 0 isocontour represents the interface
(unless otherwise specified).

1.2 Curves

In two spatial dimensions, our lower-dimensional interface is a curve that
separates ~2 into separate sub domains with nonzero areas. Here we are
limiting our interface curves to those that are closed, so that they have
clearly defined interior and exterior regions. As an example, consider ¢(x) =

an
¢ = x2 + y2 -1 = 0

interface

y

n
¢<O
inside

1.2. Curves 5

n+
¢>O
outside

x

Figure 1.2. Implicit representation of the curve x 2 + y2 = 1.

X2 + y2 - 1, where the interface defined by the ¢(x) = 0 isocontour is the
unit circle defined by an = {X' I Ixl = I}. The interior region is the unit
open disk 0.- = {x I Ixl < I}, and the exterior region is 0.+ = {x I Ixl > I}.
These regions are depicted in Figure 1.2. The explicit representation of this
interface is simply the unit circle defined by an = {X' Ilxl = I}.

In two spatial dimensions, the explicit interface definition needs to spec
ify all the points on a curve. While in this case it is easy to do, it can be
somewhat more difficult for general curves. In general, one needs to param
eterize the curve with a vector function x(s), where the parameter S is in
[so, Sf]. The condition that the curve be closed implies that x(so) = x(sf).

While it is convenient to use analytical descriptions as we have done
so far, complicated two-dimensional curves do not generally have such
simple representations. A convenient way of approximating an explicit
representation is to discretize the parameter s into a finite set of points
So < ... < Si-l < Si < si+l < ... < Sf, where the subintervals lSi, Si+l]
are not necessarily of equal size. For each point Si in parameter space,
we then store the corresponding two-dimensional location of the curve de
noted by X(Si). As the number of points in the discretized parameter space
is increased, so is the resolution (detail) of the two-dimensional curve.

The implicit representation can be stored with a discretization as well,
except now one needs to discretize all of ~2, which is impractical, since it is
unbounded. Instead, we discretize a bounded subdomain D C ~2. Within
this domain, we choose a finite set of points (Xi, Yi) for i = 1, ... ,N to dis
cretely approximate the implicit function ¢. This illustrates a drawback of
the implicit surface representation. Instead of resolving a one-dimensional

6 1. Implicit Functions

interval [so, sf]' one needs to resolve a two-dimensional region D. More
generally, in ~n, a discretization of an explicit representation needs to re
solve only an (n - l)-dimensional set, while a discretization of an implicit
representation needs to resolve an n-dimensional set. This can be avoided,
in part, by placing all the points if very close to the interface, leaving the
rest of D unresolved. Since only the ¢(if) = 0 isocontour is important, only
the points if near this isocontour are actually needed to accurately repre
sent the interface. The rest of D is unimportant. Clustering points near the
interface is a local approach to discretizing implicit representations. (We
will give more details about local approaches later.) Once we have chosen
the set of points that make up our discretization, we store the values of the
implicit function ¢(if) at each of these points.

Neither the explicit nor the implicit discretization tells us where the in
terface is located. Instead, they both give information at sample locations.
In the explicit representation, we know the location of a finite set of points
on the curve, but do not know the location of the remaining infinite set
of points (on the curve). Usually, interpolation is used to approximate the
location of points not represented in the discretization. For example, piece
wise polynomial interpolation can be used to determine the shape of the
interface between the data points. Splines are usually appropriate for this.
Similarly, in the implicit representation we know the values of the implicit
function ¢ at only a finite number of points and need to use interpolation
to find the values of ¢ elsewhere. Even worse, here we may not know the
location of any of the points on the interface, unless we have luckily cho
sen data points if where ¢(if) is exactly equal to zero. In order to locate
the interface, the ¢(if) 0 isocontour needs to be interpolated from the
known values of ¢ at the data points. This is a rather standard procedure
accomplished by a variety of contour plotting routines.

The set of data points where the implicit function ¢ is defined is called
a grid. There are many ways of choosing the points in a grid, and these
lead to a number of different types of grids, e.g., unstructured, adaptive,
curvilinear. By far, the most popular grids, are Cartesian grids defined as
{(Xi,Yj) 11 :s; i :s; m, 1 :s; j :s; n}. The natural orderings of the Xi and Yj
are usually used for convenience. That is, Xl < ... < Xi-l < Xi < Xi+l <
... < Xm and YI < ... < Yj-l < Yj < Yj+l < ... < Yn' In a uniform
Cartesian grid, all the subintervals [Xi, Xi+ll are equal in size, and we set
fix = Xi+l -- Xi. Likewise, all the subintervals [Yj, Yj+ll are equal in size,
and we set fiy = Yj+l - Yj. Furthermore, it is usually convenient to choose
fix = fiy so that the approximation errors are the same in the x-direction
as they are in the y-direction. By definition, Cartesian grids imply the use
of a rectangular domain D = [Xl, xml x [YI, YnJ. Again, since ¢ is important
only near the interface, a local approach would indicate that many of the
grid points are not needed, and the implicit representation can be optimized
by storing only a subset of a uniform Cartesian grid. The Cartesian grid
points that are not sufficiently near the interface can be discarded.

1.3. Surfaces 7

We pause for a moment to consider the discretization of the one
dimensional problem. There, since the explicit representation is merely a
set of points, it is trivial to record the exact interface position, and no
discretization or parameterization is needed. However, the implicit repre
sentation must be discretized if ¢ is not a known analytic function. A typical
discretization consists of a set of points Xl < ... < Xi-l < Xi < Xi+l <
... < Xm on a subdomain D = [Xl, xml of 3? Again, it is usually useful to
use a uniform grid, and only the grid points near the interface need to be
stored.

1.3 Surfaces

In three spatial dimensions the lower-dimensional interface is a surface
that separates ~3 into separate subdomains with nonzero volumes. Again,
we consider only closed surfaces with clearly defined interior and exterior
regions. As an example, consider ¢(if) = X2 +y2 + z2 -1, where the interface
is defined by the ¢(if) = 0 isocontour, which is the boundary of the unit
sphere defined as 80, = {if Ilxl = I}. The interior region is the open unit

sphere 0,- = {x II~ < I}, and the exterior region is 0,+ = {x Ilxl > I}.
The explicit representation of the interface is 80, = {x I Ixl = I}.

For complicated surfaces with no analytic representation, we again need
to use a discretization. In three spatial dimensions the explicit represen
tation can be quite difficult to discretize. One needs to choose a number
of points on the two-dimensional surface and record their connectivity. In
two spatial dimensions, connectivity was determined based on the ordering,
Le., if(Si) is connected to X(Si-l) and if(Si+l). In three spatial dimensions
connectivity is less straightforward. If the exact surface and its connectivity
are known, it is simple to tile the surface with triangles whose vertices lie
on the interface and whose edges indicate connectivity. On the other hand,
if connectivity is not known, it can be quite difficult to determine, and even
some of the most popular algorithms can produce surprisingly inaccurate
surface representations, e.g., surfaces with holes.

Connectivity can change for dynamic implicit surfaces, i.e., surfaces that
are moving around. As an example, consider the splashing water surface
in a swimming pool full of children. Here, connectivity is not a "one-time"
issue dealt with in constructing an explicit representation of the surface.
Instead, it must be resolved over and over again every time pieces of the
surface merge together or pinch apart. In two spatial dimensions the task
is more manageable, since merging can be accomplished by taking two
one-dimensional parameterizations, Si and Si, and combining them into a
single one-dimensional parameterization. Pinching apart is accomplished by
splitting a single one-dimensional parameterization into two separate one
dimensional parameterizations. In three spatial dimensions the "interface

8 1. Implicit Functions

surgery" needed for merging and pinching is much more complex, leading
to a number of difficulties including, for example, holes in the surface.

One of the nicest properties of implicit surfaces is that connectivity does
not need to be determined for the discretization. A uniform Cartesian grid
{(Xi,Yj,Zk) 11:::; i:::; m,l :::; j :::; n,l :::; k :::; p} can be used along
with straightforward generalizations of the technology from two spatial
dimensions. Possibly the most powerful aspect of implicit surfaces is that
it is straightforward to go from two spatial dimensions to three spatial
dimensions (or even more).

1.4 Geometry Toolbox

Implicit interface representations include some very powerful geometric
tools. For example, since we have designated the ¢(x) = 0 isocontour as
the interface, we can determine which side of the interface a point is on
simply by looking at the local sign of ¢. That is, Xo is inside the interface
when ¢(xo) < 0, outside the interface when ¢(xo) > 0, and on the interface
when ¢(xo) = O. With an explicit representation of the interface it can be
difficult to determine whether a point is inside or outside the interface. A
standard procedure for doing this is to cast a ray from the point in question
to some far-off place that is known to be outside the interface. Then if the
ray intersects the interface an even number of times, the point is outside
the interface. Otherwise, the ray intersects the interface an odd number of
times, and the point is inside the interface. Obviously, it is more convenient
simply to evaluate ¢ at the point xo. In the discrete case, i.e., when the
implicit function is given by its values at a finite number of data points,
interpolation can be used to estimate ¢(xo) using the values of ¢ at the
known sample points. For example, on our Cartesian grid, linear, bilin
ear, and trilinear interpolation can be used in one, two, and three spatial
dimensions, respectively.

Numerical interpolation produces errors in the estimate of ¢. This can
lead to erroneously designating inside points as outside points and vice
versa. At first glance these errors might seem disastrous, but in reality
they amount to perturbing (or moving) the interface away from its exact
position. If these interface perturbations are small, their effects may be mi
nor, and a perturbed interface might be acceptable. In fact, most numerical
methods depend on the fact that the results are stable in the presence of
small perturbations. If this is not true, then the problem under consider
ation is probably ill-posed, and numerical methods should be used only
with extreme caution (and suspicion). These interface perturbation errors
decrease as the number of sample points increases, implying that the exact
answer could hypothetically be computed as the number of sample points
is increased to infinity. Again, this is the basis for most numerical methods.

1.4. Geometry Toolbox 9

While one cannot increase the number of grid points to infinity, desirable
solutions can be obtained for many problems with a practical number of
grid points. Throughout the text we will make a number of numerical ap
proximations with errors proportional to the size of a Cartesian mesh cell,
i.e., 6x (or (L.xY). If the implicit function is smooth enough and well
resolved by the grid, these estimates will be appropriate. Otherwise, these
errors might be rather large. Obviously, this means that we would like our
implicit function to be as smooth as possible. In the next chapter we dis
cuss using a signed distance function to represent the surface. This turns
out to be a good choice, since steep and fiat gradients as well as rapidly
changing features are avoided as much as possible.

Implicit functions make both simple Boolean operations and more ad
vanced constructive solid geometry (CSG) operations easy to apply. This
is important, for example, in computer-aided design (CAD). If (h and 1>2
are two different implicit functions, then ¢(x) = min(¢1(x),¢2(X)) is
the implicit function representing the union of the interior regions of ¢l
and ¢2. Similarly, ¢(x) = max(¢l(x), ¢2(X)) is the implicit function
representing the intersection of the interior regions of ¢l and ¢2. The
complement of ¢l(X) can be defined by ¢(x) = -¢l(X). Also, ¢(x) =
max(¢l(x), -¢2(X)) represents the region obtained by subtracting the
interior of ¢2 from the interior of ¢l.

The gradient of the implicit function is defined as

"VA. = (a¢ a¢ a¢)
<P ax' ay' az . (1.1)

The gradient "V ¢ is perpendicular to the isocontours of ¢ and points in the
direction of increasing ¢. Therefore, if Xo is a point on the zero isocontour
of ¢, i.e., a point on the interface, then "V¢ evaluated at Xo is a vector that
points in the same direction as the local unit (outward) normal N to the
interface. Thus, the unit (outward) normal is

- "V¢
N = I"V¢I (1.2)

for points on the interface.
Since the implicit representation of the interface embeds the interface

in a domain of one higher-dimension, it will be useful to have as much
information as possible representable on the higher-dimensional domain.
For example, instead of defining the unit normal N by equation (1.2) for
points on the interface only, we use equation (1.2) to define a function N
everywhere on the domain. This embeds the normal in a function N defined
on the entire domain that agrees with the normal for points on the interface.
Figure 1.3 shows a few isocontours of our two-dimensional example ¢(x) =
x2 + y2 - 1 along with some representative normals.

Consider the one-dimensional example ¢(x) = x2 -1, where N is defined
by equation (1.2) as N = x/lxl. Here, N points to the right for all x > 0

10 1. Implicit Functions

y

x

Figure 1.3. A few isocontours of our two-dimensional example rj>(x) = x2 +y2_1
along with some representative normals.

including x = 1, where the interface normal is N = 1, and N points to the
left for all x < 0 including x = -1, where the interface normal is N = -1.
The normal is undefined at x = 0, since the denominator of equation (1.2)
vanishes. This can be problematic in general, but can be avoided with a
number of techniques. For example, at x = 0 we could simply define N as
either N = lor N = -1. Our two- and three-dimensional examples (above)
show similar degenerate behavior at x = 0, where all partial derivatives
vanish. Again, a simple technique for evaluating (1.2) at these points is
just to pick an arbitrary direction for the normal. Note that the standard
trick of adding a small € > 0 to the denominator of equation (1.2) can
be a bad idea in general, since it produces a normal with INI =I- 1. In fact,
when the denominator in equation (1.2) is zero, so is the numerator, making

N = ° when a small € > 0 is used in the denominator. (While setting N = °
is not always disastrous, caution is advised.)

On our Cartesian grid, the derivatives in equation (1.2) need to be ap
proximated, for example using finite difference techniques. We can use a
first-order accurate forward difference

(1.3)

abbreviated as D+ ¢, a first-order accurate backward difference

a¢ ¢i - ¢i-l
ax ::::: 6x (1.4)

1.4. Geometry Toolbox 11

abbreviated as D-¢, or a second-order accurate central difference

o¢ ¢HI - ¢i-I (1.5)
ox ~ 2L:.x

abbreviated as DO¢. (The j and k indices have been suppressed in the
above formulas.) The formulas for the derivatives in the y and z directions
are obtained through symmetry. These simple formulas are by no means
exhaustive, and we will discuss more ways of approximating derivatives
later in the text.

When all numerically calculated finite differences are identically zero,
the denominator of equation (1.2) vanishes. As in the analytic case, we
can simply randomly choose a normal. Here, however, randomly choosing
a normal is somewhat justified, since it is equivalent to randomly perturb
ing the values of ¢ on our Cartesian mesh by values near round-off error.
These small changes in the values of ¢ are dominated by the local approx
imation errors in the finite difference formula for the derivatives. Consider
a discretized version of our one-dimensional example ¢(x) = x2 - 1, and
suppose that grid points exist at Xi-I = -L:.x, Xi = 0, and xHI = L:.x with
exact values of ¢ defined as ¢i-I = L:.x2 -1, ¢i = -1, and ¢HI = L:.x2 -1,
respectively. The forward difference formula gives Ni = 1, the backward
difference formula gives Ni = -1, and the central difference formula can
not be used, since DO¢ = 0 at Xi = O. However, simply perturbing ¢HI to
6.x2 - 1 + E for any small E > 0 (even round-off error) gives DO ¢ =I- 0 and
Ni = 1. Similarly, perturbing ¢i-I to L:.x2 - 1 + f gives Ni = -1. Thus,
for any approach that is stable under small perturbations of the data, it is
acceptable to randomly choose N when the denominator of equation (1.2)
vanishes. Similarly in our two- and three-dimensional examples, N = x/lxl
everywhere except at x = 0, where equation (1.2) is not defined and we
are free to choose it arbitrarily. The arbitrary normal at the origin in the
one-dimensional case lines up with the normals to either the right, where
N = 1, or to the left, where N = -1. Similarly, in two and three spatial di
mensions, an arbitrarily chosen normal at x = 0 lines up with other nearby
normals. This is always the case, since the normals near the origin point
outward in every possible direction.

If ¢ is a smooth well-behaved function, then an approximation to the
value of the normal at the interface can be obtained from the values of N
computed at the nodes of our Cartesian mesh. That is, given a point Xo

on the interface, one can estimate the unit outward normal at Xo by in
terpolating the values of N from the Cartesian mesh to the point xo. If
one is using forward, backward, or central differences, then linear (bilinear
or trilinear) interpolation is usually good enough. However, higher-order
accurate formulas can be used if desired. This interpolation procedure re
quires that ¢ be well behaved, implying that we should be careful in how
we choose ¢. For example, it would be unwise to choose an implicit func
tion ¢ with unnecessary oscillations or steep (or flat) gradients. Again, a

12 1. Implicit Functions

good choice for ¢ turns out to be the signed distance function discussed in
the next chapter.

The mean curvature of the interface is defined as the divergence of the
normal N = (nl' n2, n3),

K, = V' . N = anI + on2 + on3
AX oy oz' (1.6)

so that K, > 0 for convex regions, K, < 0 for concave regions, and K, = 0 for a
plane; see Figure 1.4. While one could simply use finite differences to com
pute the derivatives ofthe components of the normal in equation (1.6), it is
usually more convenient, compact, and accurate to calculate the curvature
directly from the values of ¢. Substituting equation (1.2) into equation (1.6)
gives

K, = V'. C~:I) , (1. 7)

so that we can write the curvature as

K, = (¢~¢yy - 2¢x¢y¢xy + ¢;¢xx + ¢~¢zz - 2¢x¢z¢xz + ¢~¢xx
+¢;¢zz - 2¢y¢z¢yz + ¢~¢yy) IIV'¢13 (1.8)

in terms of the first and second derivatives of ¢. A second-order accurate
finite difference formula for ¢xx, the second partial derivative of ¢ in the x
direction, is given by

02¢ ¢i+1 - 2¢i + ¢i-l
ox2 ::::; D.x2

(1.9)

abbreviated as D"t D; ¢, or equivalently, D; D"t ¢. Here D+ and D- are
defined as in equations (1.3) and (1.4), respectively, and the x subscript
indicates that the finite difference is evaluated in the x direction. A second
order accurate finite difference formula for ¢xy is given by D~D~¢, or
equivalently, D~D~¢. The other second derivatives in equation (1.8) are
defined in a manner similar to either ¢xx or ¢xy'

In our one-dimensional example, ¢(x) = x 2 - 1, K, = 0 everywhere ex
cept at the origin, where equation (1.7) is undefined. Thus, the origin, is
a removable singularity, and we can define K, = 0 everywhere. Interfaces in
one spatial dimension are models of planes in three dimensions (assuming
that the unmodeled directions have uniform data). Therefore, using K, = 0
everywhere is a consistent model. In our two- and three-dimensional ex
amples above, K, = I}I and K, = I~I (respectively) everywhere except at the
origin. Here the singularities are not removable, and K, -+ 00 as we approach
the origin. Moreover, K, = 1 everywhere on the one-dimensional interface
in two spatial dimensions, and K, = 2 everywhere on the two-dimensional
interface in three spatial dimensions. The difference occurs because a two
dimensional circle is a cylinder in three spatial dimensions (assuming that

n+
tjJ>O
outside

1.5. Calculus Toolbox 13

~an
tjJ=O

interface

Figure 1.4. Convex regions have r;, > 0, and concave regions have r;, < o.

the unmodeled direction has uniform data). It seems nonsensical to be trou
bled by K, --+ 00 as we approach the origin, since this is only a consequence
of the embedding. In fact, since the smallest unit of measure on the Carte
sian grid is the cell size 6x, it makes little sense to hope to resolve objects
smaller than this. That is, it makes little sense to model circles (or spheres)
with a radius smaller than t:::.x. Therefore, we limit the curvature so that
-ix ~ K, ~ lx. If a value of K, is calculated outside this range, we merely
replace that value with either -lx or lx depending on which is closer.

As a final note on curvature, one has to use caution when ¢ is noisy.
The normal jJ will generally have even more noise, since it is based on the
derivatives of ¢. Similarly, the curvature K, will be even noisier than the
normal, since it is computed with the second derivatives of ¢.

1.5 Calculus Toolbox

The characteristic function X- of the interior region n- is defined as

_ _ {I if ¢(x) ~ 0,
X (x) = ° if ¢(x) > ° (1.10)

where we arbitrarily include the boundary with the interior region. The
characteristic function X+ of the exterior region n+ is defined similarly as

X+(x) = {o if ¢(x) ~ 0, (1.11)
1 if ¢(x) > 0,

again including the boundary with the interior region. It is often useful to
have only interior and exterior regions so that special treatment is not

14 1. Implicit Functions

needed for the boundary. This is easily accomplished by including the
measure-zero boundary set with either the interior or exterior region (as
above). Throughout the text we usually include the boundary with the
interior region n- where ¢(x) < ° (unless otherwise specified).

The functions x± are functions of a multidimensional variable X. It
is often more convenient to work with functions of the one-dimensional
variable ¢. Thus we define the one-dimensional Heaviside function

H(¢)={O if¢:SO,
1 if ¢ > 0,

(1.12)

where ¢ depends on X, although it is not important to specify this depen
dence when working with H. This allows us to work with H in one spatial
dimension. Note that X+(x) = H(¢(x)) and X-(x) = I-H(¢(x)) for all X,
so all we have done is to introduce an extra function of one variable H to
be used as a tool when dealing with characteristic functions.

The volume integral (area or length integral in ~2 or ?HI, respectively) of
a function f over the interior region n- is defined as

(1.13)

where the region of integration is all of n, since x- prunes out the exterior
region n+ automatically. The one-dimensional Heaviside function can be
used to rewrite this volume integral as

10 f(x) (1 - H(¢(x))) dx (1.14)

representing the integral of f over the interior region n-. Similarly,

in f(x)H(¢(x)) dx (1.15)

is the integral of f over the exterior region n+.
By definition, the directional derivative of the Heaviside function H in

the normal direction N is the Dirac delta function

8(x) = \lH(¢(x))' N, (1.16)

which is a function of the multidimensional variable X. Note that this dis
tribution is nonzero only on the interface 8n where ¢ = 0. We can rewrite
equation (1.16) as

8(x) = H'(¢(x))\l¢(x) . \~:~:~\ = H'(¢(x))\\l¢(x)\ (1.17)

using the chain rule to take the gradient of H, the definition of the normal
from equation (1.2), and the fact that \l¢(x) . \l¢(x) = \\l¢(x)\2. In one
spatial dimension, the delta function is defined as the derivative of the

1.5. Calculus Toolbox 15

one-dimensional Heaviside function:

J(¢) = H'(¢), (1.18)

where H(¢) is defined in equation (1.12) above. The delta function J(¢)
is identically zero everywhere except at ¢ = O. This allows us to rewrite
equations (1.16) and (1.17) as

8(x) = J(¢(x)) 1\7¢(x) I (1.19)

using the one-dimensional delta function J (¢).
The sur/ace integral (line or point integral in lR2 or lRl, respectively) of

a function / over the boundary 80 is defined as

l /(x)8(x) dx, (1.20)

where the region of integration is all of 0, since 8 prunes out everything
except 80 automatically. The one-dimensional delta function can be used
to rewrite this surface integral as

l /(x)J(¢(x)) 1\7¢(x) I dx. (1.21)

Typically, volume integrals are computed by dividing up the interior
region 0-, and surface integrals are computed by dividing up the bound
ary 80. This requires treating a complex two-dimensional surface in three
spatial dimensions. By embedding the volume and surface integrals in
higher dimensions, equations (1.14), (1.15) and (1.21) avoid the need for
identifying inside, outside, or boundary regions. Instead, the integrals are
taken over the entire region O. Note that dx is a volume element in three
spatial dimensions, an area element in two spatial dimensions, and a length
element in one spatial dimension. On our Cartesian grid, the volume of a
three-dimensional cell is 6.x6.y6.z, the area of a two-dimensional cell is
6.x6.y, and the length of a one-dimensional cell is 6.x.

Consider the surface integral in equation (1.21), where the one
dimensional delta function J(¢) needs to be evaluated. Since J(¢) = 0
almost everywhere, i.e., except on the lower-dimensional interface, which
has measure zero, it seems unlikely that any standard numerical approxi
mation based on sampling will give a good approximation to this integral.
Thus, we use a first-order accurate smeared-out approximation of J (¢).
First, we define the smeared-out Heaviside function

H(¢) = {~ + it + .1... sin (!Ii.) 2 2< 271' <

1

¢ < -E,

-E:S ¢ :s E,

E < ¢,

(1.22)

where E is a tunable parameter that determines the size of the bandwidth
of numerical smearing. A typically good value is E = 1.56.x (making the

16 1. Implicit Functions

interface width equal to three grid cells when cp is normalized to a signed
distance function with l\7cpl = 1; see Chapter 2). Then the delta function
is defined according to equation (1.18) as the derivative of the Heaviside
function

cp < -E,

-E ~ cp ~ E,

E < cp,

(1.23)

where E is determined as above. This delta function allows us to evaluate
the surface integral in equation (1.21) using a standard sampling technique
such as the midpoint rule. Similarly, the smeared-out Heaviside function in
equation (1.22) allows us to evaluate the integrals in equations (1.14) and
(1.15).

The reader is cautioned that the smeared-out Heaviside and delta
functions approach to the calculus of implicit functions leads to first
order accurate methods. For example, when calculating the volume of the
region n- using

10 (1- H(cp(x))) dV (1.24)

with the smeared-out Heaviside function in equation (1.22) (and j(x) =
1), the errors in the calculation are O(6x) regardless of the accuracy of
the integration method used. If one needs more accurate results, a three
dimensional contouring algorithm such as the marching cubes algorithm can
be used to identify the region n- more accurately, see Lorenson and Cline
[108] or the more recent Kobbelt et al. [98]. Since higher-order accurate
methods can be complex, we prefer the smeared-out Heaviside and delta
function methods whenever appropriate.

2
Signed Distance Functions

2.1 Introduction

In the last chapter we defined implicit functions with ¢(x) ::; 0 in the
interior region n- , ¢(x) > 0 in the exterior region n+, and ¢(x) = 0 on the
boundary an. Little was said about ¢ otherwise, except that smoothness is
a desirable property especially in sampling the function or using numerical
approximations. In this chapter we discuss signed distance functions, which
are a subset of the implicit functions defined in the last chapter. We define
signed distance functions to be positive on the exterior, negative on the
interior, and zero on the boundary. An extra condition of 1\7¢(x) I = 1 is
imposed on a signed distance function.

2.2 Distance Functions

A distance function d(x) is defined as

d(x) = min(lx - xII) for all XI Eon, (2.1)

implying that d(x) = 0 on the boundary where x E 00. Geometrically, d
may be constructed as follows. If x E an, then d(x) = O. Otherwise, for
a given point x, find the point on the boundary set 00 closest to x, and
label this point xc. Then d(x) = Ix - xci.

For a given point x, suppose that Xc is the point on the interface closest
to X. Then for every point y on the line segment connecting x and xc,

18 2. Signed Distance Functions

xe--+--ef---- Xc

Figure 2.1. Xc is the closest interface point to X and y.

Xc is the point on the interface closest to fl as well. To see this, consider
Figure 2.1, where X, XC, and an example of a fl are shown. Since Xc is the
closest interface point to X, no other interface points can be inside the large
circle drawn about X passing through Xc. Points closer to ythan Xc must
reside inside the small circle drawn about fl passing through Xc. Since the
small circle lies inside the larger circle, no interface points can be inside
the smaller circle, and thus Xc is the interface point closest to fl. The line
segment from X to Xc is the shortest path from x to the interface. Any local
deviation from this line segment increases the distance from the interface.
In other words, the path from x to Xc is the path of steepest descent for the
function d. Evaluating -\7 d at any point on the line segment from x to Xc
gives a vector that points from X to Xc. Furthermore, since d is Euclidean
distance,

l\7dl = 1, (2.2)

which is intuitive in the sense that moving twice as close to the interface
gives a value of d that is half as big.

The above argument leading to equation (2.2) is true for any x as long
as there is a unique closest point xc. That is, equation (2.2) is true ex
cept at points that are equidistant from (at least) two distinct points on
the interface. Unfortunately, these equidistant points can exist, making
equation (2.2) only generally true. It is also important to point out that
equation (2.2) is generally only approximately satisfied in estimating the
gradient numerically. One of the triumphs of the level set method involves
the ease with which these degenerate points are treated numerically.

2.3 Signed Distance Functions

A signed distance function is an implicit function ¢ with 1¢(x)1 = d(x) for
all X. Thus, ¢(x) = d(x) = 0 for all x E 80" ¢(x) = -d(x) for all x E 0,-,

2.4. Examples 19

and ¢(x) = d(x) for all x E n+. Signed distance functions share all the
properties of implicit functions discussed in the last chapter. In addition,
there are a number of new properties that only signed distance functions
possess. For example,

IV'¢I = 1 (2.3)

as in equation (2.2). Once again, equation (2.3) is true only in a general
sense. It is not true for points that are equidistant from at least two points
on the interface. Distance functions have a kink at the interface where
d = 0 is a local minimum, causing problems in approximating derivatives
on or near the interface. On the other hand, signed distance functions
are monotonic across the interface and can be differentiated there with
significantly higher confidence.

Given a point x, and using the fact that ¢(x) is the signed distance to
the closest point on the interface, we can write

Xc = x - ¢(x)N (2.4)

to calculate the closet point on the interface, where N is the local unit
normal at x. Again, this is true only in a general sense, since equidistant
points x have more than one closest point xc. Also, on our Cartesian grid,
equation (2.4) will be only an approximation of the closest point on the
interface xc. Nevertheless, we will find formulas of this sort very useful.

Equations that are true in a general sense can be used in numerical ap
proximations as long as they fail in a graceful way that does not cause an
overall deterioration of the numerical method. This is a general and pow
erful guideline for any numerical approach. So while the user should be
cautiously knowledgeable of the possible failure of equations that are only
generally true, one need not worry too much if the equation fails in a grace
ful (harmless) manner. More important, if the failure of an equation that is
true in a general sense causes overall degradation of the numerical method,
then many times a special-case approach can fix the problem. For example,
when calculating the normals using equation (1.2) in the last chapter, we
treated the special case where the denominator IV' ¢I was identically zero by
randomly choosing the normal direction. The numerical methods outlined
in Part II of this book are based on vanishing viscosity solutions that guar
antee reasonable behavior even at the occasional kink where a derivative
fails to exist.

2.4 Examples

In the last chapter we used ¢(x) = x2 - 1 as an implicit representation
of an = {-I, I}. A signed distance function representation of these same
points is ¢(x) = lxi-I, as shown in Figure 2.2. The signed distance function

20 2. Signed Distance Functions

¢=Ixl-l

outside

interface

\ outside

an
¢=o

interface

x

Figure 2.2. Signed distance function ¢(x) = Ixl- 1 defining the regions sr and
0+ as well as the boundary 80.

¢(x) = lxi-I, gives the same boundary ao, interior region 0-, and exterior
region 0+, that the implicit function ¢(x) = x 2-I did. However, the signed
distance function ¢(x) = Ixl- 1 has IV'¢I = 1 for all x =1= o. At x = 0 there
is a kink in our function, and the derivative is not defined. While this may
seem problematic, for example for determining the normal, our Cartesian
grid contains only sample points and therefore cannot resolve this kink.
On the Cartesian grid this kink is slightly smeared out, and the derivative
will have a finite value. In fact, consideration of the possible placement of
sample points shows that the value of the derivative lies in the interval
[-1,1]. Thus, nothing special needs to be done for kinks. In the worst-case
scenario, the gradient vanishes at a kink, and remedies for this were already
addressed in the last chapter.

In two spatial dimension we replace the implicit function ¢(x) = x2 +
y2 _ 1 with the signed distance function ¢(x) = ";x2 + y2 - 1 in order to
implicitly represent the unit circle ao = {x I Ixl = I}. Here IV' ¢I = 1 for
all x i= 0, and a multidimensional kink exists at the single point x = o.
Again, on our Cartesian grid the kink will be rounded out slightly and will
not pose a problem. However, this numerical smearing of the kink makes
IV'¢I =1= 1 locally. That is, locally ¢ is no longer a signed distance function,
and one has to take care when applying formulas that assume IV' ¢I = 1.
Luckily, this does not generally lead to catastrophic difficulties. In fact,
these kinks mostly exist away from the zero isocontour, which is the region
of real interest in interface calculations.

2.5. Geometry and Calculus Toolboxes 21

In three spatial dimensions we replace the implicit function ¢(x) = x2 +
y2 + z2 _ 1 with the signed distance function ¢(x) = Jx2 + y2 + z2 - 1
in order to represent the surface of the unit sphere an = {x I Ixl = 1}
implicitly. Again, the multidimensional kink at x = 0 will be smeared out
on our Cartesian grid.

In all three examples there was a kink at a single point. This is somewhat
misleading in general. For example, consider the one-dimensional example
¢(x) = Ixl-1 again, but in two spatial dimensions, where we write ¢(x) =
Ixl - 1. Here, the interface consists of the two lines x = -1 and x = 1,
and the interior region is n- = {x Ilxl < I}. In this example every point
along the line x = 0 has a kink in the x direction; i.e., there is an entire
line of kinks. Similarly, in three spatial dimensions ¢(x) = Ix/-1 implicitly
represents the two planes x = -1 and x = 1. In this case every point on
the two-dimensional plane x = 0 has a kink in the x direction; i.e., there is
an entire plane of kinks. All of these kinks will be numerically smeared out
on our Cartesian grid, and we need not worry about the derivative being
undefined. However, locally IV¢I =I- 1 numerically.

2.5 Geometry and Calculus Toolboxes

Boolean operations for signed distance functions are similar to those for
general implicit functions. If ¢1 and ¢2 are two different signed distance
functions, then ¢(x) = min(¢l(x), ¢2(X)) is the signed distance func
tion representing the union of the interior regions. The function ¢(x) =
max(¢l(x), ¢2(X)) is the signed distance function, representing the intersec
tion of the interior regions. The complement of the set defined by ¢1 (x) has
signed distance function ¢(x) = -¢l(X). Also, ¢(x) = max(¢l (x) , -¢2(X))
is the signed distance function for the region defined by subtracting the
interior of ¢2 from the interior of ¢1.

As mentioned in the last chapter, we would like our implicit function to be
as smooth as possible. It turns out that signed distance functions, especially
those where the kinks have been numerically smeared, are probably the
best candidates for implicit representation of interfaces. This is because
IV¢I = 1 everywhere except near the smoothed-out kinks. This simplifies
many of the formulas from the last chapter by removing the normalization
constants. Equation (1.2) simplifies to

N=V¢

for the local unit normal. Equation (1.7) simplifies to

K=t::..¢

for the curvature, where t::..¢ is the Laplacian of ¢ defined as

t::..¢ = ¢xx + ¢yy + ¢zz,

(2.5)

(2.6)

(2.7)

22 2. Signed Distance Functions

which should not be confused with L"x, which is the size of a Cartesian
grid cell. While this overuse of notation may seem confusing at first, it is
very common and usually clarified from the context in which it is used.

Note the simplicity of equation (2.7) as compared to equation (1.8).
Obviously, there is much to be gained in simplicity and efficiency in us
ing signed distance functions. However, one should be relatively cautious,
since smeared-out kinks will generally have IV'¢I =1= 1, so that equa
tions (2.5) and (2.6) do not accurately define the normal and the curvature.
In fact, when using numerical approximations, one will not generally obtain
IV'¢I = 1, so equations (2.5) and (2.6) will not generally be accurate. There
are many instances of the normal or the curvature appearing in a set of
equations when these quantities may not actually be needed or desired. In
fact, one may actually prefer the gradient of ¢ (Le., V' ¢) instead ofthe nor
mal. Similarly, one may prefer the Laplacian of ¢ (Le., L,,¢) instead of the
curvature. In this sense one should always keep equations (2.5) and (2.6)
in mind when performing numerical calculations. Even if they are not gen
erally true, they have the potential to make the calculations more efficient
and even better behaved in some situations.

The multidimensional delta function in equation (1.19) can be rewritten
as

8(x) = 8(¢(x)) (2.8)

using the one-dimensional delta function 8 (¢). The surface integral in
equation (1.21) then becomes

l J(x)8(¢(x))dx,

where the IV'¢I term has been omitted.

(2.9)

Part II

Level Set Methods

Level set methods add dynamics to implicit surfaces. The key idea that
started the level set fanfare was the Hamilton-Jacobi approach to numer
ical solutions of a time-dependent equation for a moving implicit surface.
This was first done in the seminal work of Osher and Sethian [126]. In the
following chapters we will discuss this seminal work along with many of the
auxiliary equations that were developed along the way, including a general
numerical approach for Hamilton-Jacobi equations.

In the first chapter we discuss the basic convection equation, otherwise
known as the "level set equation." This moves an implicit surface in an ex
ternally generated velocity field. In the following chapter we discuss motion
by mean curvature, emphasizing the parabolic nature of this equation as op
posed to the underlying hyperbolic nature of the level set equation. Then,
in the following chapter we introduce the general concept of Hamilton
Jacobi equations, noting that basic convection is a simple instance of this
general framework. In the next chapter we discuss the concept of a sur
face moving normal to itself. The next two chapters address two of the
core level set equations and give details for obtaining numerical solutions
in the Hamilton-Jacobi framework. Specifically, we discuss reinitialization
to a signed distance function and extrapolation of a quantity away from
or across an interface. After this, we discuss a recently developed particle
level set method that hybridizes the Eulerian level set approach with La
grangian particle-tracking technology. Finally, we wrap up this part of the
book with a brief discussion of co dimension-two (and higher) objects.

3
Motion in an Externally Generated
Velocity Field

3.1 Convection

Suppose that the velocity of each point on the implicit surface is given as
V(X'); i.e., assume that V(X') is known for every point X' with ¢(X') = O.
Given this velocity field V = (u, v, w), we wish to move all the points on
the surface with this velocity. The simplest way to do this is to solve the
ordinary differential equation (ODE)

dX' = V(X')
dt

(3.1)

for every point X' on the front, i.e., for all X' with ¢(X') = O. This is the
Lagrangian formulation of the interface evolution equation. Since there are
generally an infinite number of points on the front (except, of course, in one
spatial dimension), this means discretizing the front into a finite number
of pieces. For example, one could use segments in two spatial dimensions
or triangles in three spatial dimensions and move the endpoints of these
segments or triangles. This is not so hard to accomplish if the connectiv
ity does not change and the surface elements are not distorted too much.
Unfortunately, even the most trivial velocity fields can cause large distor
tion of boundary elements (segments or triangles), and the accuracy of the
method can deteriorate quickly if one does not periodically modify the dis
cretization in order to account for these deformations by smoothing and
regularizing inaccurate surface elements. The interested reader is referred to
[174] for a rather recent least-squares-based smoothing scheme for damping

26 3. Motion in an Externally Generated Velocity Field

mesh-instabilities due to deforming elements. Examples are given in both
two and three spatial dimensions. Reference [174J also discusses the use of
a mesh-refinement procedure to maintain some degree of regularity as the
interface deforms. Again, without these special procedures for maintaining
both smoothness and regularity, the interface can deteriorate to the point
where numerical results are so inaccurate as to be unusable. In addition
to dealing with element deformations, one must decide how to modify the
interface discretization when the topology changes. These surgical meth
ods of detaching and reattaching boundary elements can quickly become
rather complicated. Reference [174J outlines some of the details involved in
a single "surgical cut" of a three-dimensional surface. The use of the La
grangian formulation of the interface motion given in equation (3.1) along
with numerical techniques for smoothing, regularization, and surgery are
collectively referred to as front tracking methods. A seminal work in the
field of three-dimensional front tracking is [168J, and the interested reader
is referred to [165J for a current state-of-the-art review.

In order to avoid problems with instabilities, deformation of surface
elements, and complicated surgical procedures for topological repair of in
terfaces, we use our implicit function ¢ both to represent the interface
and to evolve the interface. In order to define the evolution of our implicit
function ¢ we use the simple convection (or advection) equation

(3.2)

where the t subscript denotes a temporal partial derivative in the time
variable t. Recall that \i' is the gradient operator, so that

if· \i'¢ = u¢x + V¢y + w¢z.

This partial differential equation (PDE) defines the motion of the interface
where ¢(x) = O. It is an Eulerian formulation of the interface evolution,
since the interface is captured by the implicit function ¢ as opposed to being
tracked by interface elements as was done in the Lagrangian formulation.
Equation (3.2) is sometimes referred to as the level set equation; it was
introduced for numerical interface evolution by Osher and Sethian [126J. It
is also a quite popular equation in the combustion community, where it is
known as the G-equation given by

(3.3)

where the G(x) = 0 isocontour is used to represent implicitly the reac
tion surface of an evolving flame front. The G-equation was introduced by
Markstein [110], and it is used in the asymptotic analysis of flame fronts in
instances where the front is thin enough to be considered a discontinuity.
The interested reader is referred to Williams [173J as well. Lately, numeri
cal practitioners in the combustion community have started using level set
methods to find numerical solutions of equation (3.3) in (obviously) the
same manner as equation (3.2).

3.1. Convection 27

On a Cartesian grid it can be slightly complicated to implement equa
tion (3.2) if the velocity field is defined only on the interface itself. So,
as with the embedding of cP, we usually write equation (3.2) using the
assumption that the velocity field if is not only defined on the interface
where ¢(i) = 0, but is defined off the interface as well. Often if will be
naturally defined on the entire computational domain n, but for numerical
purposes it is usually sufficient to have if defined on a band containing
the interface. The bandwidth varies based on the numerical method used
to obtain approximate solutions to equation (3.2). When if is already de
fined throughout all of n nothing special need be done. However, there
are interesting examples where if is known only on the interface, and one
must extend its definition to (at least) a band about the interface in order
to solve equation (3.2). We will discuss the extension of a velocity off the
interface in Chapter 8.

Embedding if on our Cartesian grid introduces the same sampling issues
that we faced in Chapter 1 when we embedded the interface r as the zero
level set of the function ¢. For example, suppose we were given a velocity
field if that is identically zero in all of n except on the interface, where
if = (1,0,0). Then the exact solution is an interface moving to the right
with speed 1. However, since most (if not all) of the Cartesian grid points
will not lie on the interface, most of the points on our Cartesian mesh have
if identically equal to zero, causing the if· '\lcP term in equation (3.2) to
vanish. This in turn implies that cPt = 0 almost everywhere, so that the
interface mostly (or completely if no points happen to fall on the interface)
incorrectly sits still. This difficult issue can be rectified in part by placing
some conditions on the velocity field if. For example, if we require that
if be continuous near the interface, then this rules out our degenerate
example.

Restricting if to the set of continuous functions generally does not alle
viate our sampling problems. Suppose, for example, that the above velocity
field was equal to (1,0,0) on the interface, zero outside a band of thickness
€ > 0 surrounding the interface, and smooth in between. We can choose if
as smooth as we like by defining it appropriately in the band of thickness €

surrounding the interface. The difficulty arises when € is small compared to
6x. If € is small enough, then almost every grid point will lie outside the
band where if = O. Once again, we will (mostly) compute an interface that
incorrectly sits still. In fact, even if € is comparable to fix, the numerical
solution will have significant errors. In order to resolve the velocity field, it
is necessary to have a number of grid points within the € thickness band
surrounding the interface. That is, we need fix to be significantly smaller
than the velocity variation (which scales like €) in order get a good ap
proximation of the velocity near the interface. Since 6x needs to be much
smaller than €, we desire a relatively large € to minimize the variation in
the velocity field.

28 3. Motion in an Externally Generated Velocity Field

Given a velocity field V and the notion (discussed above) that minimizing
its variation is good for treating the sampling problem, there is an obvious
choice of V that gives both the correct interface motion and the least vari
ation. First, since the values of V given on the interface dictate the correct
interface motion, these cannot be changed, regardless of the variation. In
some sense, the spatial variation of the velocity on the interface dictates
how many Cartesian grid points will be needed to accurately predict the in
terface motion. If we cannot resolve the tangential variation of the interface
velocity with our Cartesian grid, then it is unlikely that we can calculate
a good approximation to the interface motion. Second, the velocity off the
interface has nothing to do with the correct interface motion. This is true
even if the velocity off the interface is inherited from some underlying phys
ical calculation. Only the velocity of the interface itself contains any real
information about the interface propagation. Otherwise, one would have
no hope of using the Lagrangian formulation, equation (3.1), to calculate
the interface motion. In summary, the velocity variation tangential to the
interface dictates the interface motion, while the velocity variation normal
to the interface is meaningless. Therefore, the minimum variation in the
velocity field can be obtained by restricting the interface velocity V to be
constant in the direction normal to the interface. This generally makes the
velocity multivalued, since lines normal to the interface will eventually in
tersect somewhere away from the interface (if the interface has a nonzero
curvature). Alternatively, the velocity V(x) at a point x can be set equal to
the interface velocity V(xc) at the interface point Xc closest to the point X.
While this doesn't change the value of the velocity on the interface, it makes
the velocity off the interface approximately constant in the normal direction
local to the interface. In Chapter 8 we will discuss numerical techniques for
constructing a velocity field defined in this manner.

Defining the velocity V equal to the interface velocity at the closest in
terface point Xc is a rather ingenious idea. In the appendix of [175], Zhao
et al. showed that a signed distance function tends to stay a signed dis
tance function if this closest interface point velocity is used to advect the
interface. A number of researchers have been using this specially defined ve
locity field because it usually gives superior results over velocity fields with
needlessly more spatial variation. Chen, Merriman, Osher, and Smereka
[43] published the first numerical results based on this specially designed
velocity field. The interested reader is referred to the rather interesting
work of Adalsteinsson and Sethian [1] as well.

The velocity field given in equation (3.2) can come from a number of ex
ternal sources. For example, when the </J(x) = 0 isocontour represents the
interface between two different fluids, the interface velocity is calculated
using the two-phase Navier-Stokes equations. This illustrates that the in
terface velocity more generally depends on both space and time and should
be written as V(x, t), but we occasionally omit the X dependence and more
often the t dependence for brevity.

3.2. Upwind Differencing 29

3.2 Upwind Differencing

Once ¢ and V are defined at every grid point (or at least sufficiently close
to the interface) on our Cartesian grid, we can apply numerical methods
to evolve ¢ forward in time moving the interface a'Cross the grid. At some
point in time, say time tn, let ¢n = ¢(tn) represent the current values
of ¢. Updating ¢ in time consists of finding new values of ¢ at every grid
point after some time increment 6.t. We denote these new values of ¢ by
¢n+l = ¢(tn+1), where tn+! = tn + 6.t.

A rather simple first-order accurate method for the time discretization
of equation (3.2) is the forward Euler method given by

-I-n+l -I-n
'I' 6.~ 'I' + Vn . \7¢n = 0, (3.4)

where vn is the given external velocity field at time tn, and \7 ¢n evaluates
the gradient operator using the values of ¢ at time tn. Naively, one might
evaluate the spatial derivatives of ¢ in a straightforward manner using equa
tion (1.3), (1.4), or (1.5). Unfortunately, this straightforward approach will
fail. One generally needs to exercise great care when numerically discretiz
ing partial differential equations. We begin by writing equation (3.4) in
expanded form as

(3.5)

and address the evaluation of the un¢~ term first. The techniques used to
approximate this term can then be applied independently to the vn ¢; and
wn¢~ terms in a dimension-by-dimension manner.

For simplicity, consider the one-dimensional version of equation (3.5),
-I-n+l -I-n
-'-'1' __ ---'-'1'_ + n -I-n = ° 6.t u 'Px , (3.6)

where the sign of un indicates whether the values of ¢ are moving to the
right or to the left. Since un can be spatially varying, we focus on a specific
grid point Xi, where we write

¢n+l ¢n
i 6.~ i + ur(¢x)r = 0, (3.7)

where (¢x)i denotes the spatial derivative of ¢ at the point Xi' If Ui > 0,
the values of ¢ are moving from left to right, and the method of charac
teristics tells us to look to the left of Xi to determine what value of ¢ will
land on the point Xi at the end of a time step. Similarly, if Ui < 0, the
values of ¢ are moving from right to left, and the method of characteristics
implies that we should look to the right to determine an appropriate value
of ¢i at time tn+!. Clearly, D-¢ (from equation (1.4)) should be used to
approximate ¢x when Ui > 0. In contrast, D+ ¢ cannot possibly give a good

30 3. Motion in an Externally Generated Velocity Field

approximation, since it fails to contain the information to the left of Xi that
dictates the new value of (/>i. Similar reasoning indicates that D+ ¢ should
be used to approximate ¢x when Ui < O. This method of choosing an ap
proximation to the spatial derivatives based on the sign of u is known as
upwind differencing or upwinding. Generally, upwind methods approximate
derivatives by biasing the finite difference stencil in the direction where the
characteristic information is coming from.

We summarize the upwind discretization as follows. At each grid point,
define ¢; as D-¢ and ¢t as D+ ¢. If Ui > 0, approximate ¢x with ¢;. If
Ui < 0, approximate ¢x with ¢t. When Ui = 0, the Ui(¢x)i term vanishes,
and ¢x does not need to be approximated. This is a first-order accurate
discretization of the spatial operator, since D-¢ and D+ ¢ are first-order
accurate approximations of the derivative; i.e., the errors are O(.0,x).

The combination of the forward Euler time discretization with the up
wind difference scheme is a consistent finite difference approximation to
the partial differential equation (3.2), since the approximation error con
verges to zero as .0,t -+ 0 and .0,x -+ O. According to the Lax-Richtmyer
equivalence theorem a finite difference approximation to a linear partial
differential equation is convergent, i.e., the correct solution is obtained as
.0,t -+ 0 and .0,x -+ 0, if and only if it is both consistent and stable. Stability
guarantees that small errors in the approximation are not amplified as the
solution is marched forward in time.

Stability can be enforced using the Courant-Friedreichs-Lewy condition
(CFL condition), which asserts that the numerical waves should propagate
at least as fast as the physical waves. This means that the numerical wave
speed of .0,x/.0,t must be at least as fast as the physical wave speed lui,
i.e., Lx/Lt > lui. This leads us to the CFL time step restriction of

Lx
Lt < max{lul} , (3.8)

where max{lul} is chosen to be the largest value of lui over the entire
Cartesian grid. In reality, we only need to choose the largest value of lui on
the interface. Of course, these two values are the same if the velocity field is
defined as the velocity of the closest point on the interface. Equation (3.8)
is usually enforced by choosing a CFL number ex with

(3.9)

and 0 < ex < 1. A common near-optimal choice is ex = 0.9, and a common
conservative choice is ex = 0.5. A multidimensional CFL condition can be
written as

(3.10)

3.3. Hamilton-Jacobi ENO 31

although

f::::.t (max{IVI}) = Q:

min{6x, 6y, f::::.z}
(3.11)

is also quite popular. More details on consistency, stability, and conver
gence can be found in basic textbooks on the numerical solution of partial
differential equations; see, for example, [157].

Instead of upwinding, the spatial derivatives in equation (3.2) could be
approximated with the more accurate central differencing. Unfortunately,
simple central differencing is unstable with forward Euler time discretiza
tion and the usual CFL conditions with 6t "" f::::.x. Stability can be achieved
by using a much more restrictive CFL condition with 6t "" (f::::.x)2, al
though this is too computationally costly. Stability can also be achieved
by using a different temporal discretization, e.g., the third-order accurate
Runge-Kutta method (discussed below). A third way of achieving stabil
ity consists in adding some artificial dissipation to the right-hand side of
equation (3.2) to obtain

(3.12)

where the viscosity coefficient J-l is chosen proportional to 6x, Le., J-l "" f::::.x,
so that the artificial viscosity vanishes as 6x ---> 0, enforcing consistency
for this method. While all three of these approaches stabilize central differ
encing, we instead prefer to use upwind methods, which draw on the highly
sucessful technology developed for the numerical solution of conservation
laws.

3.3 Hamilton-Jacobi ENO

The first-order accurate upwind scheme described in the last section can
be improved upon by using a more accurate approximation for ¢;; and ¢d;.
The velocity u is still used to decide whether ¢;; or ¢d; is used, but the
approximations for ¢;; or ¢d; can be improved significantly.

In [81], Harten et al. introduced the idea of essentially nonoscillatory
(ENO) polynomial interpolation of data for the numerical solution of con
servation laws. Their basic idea was to compute numerical flux functions
using the smoothest possible polynomial interpolants. The actual numerical
implementation of this idea was improved considerably by Shu and Osher
in [150] and [151]' where the numerical flux functions were constructed
directly from a divided difference table of the pointwise data. In [126],
Osher and Sethian realized that Hamilton-Jacobi equations in one spatial
dimension are integrals of conservation laws. They used this fact to extend
the ENO method for the numerical discretization of conservation laws to
Hamilton-Jacobi equations such as equation (3.2). This Hamilton-Jacobi

32 3. Motion in an Externally Generated Velocity Field

ENO (HJ ENO) method allows one to extend first-order accurate upwind
differencing to higher-order spatial accuracy by providing better numerical
approximations to ¢;; or ¢t.

Proceeding along the lines of [150J and [151]' we use the smoothest pos
sible polynomial interpolation to find ¢ and then differentiate to get ¢x, As
is standard with Newton polynomial interpolation (see any undergraduate
numerical analysis text, e.g., [82]), the zeroth divided differences of ¢ are
defined at the grid nodes and defined by

D?¢ = ¢i (3.13)

at each grid node i (located at Xi). The first divided differences of ¢ are
defined midway between grid nodes as

1 D?+l¢ - D?¢
Di+1/2¢ = 6x' (3.14)

where we are assuming that the mesh spacing is uniformly 6x. Note that
DL1/2¢ = (D-¢)i and D;+1/2¢ = (D+¢)i, i.e., the first divided dif
ferences, are the backward and forward difference approximations to the
derivatives. The second divided differences are defined at the grid nodes as

D2,!, = D;+1/2¢ - DL1/2¢ (3.15)
• 'f' 26x '

while the third divided differences

(3.16)

are defined midway between the grid nodes.
The divided differences are used to reconstruct a polynomial of the form

(3.17)

that can be differentiated and evaluated at Xi to find (¢;;)i and (¢t)i' That
is, we use

(3.18)

to define (¢;;)i and (¢tk Note that the constant Qo(x) term vanishes
upon differentiation.

To find ¢;; we start with k = i - 1, and to find ¢t we start with k = i.
Then we define

(3.19)

so that

(3.20)

implying that the contribution from Q~ (Xi) in equation (3.18) is the back
ward difference in the case of ¢;; and the forward difference in the case

3.4. Hamilton-Jacobi WENO 33

of ¢~. In other words, first-order accurate polynomial interpolation is
exactly first-order upwinding. Improvements are obtained by including
the Q~(Xi) and Q;(Xi) terms in equation (3.18), leading to second- and
third-order accuracy, respectively.

Looking at the divided difference table and noting that Dk+l/2¢ was
chosen for first-order accuracy, we have two choices for the second-order
accurate correction. We could include the next point to the left and use
D~¢, or we could include the next point to the right and use D~+l ¢. The
key observation is that smooth slowly varying data tend to produce small
numbers in divided difference tables, while discontinuous or quickly vary
ing data tend to produce large numbers in divided difference tables. This
is obvious in the sense that the differences measure variation in the data.
Comparing ID~¢I to ID~+l ¢I indicates which of the polynomial interpolants
has more variation. We would like to avoid interpolating near large varia
tions such as discontinuities or steep gradients, since they cause overshoots
in the interpolating function, leading to numerical errors in the approxi
mation of the derivative. Thus, if ID~¢I ~ ID~+1 ¢I, we set c = D~¢ and
k* = k - 1; otherwise, we set c = D~+1 ¢ and k* = k. Then we define

Q2(X) = c(x - Xk)(X - Xk+1), (3.21)

so that

Q~(Xi) = c (2(i - k) - 1)!::::'x (3.22)

is the second-order accurate correction to the approximation of ¢x in
equation (3.18). If we stop here, i.e., omitting the Q3 term, we have a
second-order accurate method for approximating ¢; and ¢~. Note that
k* has not yet been used. It is defined below for use in calculating the
third-order accurate correction.

Similar to the second-order accurate correction, the third-order ac
curate correction is obtained by comparing ID2*+1/2¢1 and ID2*+3/2¢1.
If ID2*+1/2¢1 s ID2*+3/2¢1, we set c* = D2*+1/2¢; otherwise, we set
c* = D2*+3/2¢. Then we define

Q3(X) = c*(x - Xk*)(x - Xk*+I)(X - Xk*+2), (3.23)

so that

Q;(xd = c* (3(i - k*)2 - 6(i - k*) + 2) (!::::.X)2 (3.24)

is the third-order accurate correction to the approximation of ¢x in
equation (3.18).

3.4 Hamilton-Jacobi WENO

When calculating (¢;)i, the third-order accurate HJ ENO scheme uses a
subset of {¢i-3, ¢i-2, ¢i-l. ¢i, ¢i+l, ¢i+2} that depends on how the stencil

34 3. Motion in an Externally Generated Velocity Field

is chosen. In fact, there are exactly three possible HJ ENO approximations
to (¢;;;k Defining VI = D-¢i-2, V2 = D-¢i-b V3 = D-¢i, V4 = D-¢HI,
and V5 = D-¢H2 allows us to write

and

A,I _ VI 7V2 llv3
'Px - "3 - (5 + -6-'

A,2 __ V2 5V3 V4

'Px - 6 + 6 + 3 '

A,3 = V3 + 5V4 _ V5

'Px 3 6 6

(3.25)

(3.26)

(3.27)

as the three potential HJ ENO approximations to ¢;;;. The goal of HJ ENO
is to choose the single approximation with the least error by choosing the
smoothest possible polynomial interpolation of ¢.

In [107], Liu et al. pointed out that the ENO philosophy of picking exactly
one of three candidate stencils is overkill in smooth regions where the data
are well behaved. They proposed a weighted ENO (WENO) method that
takes a convex combination of the three ENO approximations. Of course,
if any of the three approximations interpolates across a discontinuity, it is
given minimal weight in the convex combination in order to minimize its
contribution and the resulting errors. Otherwise, in smooth regions of the
flow, all three approximations are allowed to make a significant contribu
tion in a way that improves the local accuracy from third order to fourth
order. Later, Jiang and Shu [89] improved the WENO method by choosing
the convex combination weights in order to obtain the optimal fifth-order
accuracy in smooth regions of the flow. In [88], following the work on HJ
ENO in [127], Jiang and Peng extended WENO to the Hamilton-Jacobi
framework. This Hamilton-Jacobi WENO, or HJ WENO, scheme turns
out to be very useful for solving equation (3.2), since it reduces the errors
by more than an order of magnitude over the third-order accurate HJ ENO
scheme for typical applications.

The HJ WENO approximation of (¢;;;)i is a convex combination of the
approximations in equations (3.25), (3.26), and (3.27) given by

(3.28)

where the 0 :=:; Wk :=:; 1 are the weights with WI + W2 + W3 = 1. The key
observation for obtaining high-order accuracy in smooth regions is that
weights of WI = 0.1, W2 = 0.6 and W3 = 0.3 give the optimal fifth-order
accurate approximation to ¢x' While this is the optimal approximation, it is
valid only in smooth regions. In nonsmooth regions this optimal weighting
can be very inaccurate, and we are better off with digital (Wk = 0 or
Wk = 1) weights that choose a single approximation to ¢x, i.e., the HJ
ENO approximation.

3.4. Hamilton-Jacobi WENO 35

Reference [89] pointed out that setting WI = 0.1 + 0((6x)2), W2 = 0.6 +
0((6X)2), and W3 = 0.3 + 0((6x)2) still gives the optimal fifth-order
accuracy in smooth regions. In order to see this, we rewrite these as WI =
0.1+CI (6x?, W2 = 0.6+C2(6x)2 and W3 = 0.3+C3(6x)2 and plug them
into equation (3.28) to obtain

0.1¢; + 0.6¢; + 0.3¢~ (3.29)

and

(3.30)

as the two terms that are added to give the HJ WENO approximation
to ¢x. The term given by equation (3.29) is the optimal approximation
that gives the exact value of ¢x plus an 0((6X)5) error term. Thus, if
the term given by equation (3.30) is 0((6x)5), then the entire HJ WENO
approximation is 0((6X)5) in smooth regions. To see that this is the case,
first note that each of the HJ ENO ¢~ approximations gives the exact value
of ¢x, denoted by ¢~, plus an 0((6X)3) error term (in smooth regions).
Thus, the term in equation (3.30) is

(3.31)

plus an 0((6x)2)0((Llx)3) = 0((6X)5) term. Since, each of the Ck is 0(1),
as is ¢~, this appears to be an 0((Llx)2) term at first glance. However,
since WI + W2 + W3 = 1, we have CI + C2 + C3 = 0, implying that the term
in equation (3.31) is identically zero. Thus, the HJ WENO approximation
is 0((6x)5) in smooth regions. Note that [107] obtained only fourth-order
accuracy, since they chose WI = 0.1 + O(Llx), W2 = 0.6 + 0(6x), and
W3 = 0.3 + 0(6x).

In order to define the weights, Wk, we follow [88J and estimate the
smoothness of the stencils in equations (3.25), (3.26), and (3.27) as

13 2 1 2
81 = 12(VI-2v2+V3) +'4(VI-4v2+3v3), (3.32)

13 2 1 2
8 2 = 12 (V2 - 2V3 + V4) + '4(V2 - V4) , (3.33)

and

13 2 1 2
83 = 12 (V3 - 2V4 + V5) + '4(3V3 - 4V4 + V5) , (3.34)

respectively. Using these smoothness estimates, we define

0.1
(3.35)

(3.36)

36 3. Motion in an Externally Generated Velocity Field

and

(3.37)

with

f = 1O-6max{vi,v~,v~,v~,vn + 10-99 , (3.38)

where the 10-99 term is set to avoid division by zero in the definition of
the Q:k. This value for epsilon was first proposed by Fedkiw et al. [69],
where the first term is a scaling term that aids in the balance between
the optimal fifth-order accurate stencil and the digital HJ ENO weights.
In the case that ¢ is an approximate signed distance function, the Vk that
approximate ¢x are approximately equal to one, so that the first term in
equation (3.38) can be set to 10-6 . This first term can then absorb the
second term, yielding f = 10-6 in place of equation (3.38). Since the first
term in equation (3.38) is only a scaling term, it is valid to make this Vk ~ 1
estimate in higher dimensions as well.

A smooth solution has small variation leading to small Sk. If the Sk
are small enough compared to f, then equations (3.35), (3.36), and (3.37)
become Q:I ~ 0.lC2 , Q:2 ~ 0.6c2 , and Q:3 ~ 0.3c2 , exhibiting the proper
ratios for the optimal fifth-order accuracy. That is, normalizing the Q:k to
obtain the weights

and

Q:I
WI = ,

Q:l + Q:2 + Q:3
Q:2

W2 = ,
Q:l + Q:2 + Q:3

(3.39)

(3.40)

(3.41)

gives (approximately) the optimal weights of WI = 0.1, W2 = 0.6 and W3 =
0.3 when the Sk are small enough to be dominated by f. Nearly optimal
weights are also obtained when the Sk are larger than f, as long as all the Sk
are approximately the same size, as is the case for sufficiently smooth data.
On the other hand, if the data are not smooth as indicated by large Sk,
then the corresponding Q:k will be small compared to the other Q:k'S, giving
that particular stencil limited influence. If two of the Sk are relatively large,
then their corresponding Q:k'S will both be small, and the scheme will rely
most heavily on a single stencil similar to the digital behavior of HJ ENO.
In the unfortunate instance that all three of the Sk are large, the data
are poorly conditioned, and none of the stencils are particularly useful.
This case is problematic for the HJ ENO method as well, but fortunately
it usually occurs only locally in space and time, allowing the methods to
repair themselves after the situation subsides.

3.5. TVD Runge-Kutta 37

The function (cPt)i is constructed with a subset of {cPi-2, cPi-l, cPi,
cPi+l,cPi+2,cPi+3}. Defining Vl = D+cPi+2, V2 = D+cPi+l, V3 = D+cPi,
V4 = D+cPi-l> and V5 = D+cPi-2 allows us to use equations (3.25), (3.26),
and (3.27) as the three HJ ENO approximations to (cPtk Then the HJ
WENO convex combination is given by equation (3.28) with the weights
given by equations (3.39), (3.40), and (3.41).

3.5 TVD Runge-Kutta

HJ ENO and HJ WENO allow us to discretize the spatial terms in
equation (3.2) to fifth-order accuracy, while the forward Euler time dis
cretization in equation (3.4) is only first-order accurate in time. Practical
experience suggests that level set methods are sensitive to spatial accu
racy, implying that the fifth-order accurate HJ WENO method is desirable.
On the other hand, temporal truncation errors seem to produce signifi
cantly less deterioration of the numerical solution, so one can often use the
low-order accurate forward Euler method for discretization in time.

There are times when a higher-order temporal discretization is necessary
in order to obtain accurate numerical solutions. In [150], Shu and Osher
proposed total variation diminishing (TVD) Runge-Kutta (RK) methods to
increase the accuracy for a method of lines approach to temporal discretiza
tion. The method of lines approach assumes that the spatial discretization
can be separated from the temporal discretization in a semidiscrete manner
that allows the temporal discretization of the PDE to be treated indepen
dently as an ODE. While there are numerous RK schemes, these TVD RK
schemes guarantee that no spurious oscillations are produced as a conse
quence of the higher-order accurate temporal discretization as long as no
spurious oscillations are produced with the forward Euler building block.

The basic first-order accurate TVD RK scheme is just the forward Euler
method. As mentioned above, we assume that the forward Euler method
is TVD in conjunction with the spatial discretization of the PDE. Then
higher-order accurate methods are obtained by sequentially taking Euler
steps and combining the results with the initial data using a convex com
bination. Since the Euler steps are TVD (by assumption) and the convex
combination operation is TVD as long as the coefficients are positive, the
resulting higher-order accurate TVD RK method is TVD. Unfortunately, in
our specific case, the HJ ENO and HJ WENO schemes are not TVD when
used in conjunction with upwinding to approximate equation (3.4). How
ever, practical numerical experience has shown that the HJ ENO and HJ
WENO schemes are most likely total variation bounded (TVB), implying
that the overall method is also TVB using the TVD RK schemes.

The second-order accurate TVD RK scheme is identical to the standard
second-order accurate RK scheme. It is also known as the midpoint rule,

38 3. Motion in an Externally Generated Velocity Field

as the modified Euler method, and as Heun's predictor-corrector method.
First, an Euler step is taken to advance the solution to time tn + 6.t,

A,n+l A,n
If' 6.~ If' + vn . '\l¢n = 0, (3.42)

followed by a second Euler step to advance the solution to time tn + 26.t,

¢n+2 ¢n+1
- + V n+1 . '\lA,n+l = 0
6.t If',

(3.43)

followed by an averaging step

¢n+1 = ~¢n + ~¢n+2
2 2

(3.44)

that takes a convex combination of the initial data and the result of two
Euler steps. The final averaging step produces the second-order accurate
TVD (or TVB for HJ ENO and HJ WENO) approximation to ¢ at time
tn + 6.t.

The third-order accurate TVD RK scheme proposed in [150] is as follows.
First, an Euler step is taken to advance the solution to time tn + 6.t,

A,n+l A,n
If' 6~ If' + vn . '\l¢n = 0, (3.45)

followed by a second Euler step to advance the solution to time tn + 26.t,
¢n+2 ¢n+l

- + V n+1 . '\lA,n+l = 0
6.t If',

followed by an averaging step

¢n+~ = ~¢n + ~¢n+2
4 4

(3.46)

(3.47)

that produces an approximation to ¢ at time tn + ~6.t. Then another Euler
step is taken to advance the solution to time tn + ~ 6.t,

¢n+~ _ ¢n+~
-----+ Vn+~. '\l¢n+~ = 0,

6.t

followed by a second averaging step

A,n+l _ 1 A,n 2 A,n+~
If' - -If' + -If' 2

3 3

(3.48)

(3.49)

that produces a third-order accurate approximation to ¢ at time tn + 6.t.
This third-order accurate TVD RK method has a stability region that
includes part of the imaginary axis. Thus, a stable (although ill-advised)
numerical method results from combining third-order accurate TVD RK
with central differencing for the spatial discretization.

While fourth-order accurate (and higher) TVD RK schemes exist, this
improved temporal accuracy does not seem to make a significant difference

3.5. TVD Runge-Kutta 39

in practical calculations, especially since the HJ WENO scheme usually
loses accuracy and looks a lot like the third-order accurate HJ ENO scheme
in many interesting areas of the flow. Also, the fourth-order accurate (and
higher) TVD RK methods require both upwind and downwind differencing
approximations, doubling the computational cost of evaluating the spatial
operators. See [150] for fourth- and fifth-order accurate TVD RK schemes.
Finally, we note that a rather interesting approach to TVD RK schemes
has recently been carried out by Spiteri and Ruuth [154], who proposed
increasing the number of internal stages so that this number exceeds the
order of the method.

4
Motion Involving Mean Curvature

4.1 Equation of Motion

In the last chapter we discussed the motion of an interface in an externally
generated velocity field V(x, t). In this chapter we discuss interface motion
for a self-generated velocity field V that depends directly on the level set
function ¢. As an example, we consider motion by mean curvature where
the interface moves in the normal direction with a velocity proportional
to its curvature; Le., V = -b/'d:J, where b > 0 is a constant and K is the
curvature. When b > 0, the interface moves in the direction of concavity,
so that circles (in two dimensions) shrink to a single point and disappear.
When b < 0, the interface moves in the direction of convexity, so that
circles grow instead of shrink. This growing-circle effect leads to the growth
of small perturbations in the front including those due to round-off errors.
Because b < 0 allows small erroneous perturbations to incorrectly grow
into 0(1) features, the b < 0 case is ill-posed, and we do not consider it
here. Figure 4.1 shows the motion of a wound spiral in a curvature-driven
flow. The high-curvature ends of the spiral move significantly faster than
the relatively low curvature elongated body section. Figure 4.2 shows the
evolution of a star-shaped interface in a curvature-driven flow. The tips of
the star move inward, while the gaps in between the tips move outward.

The velocity field for motion by mean curvature contains a component
in the normal direction only, i.e., the tangential component is identically
zero. In general, one does not need to specify tangential components when
devising a velocity field. Since iJ and \7 ¢ point in the same direction,

42 4. Motion Involving Mean Curvature

0.5 0.5 0.5

o o o

-0.5 -0.5 -0.5

-1 '--____ --J -1 '--------' -1 '--------'
-1 o -1 o -1 o

0.5 0.5 0.5

o o o

-0.5 -0.5 -0.5

-1 '---____ --J -1 '--------' -1 '--------'
-1 o -1 o -1 o

0.5 0.5 0.5

o o o
o

-0.5 -0.5 -0.5

-1 '----------' -1 '--------' -1 '--------'
-1 o -1 o -1 o

Figure 4.1. Evolution of a wound spiral in a curvature-driven flow. The
high-curvature ends of the spiral move significantly faster than the elongated
body section.

f . \7 ¢ = 0 for any tangent vector f, implying that the tangential velocity
components vanish when plugged into the level set equation. For example,
in two spatial dimensions with V = VnN + Vtf, the level set equation

(4.1)

is equivalent to

(4.2)

~ince f· \7 ¢ = O. Furthermore, since

(4.3)

we can rewrite equation (4.2) as

(4.4)

where Vn is the component of velocity in the normal direction, other
wise known as the normal velocity. Thus, motion by mean curvature is
characterized by Vn = -bl),.

4.1. Equation of Motion 43

0.5 0.5 0.5

o o o

-0.5 -0.5 -0.5

-1 '--------' -1 '--------' -1 '----------'
-1 o -1 0 -1 o

-0.5 o 0.5 o 0.5 o 0.5

o o

-0.5

o

-0.5

-1 '---------'
-1 o

-1 '--------'
-1 0

-1 '---------'
-1 o

0.5 o 0.5 o 0.5 o o

-0.5

o

-0.5

o

-0.5

-1 '--------' -1 '--------' _1L....-------'
-1 o -1 o -1 o

Figure 4.2. Evolution of a star-shaped interface in a curvature-driven flow. The
tips of the star move inward, while the gaps in between the tips move outward.

Equation (4.4) is also known as the equation of the level set equation. Like
equation (3.2), equation (3.2) is used for externally generated velocity fields,
while equation (4.4) is used for (internally) self-generated velocity fields.
As we shall see shortly, this is more than a notational difference. In fact,
slightly more complicated numerical methods are needed for equation (4.4)
than were proposed in the last chapter for equation (3.2).

Plugging Vn = -b", into the level set equation (4.4) gives

(4.5)

where we have moved the spatial term to the right-hand side. We note
that b"'IV'q'>1 is a parabolic term that cannot be discretized with an upwind
approach. When q'> is a signed distance function, equation (4.5) becomes
the heat equation

q'>t = bf::::.q'>, (4.6)

where q'> is the temperature and b is the thermal conductivity. The heat
equation is the most basic equation of the parabolic model.

When q'> is a signed distance function, b",IV'q'>1 and bf::::.q'> are identical, and
either of these can be used to calculate the right-hand side of equation (4.5).
However, once this right-hand side is combined with a forward Euler time

44 4. Motion Involving Mean Curvature

step (or a forward Euler substep in the case of RK), the new value of ¢
is not a signed distance function, and equations (4.5) and (4.6) can no
longer be interchanged. If this new value of ¢ is reinitialized to a signed
distance function (methods for doing this are outlined in Chapter 7), then
b!::::'¢ can be used in place of b/'i;I\7¢1 in the next time step as well. In
summary, equations (4.5) and (4.6) have the same effect on the interface
location as long as one keeps ¢ equal to the signed distance function off the
interface. Note that keeping ¢ equal to signed distance off the interface does
not change the interface location. It only changes the implicit embedding
function used to identify the interface location.

4.2 Numerical Discretization

Parabolic equations such as the heat equation need to be discretized using
central differencing since the domain of dependence includes information
from all spatial directions, as opposed to hyperbolic equations like equa
tion (3.2), where information flows in the direction of characteristics only.
Thus, the !::::.¢ term in equation (4.6) is discretized using the second-order
accurate formula in equation (1.9) in each spatial dimension (see equa
tion (2.7)). A similar approach should therefore be taken in discretizing
equation (4.5). The curvature /'i; is discretized using second-order accurate
central differencing as outlined in equation (1.8) and the discussion follow
ing that equation. Likewise, the \7 ¢ term is discretized using the second
order accurate central differencing in equation (1.5) applied independently
in each spatial dimension. While these discretizations are only second-order
accurate in space, the dissipative nature of the equations usually makes this
second-order accuracy sufficient.

Central differencing of !::::.¢ in equation (4.6) combined with a forward
Euler time discretization requires a time-step restriction of

!::::.t --+--+-- <1 (2b 2b 2b)
(!::::.x)2 (!::::.y) 2 (!::::.z) 2

(4.7)

to maintain stability of the numerical algorithm. Here !::::.t is O((!::::.x)2),
which is significantly more stringent than in the hyperbolic case, where
!::::.t is only O(!::::.x). Enforcing !::::.t = O((!::::.x)2) gives an overall O((!::::.X)2)
accurate discretization, even though forward Euler is used for the time
differencing (i.e., since the first-order accurate O(!::::.t) time discretization
is O((!::::.x)2)). Equation (4.5) can be discretized using forward Euler time
stepping with the CFL condition in equation (4.7) as well.

The stringent O((!::::.X)2) time-step restriction resulting from the forward
Euler time discretization can be alleviated by using an ODE solver with
a larger stability region, e.g., an implicit method. For example, first-order

4.3. Convection-Diffusion Equations 45

accurate backward Euler time stepping applied to equation (4.6) gives

-t,n+l qP
..:...'1' __ ----'-_ = b6 -t,n+ 1

6t '1',
(4.8)

which has no time step stability restriction on the size of 6t. This means
that 6t can be chosen for accuracy reasons alone, and one typically sets
6t = O(6x). Note that setting 6t = O(6x) as opposed to 6t = O((6X)2)
lowers the overall accuracy to O(6x). This can be improved upon using
the trapezoidal rule

¢n+l _ ¢n = b (6¢n + 6¢n+l)
6t 2'

(4.9)

which is O((6t)2) in time and thus O((6X)2) overall even when 6t =
O(6x). This combination of the trapezoidal rule with central differencing
of a parabolic spatial operator is generally referred to as the Crank-Nicolson
scheme.

The price we pay for the larger time step achieved using either equa
tion (4.8) or equation (4.9) is that a linear system of equations must
be solved at each time step to obtain ¢n+l. Luckily, this is not difficult
given the simple linear structure of 6¢n+l. Unfortunately, an implicit dis
cretization of equation (4.5) requires consideration of the more complicated
nonlinear I'i:n+1 IV ¢n+ll term.

We caution the reader that one cannot substitute equation (4.6) for equa
tion (4.5) when using an implicit time discretization. Even if ¢n is initially
a signed distance function, ¢n+l will generally not be a signed distance
function after the linear system has been solved. This means that 6¢n+l
is not a good approximation to I'i:n+llv¢n+ll even though 6¢n may be
exactly equal to l'i:nlv¢nl. Although we stress (throughout the book) the
conceptual simplifications and computational savings that can be obtained
when ¢ is a signed distance function, e.g., replacing N with V ¢, I'i: with
6¢, etc., we caution the reader that there is a significant and important
difference between the two in the case where ¢ is not a signed distance
function.

4.3 Convection-Diffusion Equations

The convection-diffusion equation

(4.10)

includes both the effects of an external velocity field and a diffusive term.
The level set version of this is

(4.11)

46 4. Motion Involving Mean Curvature

and the two can be used interchangeably if one maintains a signed distance
approximation for ¢ off the interface. These equations can be solved using
the upwind methods from the last chapter on the V . \7 ¢ term and cen
tral differencing on the parabolic bD¢ or bl\;l\7¢1 term. A TVD RK time
discretization can be used with a time-step restriction of

Dt(M+M+M+~+~+~) <1
DX DY DZ (DX)2 (6y)2 (DZ)2

(4.12)

satisfied at every grid point.
Suppose the 0(1) size b term is replaced with an O(DX) size € term

that vanishes as the mesh is refined with 6x -t O. Then equation (4.10)
becomes

(4.13)

which asymptotically approaches equation (3.2) as € -t O. The addition of
an artificial €6¢ term to the right-hand side of equation (3.2) is called the
artificial viscosity method. Artificial viscosity is used by many authors to
stabilize a central differencing approximation to the convective \7 ¢ term in
equation (3.2). This arises in computational fluid dynamics, where terms
of the form €6¢ are added to the right-hand side of convective equations
to pick out vanishing viscosity solutions valid in the limit as € -t O. This
vanishing viscosity picks out the physically correct weak solution when no
classical solution exists, for example in the case of a discontinuous shock
wave. It is interesting to note that the upwind discretizations discussed
in the last chapter have numerical truncation errors that serve the same
purpose as the €D¢ term. First-order accurate upwinding has an intrinsic
0(6x) artificial viscosity, and the higher-order accurate upwind methods
have intrinsic artificial viscosities with magnitude 0((6xt), where r is the
order of accuracy of the method.

In [146], Sethian suggested an entropy condition that required curves to
flow into corners, and he provided numerical evidence to show that this
entropy condition produced the correct weak solution for self-interesting
curves. Sethian's entropy condition indicates that €1\;1\7¢1 is a better form
for the vanishing viscosity than €D¢ for dealing with the evolution of lower
dimensional interfaces. This concept was rigorized by Osher and Sethian in
[126], where they pointed out that

¢t + V . \7¢ = €1\;1\7¢1 (4.14)

is a more natural choice than equation (4.13) for dealing with level set
methods, although these two equations are interchangeable when ¢ is a
signed distance function.

5
Hamilton-Jacobi Equations

5.1 Introduction

In this chapter we discuss numerical methods for the solution of general
Hamilton-Jacobi equations of the form

e/>t + H(V'e/» = 0, (5.1)

where H can be a function of both space and time. In three spatial
dimensions, we can write

(5.2)

as an expanded version of equation (5.1). Convection in an externally gen
erated velocity field (equation (3.2)) is an example of a Hamilton-Jacobi
equation where H(V'e/» = iT· V'e/>. The level set equation (equation (4.4))
is another example of a Hamilton-Jacobi equation with H(V'e/» = VnJV'e/>J.
Here Vn can depend on X, t, or even V'e/>/IV'e/>I.

The equation for motion by mean curvature (equation (4.5)) is not a
Hamilton-Jacobi-type equation, since the front speed depends on the sec
ond derivatives of e/>. Hamilton-Jacobi equations depend on (at most) the
first derivatives of e/>, and these equations are hyperbolic. The equation for
motion by mean curvature depends on the second derivatives of ¢ and is
parabolic.

48 5. Hamilton-Jacobi Equations

5.2 Connection with Conservation Laws

Consider the one-dimensional scalar conservation law

Ut + F(u)x = 0; (5.3)

where u is the conserved quantity and F(u) is the flux function. A well
known conservation law is the continuity equation

Pt + (pu)x = 0 (5.4)

for conservation of mass, where p is the density of the material. In compu
tational fluid dynamics (CFD), the continuity equation is combined with
equations for conservation of momentum and conservation of energy to ob
tain the compressible N avier-Stokes equations. When viscous effects are
ignored, the Navier-Stokes equations reduce to the compressible inviscid
Euler equations.

The presence of discontinuities in the Euler equations forces one to con
sider weak solutions where the derivatives of solution variables, e.g., Px,
can fail to exist. Examples include linear contact discontinuities and non
linear shock waves. The nonlinear nature of shock waves allows them to
develop as the solution progresses forward in time even if the data are ini
tially smooth. The Euler equations may not always have unique solutions,
and an entropy condition is used to pick out the physically correct solu
tion. This is the vanishing viscosity solution discussed in the last chapter.
For example, vanishing viscosity admits physically consistent rarefaction
waves, ruling out physically inadmissible expansion shocks.

Burgers' equation

(5.5)

is a scalar conservation law that possesses many of the interesting non
linear properties contained in the more complex Euler equations. Burgers'
equation develops discontinuous shock waves from smooth initial data and
exhibits nonphysical expansion shocks if the vanishing viscosity solution is
not used to force these to become smooth rarefaction waves. Many of the
numerical methods developed to solve Burgers' equation can be extended to
treat both the one-dimensional and the multidimensional Euler equations
of gas dynamics.

Consider the one-dimensional Hamilton-Jacobi equation

(5.6)

which becomes

(5.7)

5.3. Numerical Discretization 49

after one takes a spatial derivative of the entire equation. Setting u = <Px
in equation 5.7 results in

Ut + H(u)x = 0, (5.8)

which is a scalar conservation law; see equation (5.3). Thus, in one spatial
dimension we can draw a direct correspondence between Hamilton-Jacobi
equations and conservation laws. The solution u to a conservation law is
the derivative of a solution ¢ to a Hamilton-Jacobi equation. Conversely,
the solution ¢ to a Hamilton-Jacobi equation is the integral of a solution u
to a conservation law. This allows us to point out a number of useful facts.
For example, since the integral of a discontinuity is a kink, or discontinuity
in the first derivative, solutions to Hamilton-Jacobi equations can develop
kinks in the solution even if the data are initially smooth. In addition,
solutions to Hamilton-Jacobi equations cannot generally develop a discon
tinuity unless the corresponding conservation law develops a delta function.
Thus, solutions ¢ to equation (5.2) are typically continuous. Furthermore,
since conservation laws can have nonunique solutions, entropy conditions
are needed to pick out "physically" relevant solutions to equation (5.2) as
well.

Viscosity solutions for Hamilton-Jacobi equations were first proposed by
Crandall and Lions [52J. Monotone first-order accurate numerical meth
ods were first presented by Crandall and Lions [53J as well. Later, Osher
and Sethian [126J used the connection between conservation laws and
Hamilton-Jacobi equations to construct higher-order accurate "artifact
free" numerical methods. Even though the analogy between conservation
laws and Hamilton-Jacobi equations fails in multiple spatial dimensions,
many Hamilton-Jacobi equations can be discretized in a dimension by di
mension fashion. This culminated in [127J, where Osher and Shu proposed
a general framework for the numerical solution of Hamilton-Jacobi equa
tions using successful methods from the theory of conservation laws. We
follow [127J below.

5.3 Numerical Discretization

A forward Euler time discretization of a Hamilton-Jacobi equation can be
written as

A.n+l A.n
_'P _----''P'-- + fr(A.- A.+. A.- A.+. A.- A.+) - 0 (5.9) l::,.t 'Px , 'Px , 'Py , 'Py , 'Pz , 'Pz - ,

where if(¢;, <Pi; ¢;, ¢t; ¢;, ¢'n is a numerical approximation of H(¢x, ¢Y'
¢z)' The function if is called a numerical Hamiltonian, and it is required
to be consistent in the sense that if(¢x, ¢x; ¢Y' ¢Y; ¢z, ¢z) = H(<px, ¢Y' ¢z).
Recall that spatial derivatives such as ¢; are discretized with either first
order accurate one-sided differencing or the higher-order accurate HJ ENO

50 5. Hamilton-Jacobi Equations

or HJ WENO schemes. For brevity, we discuss the two-dimensional numer
ical approximation to H (¢x, ¢y), noting that the extension to three spatial
dimensions is straightforward. An important class of schemes is that of
monotone schemes. A scheme is monotone when ¢n+l as defined in equa
tion (5.9) is a nondecreasing function of all the ¢n. Crandall and Lions
proved that these schemes converge to the correct solution, although they
are only first-order accurate. The numerical Hamiltonians associated with
monotone schemes are important, and examples will be given below.

The forward Euler time discretization (equation (5.9)) can be extended to
higher-order TVD Runge Kutta in a straightforward manner, as discussed
in Chapter (3). The CFL condition for equation 5.9 is

6tmax {/Hl/ + /H2/ + /H3/} < 1, (5.10)
6x 6 y 6 z

where HI, H2, and H3 are the partial derivatives of H with respect to ¢x,
¢Y' and ¢z, respectively. For example, in equation (3.2), where H('V¢) =

V· 'V¢, the partial derivatives of H are HI = U, H2 = v, and H3 = w. In
this case equation (5.10) reduces to equation (3.10). As another example,
consider the level set equation (4.4) with H('V¢) = Vn/'V¢I. Here the partial
derivatives are slightly more complicated, with HI = VN¢x/I'V¢I, H2 =
VN¢y/I'V¢I, and H3 = VN¢z/I'V¢/, assuming that VN does not depend on
¢x, ¢y or ¢z' Otherwise, the partial derivatives can be substantially more
complicated.

5.3.1 Lax-Friedrichs Schemes

The first approximation to iI that we consider is the Lax-Friedrichs (LF)
scheme from [53] given by

iI = H (¢; ; ¢t , ¢;;; : ¢t) _ax (¢t ; ¢;) -aY (¢t ; ¢;;;) , (5.11)

where aX and aY are dissipation coefficients that control the amount of
numerical viscosity. These dissipation coefficients

(5.12)

are chosen based on the partial derivatives of H.
The choice of the dissipation coefficients in equation (5.12) can be rather

subtle. In the traditional implementation of the LF scheme, the maximum is
chosen over the entire computational domain. First, the maximum and min
imum values of ¢x are identified by considering all the values of ¢; and ¢t
on the Cartesian mesh. Then one can identify the interval]x = [¢r;:in, ¢r;:ax].
A similar procedure is used to define IY = [¢;;'in, ¢;;,ax]. The coefficients
aX and aY are set to the maximum possible values of / HI (¢x, ¢y) I and
IH2(¢x,¢y)l, respectively, with ¢x E]X and ¢Y E !Y. Although it is oc
casionally difficult to evaluate the maximum values of / H 11 and / H 2/, it is

5.3. Numerical Discretization 51

straightforward to do so in many instances. For example, in equation (3.2),
both HI = u and H 2 = V are independent of ¢>x and ¢>Y' so aX and a Y can
be set to the maximum values of lui and Ivl on the Cartesian mesh.

Consider evaluating aX and a Y for equation (4.4) where HI = VN¢>xllV' ¢>I
and H2 = VN¢>yllV'¢>I, recalling that these are the partial derivatives only if
VN is independent ¢>x and ¢>Y' It is somewhat more complicated to evaluate
aX and a Y in this case. When ¢> is a signed distance function with IV'¢>I = 1
(or ~ 1 numerically), we can simplify to HI = VN¢>x and H2 = VN¢>y.
These functions can still be somewhat tricky to work with if VN is spatially
varying. But in the special case that VN is spatially constant, the maximum
values of IHII and IH21 can be determined by considering only the endpoints
of Ix and Iy, respectively. This is true because HI and H2 are monotone
functions of ¢>x and ¢>Y' respectively. In fact, when VN is spatially constant,
HI = VN¢>xllV'¢>1 and H2 = VN¢>yllV'¢>1 are straightforward to work with as
well. The function HI achieves a maximum when I¢>xl is as large as possible
and I¢>yl is as small as possible. Thus, only the endpoints of]X and IY need
be considered; note that we use ¢>y = 0 when the endpoints of IY differ
in sign. Similar reasoning can be used to find the maximum value of IH2 1.
One way to treat a spatially varying VN is to make some estimates. For
example, since l¢>xl/lV'¢>1 :::; 1 for all ¢>x and ¢>Y' we can bound IHII :::; IVNI·
A similar bound of IH21 :::; IVNI holds for IH2 1. Thus, both aX and a Y can
be set to the maximum value of IVNI on the Cartesian mesh. The price
we pay for using bounds to choose a larger than it should be is increased
numerical dissipation. That is, while the numerical method will be stable
and give an accurate solution as the mesh is refined, some details of this
solution may be smeared out and lost on a coarser mesh.

Since increasing a increases the amount of artificial dissipation, decreas
ing the quality of the solution, it is beneficial to chose a as small as possible
without inducing oscillations or other nonphysical phenomena into the so
lution. In approximating Hi,j at a grid point Xi,j on a Cartesian mesh,
it then makes little sense to do a global search to define the intervals]X
and !Y. In particular, consider the simple convection equation (3.2) where
aX = max lui and a Y = max Ivl. Suppose that some region had relatively
small values of lui and lvi, while another region had relatively large values.
Since the LF method chooses aX as the largest value of lui and a Y as the
largest value of lvi, the same values of a will be used in the region where
the velocities are small as is used in the region where the velocities are
large. In the region where the velocities are large, the large values of a are
required to obtain a good solution. But in the region where the velocities
are small, these large values of a produce too much numerical dissipation,
wiping out small features of the solution. Thus, it is advantageous to use
only the grid points sufficiently close to Xi,j in determining a. A rule of
thumb is to include the grid points from Xi-3,j to Xi+3,j in the x-direction
and from Xi,j-3 to Xi,j+3 in the y-direction in the local search neighborhood
for determining a. This includes all the grid nodes that are used to evaluate

52 5. Hamilton-Jacobi Equations

¢; and ¢~ at Xi,j using the HJ WENO scheme. This type of scheme has
been referred to as a Stencil Lax-Friedrichs (SLF) scheme, since it deter
mines the dissipation coefficient using only the neighboring grid points that
are part of the stencil used to determine ¢x and ¢Y' An alternative to the
dimension-by-dimension neighborhoods is to use the 49 grid points in the
rectangle with diagonal corners at Xi-3,j-3 and Xi+3,j+3 to determine a.

This idea of searching only locally to determine the dissipation coeffi
cients can be taken a step further. The Local Lax-Friedrichs (LLF) scheme
proposed for conservation laws by Shu and Osher [151] does not look at
any neighboring grid points when calculating the dissipation coefficients in
a given direction. In [127], Osher and Shu interpreted this to mean that
aX is determined at each grid point using only the values of ¢; and ¢t
at that specific grid point to determine the interval IX. The interval IY is
still determined in the LF or SLF manner (in the SLF case we rename LLF
as SLLF). Similarly, a Y uses an interval JY, defined using only the values
of ¢:;; and ¢t at the grid point in question while IX is still determined in
the LF or SLF fashion. Osher and Shu [127J also proposed the Local Lo
cal Lax-Friedrichs (LLLF) scheme with even less numerical dissipation. At
each grid point IX is determined using the values of ¢; and ¢t at that grid
point; IY is determined using the values of ¢:;; and ¢t at that grid point;
and then these intervals are used to determine both aX and aY. When H is
separable, i.e., H(¢x, ¢y) = HX(¢x) + HY(¢y), LLLF reduces to LLF, since
aX is independent of ¢Y' and aY is independent of ¢x, When H is not sep
arable, LLF and LLLF are truly distinct schemes. In practice, LLF seems
to work better than any of the other options. LF and SLF are usually too
dissipative, while LLLF is usually not dissipative enough to overcome the
problems introduced by using the centrally averaged approximation to ¢x
and ¢Y in evaluating H in equation (5.11). Note that LLF is a monotone
scheme.

5.3.2 The Roe-Fix Scheme

As discussed above, choosing the appropriate amount of artificial dissipa
tion to add to the centrally evaluated H in equation (5.11) can be tricky.
Therefore, it is often desirable to use upwind-based methods with built-in
artificial dissipation. For conservation laws, Shu and Osher [151J proposed
using Roe's upwind method along with an LLF entropy correction at sonic
points where entropy-violating expansion shocks might form. The added
dissipation from the LLF entropy correction forces the expansion shocks
to develop into continuous rarefaction waves. The method was dubbed Roe
Fix (RF) and it can be written for Hamilton-Jacobi equations (see [127])
as

(5.13)

5.3. Numerical Discretization 53

where a? and oY are usually set identically to zero in order to remove
the numerical dissipation terms. In the RF scheme, IX and IY are initially
determined using only the nodal values for 1>; and 1>~ as in the LLLF
scheme. In order to estimate the potential for upwinding, we look at the
partial derivatives HI and H2. If H I (1)x,1>y) has the same sign (either
always positive or always negative) for all 1>x E IX and all 1>y E IY, we
know which way information is flowing and can apply upwinding. Similarly,
if H2 (1)x, 1>y) has the same sign for all 1>x E IX and 1>y ElY, we can
upwind this term as well. If both HI and H2 do not change sign, we upwind
completely, setting both OX and oY to zero. If HI > 0, information is
flowing from left to right, and we set 1>; = 1>;. Otherwise, HI < 0, and we
set 1>; = 1>t· Similarly, H2 > 0 indicates 1>~ = 1>;, and H2 < 0 indicates
A,* _ A,+
'f'y - 'f'y.

If either HI or H2 changes sign, we are in the vicinity of a sonic point
where the eigenvalue (in this case HI or H2) is identically zero. This signifies
a potential difficulty with nonunique solutions, and artificial dissipation
is needed to pick out the physically correct vanishing viscosity solution.
We switch from the RF scheme to the LLF scheme to obtain the needed
artificial viscosity. If there is a sonic point in only one direction, i.e., x or y,
it makes little sense to add damping in both directions. Therefore, we look
for sonic points in each direction and add damping only to the directions
that have sonic points. This is done using the IX and IY defined as in the
LLF method. That is, we switch from the LLLF defined intervals used
above to initially look for sonic points to the larger LLF intervals that are
even more likely to have sonic points. We proceed as follows. If HI (1)x, 1>y)
does not change sign for all 1>x E I'LLF and all 1>y E IhF' we set 1>; equal to
either 1>; or 1>t depending on the sign of HI. In addition, we set OX to zero
to remove the artificial dissipation in the x-direction. At the same time, this
means that a sonic point must have occurred in H 2 , so we use an LLF-type
method for the y-direction, setting 1>~ = (1); + 1>t)/2 and choosing oY as
dictated by the LLF scheme. A similar algorithm is executed if H 2 (1)x, 1>y)
does not change sign for all 1>x E IfLP and 1>y E IfLp. Then 1>~ is set to
either 1>; or 1>t, depending on the sign of H 2 ; oy is set to zero; and an LLF
method is used in the x-direction, setting 1>; = (1); +1>t)/2 while choosing
OX as dictated by the LLF scheme. If both HI and H2 change sign, we have
sonic points in both directions and proceed with the standard LLF scheme
at that grid point.

With the RF scheme, upwinding in the x-direction dictates that either
1>; or 1>t be used, but not both. Similarly, upwinding in the y-direction uses
either 1>; or 1>t, but not both. Since evaluating 1>; and 1>~ using high-order
accurate HJ ENO or HJ WENO schemes is rather costly, it seems wasteful
to do twice as much work in these instances. Unfortunately, one cannot
determine whether upwinding can be used (as opposed to LLF) without
computing 1>; and 1>~. In order to minimize CPU time, one can compute
1>; and 1>~ using the first-order accurate forward and backward difference

54 5. Hamilton-Jacobi Equations

formulas and use these cheaper approximations to decide whether or not
upwinding or LLF will be used. After making this decision, the higher
order accurate HJ WENO (or HJ ENO) method can be used to compute
the necessary values of ¢; and ¢:!f used in the numerical discretization,
obtaining the usual high-order accuracy. Sonic points rarely occur in prac
tice, and this strategy reduces the use of the costly HJ WENO method by
approximately a factor of two.

5.3.3 Godunov's Scheme

In [74], Godunov proposed a numerical method that gives the exact solu
tion to the Riemann problem for one-dimensional conservation laws with
piecewise constant initial data. The multidimensional Hamilton-Jacobi
formulation of this scheme can be written as

(5.14)

as was pointed out by Bardi and Osher [12]. This is the canonical monotone
scheme. Defining our intervals IX and IY in the LLLF manner using only
the values of ¢; and ¢:!f at the grid node under consideration, we define
extx and exty as follows. If ¢; < ¢t, then extxH takes on the minimum
value of H for all ¢x E IX. If ¢; > ¢t, then extxH takes on the maximum
value of H for all ¢x E IX. Otherwise, if ¢; = ¢t, then extxH simply plugs
¢;(= ¢t) into H for ¢x. Similarly, if ¢; < ¢t, then extyH takes on the
minimum value of H for all ¢y E JY. If ¢; > ¢t, then extyH takes on the
maximum value of H for all ¢y E IY. Otherwise, if ¢; = ¢t, then extyH
simply plugs ¢;(= ¢t) into H for ¢Y' In general, extxextyH #- extyextxH,
so different versions of Godunov's method are obtained depending on the
order of operations. However, in many cases, including when H is separable,
extxextyH = extyextxH so this is not an issue.

Although Godunov's method can sometimes be difficult to implement,
there are times when it is straightforward. Consider equation (3.2) for mo
tion in an externally generated velocity field. Here, we can consider the
x and y directions independently, since H is separable with extxextyH =
extx(u¢x) + exty(v¢y). If ¢; < ¢t, we want the minimum value of u¢x'
Thus, if u > 0, we use ¢;, and if u < 0, we use ¢t. If u = 0, we obtain
u¢x = 0 regardless of the choice of ¢x' On the other hand, if ¢; > ¢t,
we want the maximum value of u¢x. Thus, if u > 0, we use ¢;, and if
u < 0, we use ¢t. Again, u = 0 gives u¢x = O. Finally, if ¢; = ¢t, then
u¢x is uniquely determined. This can be summarized as follows. If u > 0,
use ¢;; if u < 0, use ¢t; and if u = 0, set u¢x = O. This is identical to
the standard upwind differencing method described in Chapter 3. That is,
for motion in an externally generated velocity field, Godunov's method is
identical to simple upwind differencing.

6
Motion in the Normal Direction

6.1 The Basic Equation

In this chapter we discuss the motion of an interface under an internally
generated velocity field for constant motion in the normal direction. This
velocity field is defined by V = aN or Vn = a, where a is a constant. The
corresponding level set equation (Le., equation (4.4)) is

<Pt + alY'<p1 = 0, (6.1)

where a can be of either sign. When a > 0 the interface moves in the
normal direction, and when a < 0 the interface moves opposite the normal
direction. When a = 0 this equation reduces to the trivial <Pt = 0, where
<P is constant for all time. Figure 6.1 shows the evolution of a star-shaped
interface as it moves normal to itself in the outward direction.

When <p is a signed distance function, equation (6.1) reduces to <Pt = -a,
and the values of <P either increase or decrease, depending on the sign of a.
Forward Euler time discretization of this equation gives <pn+1 = <pn - ab..t.
Whe.n a > 0, the <p = 0 isocontour becomes the <p = -ab..t isocontour
after one time step. Similarly, the <p = ab..t isocontour becomes the <p = 0
isocontour. That is, the <p = 0 isocontour moves ab..t units forward in
the normal direction to the old position of the old <p = ab..t isocontour.
The interface is moving in the normal direction with speed a. Taking the
gradient of this forward Euler time stepping gives Y' <pn+ 1 = Y' <pn - Y' (ab..t).
Since ab..t is spatially constant, Y' (ab..t) = 0, implying that Y' <pn+l = Y' <pn •

56 6. Motion in the Normal Direction

0.5

~
0.5

0
0.5 (} 0 0 0

-0.5 -0.5 -0.5

-1 -1 -1
-1 0 -1 0 -1 0

0.5 0 0.5

0
0.5

0 0 0 0

-0.5 -0.5 -0.5

-1 -1 -1
-1 0 -1 0 -1 0

1

0.5

0
0.5

0

-0.5

-1
-1 0 0 0

Figure 6.1. Evolution of a star-shaped interface as it moves normal to itself in
the outward direction.

Thus, if cpn is initially a signed distance function (with lV'cpnl = 1), it stays
a distance function (with lV'cpl = 1) for all time.

When the initial data constitute a signed distance function, forward Euler
time stepping reduces to solving the ordinary differential equation CPt = -a
independently at every grid point. Since a is a constant, this forward Euler
time stepping gives the exact solution up to round-off error (Le., there is no
truncation error). For example, consider a point where cP = CPo > 0, which is
CPo units from the interface. In L.t units of time the interface will approach
aL.t spatial units closer, changing the value of this point to CPo - aL.t, which
is exactly the forward Euler time update of this point. The exact interface
crossing time can be identified for all points by solving CPo - at = ° to get
t = cpo/a. (Similar arguments hold when a < 0, except that the interface
moves in the opposite direction.)

Here, we see the power of signed distance functions. When CPo is a signed
distance function, we can write down the exact solution of equation (6.1)
as cp(t) = CPo - at. On the other hand, when CPo is not a signed distance
function, equation (6.1) needs to be solved numerically by treating it as a
Hamilton-Jacobi equation, as discussed in the last chapter.

6.2. Numerical Discretization 57

6.2 Numerical Discretization

For instructive purposes, suppose we plug V = aN into equation (4.2) and
try a simple upwind differencing approach. That is, we will attempt to
discretize

(a¢x a¢y a¢z) _
¢t+ IV'¢I' IV'¢I' IV'¢I ·V'¢-O (6.2)

with simple upwinding. Consider the first spatial term a¢xlV'¢1-1¢x, where
a¢xlV'¢I- I is the "velocity" in the x-direction. Since upwinding is based
only on the sign of the velocity, we can ignore the positive IV' ¢I denomina
tor, assuming temporarily that it is nonzero. Then the sign of a¢x can be
used to decide whether ¢;; or ¢; should be used to approximate ¢x. When
¢;; and ¢; have the same sign, it does not matter which of these is plugged
into a¢x, since only the sign of this term determines whether we use ¢;; or
¢;. For example, suppose a > 0. Then when ¢;; > ° and ¢; > 0, a¢x > °
and ¢;; should be used in equation (6.2) everywhere ¢x appears, including
the velocity term. On the other hand, when ¢;; < ° and ¢; < 0, a¢x < °
and ¢; should be used to approximate ¢x.

This simple upwinding approach works well as long as ¢;; and ¢; have
the same sign, but consider what happens when they have different signs.
For example, when ¢;; < ° and ¢; > 0, a¢;; < ° (still assuming a > 0),
indicating that ¢; should be used, while a¢; > 0, indicating that ¢;;
should be used. This situation corresponds to a "V" -shaped region where
each side of the "V" should move outward. The difficulty in approximating
¢x arises because we are in the vicinity of a sonic point, where ¢x = 0. The
LLLF interval defined by ¢;; and ¢; includes this sonic point since ¢;; and
¢; differ in sign. We have to take care to ensure that the expansion takes
place properly. A similar problem occurs when ¢;; > ° and ¢; < 0. Here
a¢;; > 0, indicating that ¢;; should be used, while a¢; < 0, indicating that
¢; should be used. This upside-down "V" is shaped like a carrot (or hat)
and represents the coalescing of information similar to a shock wave. Once
again caution is needed to ensure that the correct solution is obtained.

Simple upwinding breaks down when ¢;; and ¢; differ in sign. Let
us examine how the Roe-Fix method works in this case. In order to do
this, we need to consider the Hamilton-Jacobi form of the equation, i.e.,
equation (6.1). Here HI = a¢xlV'¢I-l, implying that the simple velocity
V = aN we used in equation (6.2) was the correct expression to look at
for upwinding. The sign of HI is independent of the y and z directions,
depending only on a¢x. If both ¢;; and ¢; have the same sign, we choose
one or the other depending on the sign of HI as in the usual upwinding.
However, unlike simple upwinding, Roe-Fix gives a consistent method for
treating the case where ¢;; and ¢; differ in sign. In that instance we are in
the vicinity of a sonic point and switch to the LLF method, adding some
numerical dissipation to the scheme in order to obtain the correct vanishing

58 6. Motion in the Normal Direction

viscosity solution. The RF scheme treats the ambiguity associated with up
winding near sonic points by using central differencing plus some artificial
viscosity.

Recall that numerical dissipation can smear out fine solution details
on coarse grids. In order to avoid as much numerical smearing as pos
sible, we have proposed five different versions (LF, SLF, LLF, SLLF, and
LLLF) of the central differencing plus artificial viscosity approach to solving
Hamilton-Jacobi problems. While the RF method is a better alternative,
it too resorts to artificial dissipation in the vicinity of sonic points where
ambiguities occur. In order to avoid the addition of artificial dissipation,
one must resort to the Godunov scheme.

Let us examine the Godunov method in detail. Again, assume a > O. If
¢;; and ¢;; are both positive, then extx minimizes H when ¢;; < ¢;; and
maximizes H when ¢;; > ¢;;. In either case, we choose ¢;; consistent with
upwinding. Similarly, when ¢;; and ¢;; are both negative, extx minimizes
H when ¢;; < ¢;; and maximizes H when ¢;; > ¢;;. Again, ¢;; is chosen
in both instances consistent with upwinding. Now consider the "V"-shaped
case where ¢;; < 0 and ¢;; > 0, indicating an expansion. Here ¢;; < ¢;;,
so Godunov's method minimizes H, achieving this minimum by setting
¢x = O. This implies that a region of expansion should have a locally flat ¢
with ¢x = O. Instead of adding numerical dissipation to hide the problem,
Godunov's method chooses the most meaningful solution. Next, consider
the case where ¢;; > 0 and ¢;; < 0, indicating coalescing characteristics.
Here ¢;; > ¢;;, so Godunov's method maximizes H, achieving this max
imum by setting ¢x equal to the larger in magnitude of ¢;; and ¢;;. In
this shock case, information is coming from both directions, and the grid
point feels the effects of the information that gets there first. The velocities
are characterized by HI = a¢xlV'¢I-l, and the side with the fastest speed
arrives first. This is determined by taking the larger in magnitude of ¢;;
and ¢;;. Again, Godunov's method chooses the most meaningful solution,
avoiding artificial dissipation.

Godunov's method for equation (6.1) can be summarized as follows for
both positive and negative a. If a¢;; and a¢;; are both positive, use ¢x =
¢;;. If a¢;; and a¢;; are both negative, use ¢x = ¢;;. If a¢;; ::; 0 and
a¢;; ~ 0, treat the expansion by setting ¢x = O. If a¢;; ~ 0 and a¢;; ::; 0,
treat the shock by setting ¢x to either ¢;; or ¢;;, depending on which gives
the largest magnitude for a¢x. Note that when ¢;; = ¢;; = 0 both of the
last two cases are activated, and both consistently give ¢x = O. We also
have the following elegant formula due to Rouy and Tourin [139J:

¢; ~ max (max(¢;;, 0)2, min(¢;;, 0)2) (6.3)

when a > 0, and

(6.4)

when a < O.

6.3. Adding a Curvature-Dependent Term 59

6.3 Adding a Curvature-Dependent Term

Most flames burn with a speed in the normal direction plus extra heating
and cooling effects due to the curvature of the front. This velocity field can
be modeled by setting Vn = a - bK, in the level set equation (4.4) to obtain

(6.5)

which has both hyperbolic and parabolic terms. The hyperbolic alV'¢1 term
can be discretized as outlined above using Hamilton-Jacobi techniques,
while the parabolic bK,IV'¢1 term can be independently discretized using
central differencing as described in Chapter 4.

Once both terms have been discretized, either forward Euler or RK
time discretization can be used to advance the front forward in time.
The combined CFL condition for equations that contain both hyperbolic
Hamilton-Jacobi terms and parabolic terms is given by

!::'t (IHI! !H2! IH31 + ~ ~ +~) < 1 (6.6)
!::'x + l::,y + l::,z (!::'x)2 + (!::,y)2 (!::'Z)2 '

as one might have guessed from equation (4.12).

6.4 Adding an External Velocity Field

Equation (6.5) models a flame front burning through a material at rest, but
does not account for the velocity of the unburnt material. A more general
equation is

(6.7)

since it includes the velocity iT of the unburnt material. This equation
combines an external velocity field with motion normal to the interface and
motion by mean curvature. It is the most general form of the G-equation
for burning flame fronts; see Markstein [110]. As in equation (6.5), the
parabolic term on the right-hand side can be independently discretized with
central differencing. The hyperbolic Hamilton-Jacobi part of this equation
consists of two terms, iT· V'¢ and alV'¢I. Figure 6.2 shows the evolution
of a star-shaped interface under the influence of both an externally given
rigid-body rotation (a iT· V'¢ term) and a self-generated motion outward
normal to the interface (an alV'¢1 term).

In order to discretize the Hamilton-Jacobi part of equation (6.7), we first
identify the partial derivatives of H, i.e., HI = U + a¢xlV'¢I-I and H2 =
v + wpylV'¢I- I . The first term in HI represents motion of the interface as
it is passively advected in the external velocity field, while the second term
represents the self-generated velocity of the interface as it moves normal
to itself. If u and a¢x have the same sign for both ¢; and ¢t, then the

60 6. Motion in the Normal Direction

0.5

~
0.5

~
0.5 0 0 0 0

-0.5 -0.5 -0.5

-1 -1 -1
-1 0 -1 0 -1 0

1 1 1.---------~

o.:~ 0·:0 0·:0
-0.5 ~ -0.5 -0.5

-1 '-----------' -1 '-----------' -1 L-_______ --'
-1 o -1 o -1 o

0:0 0:0 0:0
-0.5 -0.5 -0.5

-1 -1 _1L----------'
-1 0 -1 0 -1 0

Figure 6.2. A star-shaped interface being advected by a rigid body rotation as it
moves outward normal to itself.

background velocity and the self-generated velocity in the normal direction
are both moving the front in the same direction, and the upwind direction is
easy to determine. For example, if a, 1>; , and 1>t are all positive, the second
term in HI indicates that the self-generated normal velocity is moving the
front to the right. Additionally, when u > 0 the external velocity is also
moving the front to the right. In this case, both the RF scheme and the
Godunov scheme set 1>x = 1>;.

It is more difficult to determine what is happening when u and a1>xl'V1>I-I
disagree in sign. In this case the background velocity is moving the front in
one direction while the self-generated normal velocity is moving the front
in the opposite direction. In order to upwind, we must determine which of
these two terms dominates. It helps if 1> is a signed distance function, since
we obtain the simplified HI = u + a1>x. If HI is positive for both 1>; and
1>t, then both RF and Godunov set 1>x = 1>;. If HI is negative for both
1>; and 1>t, then both RF and Godunov set 1>x = 1>t. If HI is negative
for 1>; and positive for 1>;;, we have an expansion. If 1>; < 1>;;, Godunov's
method chooses the minimum value for H. This relative extremum occurs
when HI = 0 implying that we set 1>x = -u/a. If 1>; > 1>;; Godunov's
method chooses the maximum value for H, which is again obtained by
setting 1>x = -u/a. If HI is positive for 1>; and negative for 1>t, we have a

6.4. Adding an External Velocity Field 61

shock. Godunov's method dictates setting ¢x equal to the value of ¢;; or
¢t that gives the value of HI with the largest magnitude.

When ¢ is not a signed distance function, the above simplifications can
not be made. In general, HI = u+a¢xl'V¢I-I, and we need to consider not
only IX, but also the values of ¢y and ¢z in IY and P, respectively. This
can become rather complicated quite quickly. In fact, even the RF method
can become quite complicated in this case, since it is hard to tell when sonic
points are nearby and when they are not. In situations like this, the LLF
scheme is ideal, since one merely uses both the values of ¢;; and ¢t along
with some artificial dissipation setting Q: as dictated by equation (5.12).
At first glance, equation (5.12) might seem complicated to evaluate; e.g.,
one has to determine the maximum value of IHII. However, since Q: is just
a dissipation coefficient, we can safely overestimate Q: and pay the price
of slightly more artificial dissipation. In contrast, it is hard to predict how
certain approximations will affect the Godunov scheme. One way to approx
imate Q: is to separate HI into parts, i.e., using IHII < lui + la¢xll'V¢I-I
to treat the first and second terms independently. Also, when ¢ is approxi
mately a signed distance, we can look at IHII = lu + a¢x I. This function is
easy to maximize, since the maximum occurs at either ¢;; or ¢t and the y
and z spatial directions play no role.

7
Constructing Signed Distance
Functions

7 .1 Introduction

As we have seen, a number of simplifications can be made when 1; is a signed
distance function. For this reason, we dedicate this chapter to numerical
techniques for constructing approximate signed distance functions. These
techniques can be applied to the initial data in order to initialize 1; to a
signed distance function.

As the interface evolves, 1; will generally drift away from its initialized
value as signed distance. Thus, the techniques presented in this chapter
need to be applied periodically in order to keep 1; approximately equal to
signed distance. For a particular application, one has to decide how sensi
tive the relevant techniques are to 1;'s approximation of a signed distance
function. If they are very sensitive, 1; needs to be reinitialized to signed
distance both accurately and often. If they are not sensitive, one can reini
tialize with a lower-order accurate method on an occasional basis. However,
even if a particular numerical approach doesn't seem to depend on how ac
curately 1; approximates a signed distance function, one needs to remember
that 1; can develop noisy features and steep gradients that are not amenable
to finite-difference approximations. For this reason, it is always advisable
to reinitialize occasionally so that 1; stays smooth enough to approximate
its spatial derivatives with some degree of accuracy.

64 7. Constructing Signed Distance Functions

7.2 Reinitialization

In their seminal level set paper, Osher and Sethian [126] initialized their
numerical calculations with ¢ = 1 ± d2 , where d is the distance function and
the "±" sign is negative in n- and positive in n+. Later, it became clear
that the signed distance function ¢ = ±d, was a better choice for initializ
ing ¢. Mulder, Osher, and Sethian [115] demonstrated that initializing ¢ to
a signed distance function results in more accurate numerical solutions than
initializing ¢ to a Heaviside function. While it is obvious that better results
can be obtained with smooth functions than nonsmooth functions, there
are those who insist on using (slightly smeared out) Heaviside functions,
or color junctions, to track interfaces.

In [48], Chopp considered an application where certain regions of the
flow had level sets piling up on each other, increasing the local gradient,
while other regions of the flow had level sets separating from each other,
flattening out ¢. In order to reduce the numerical errors caused by both
steepening and flattening effects, [48] introduced the notion that one should
reinitialize the level set function periodically throughout the calculation.
Since only the ¢ = 0 isocontour has any meaning, one can stop the cal
culation at any point in time and reset the other isocontours so that ¢ is
again initialized to a signed distance function. The most straightforward
way of implementing this is to use a contour plotting algorithm to locate
and discretize the ¢ = 0 isocontour and then explicitly measure distances
from it. Unfortunately, this straightforward reinitialization routine can be
slow, especially if it needs to be done at every time step. In order to ob
tain reasonable run times, [48] restricted the calculations of the interface
motion and the reinitialization to a small band of points near the ¢ = 0
isocontour, producing the first version of the local level set method. We
refer those interested in local level set methods to the more recent works
of Adalsteinsson and Sethian [2] and Peng, Merriman, Osher, Zhao, and
Kang [130].

The concept of frequent reinitialization is a powerful numerical tool. In
a standard numerical method, one starts with initial data and proceeds
forward in time, assuming that the numerical solution stays well behaved
until the final solution is computed. With reinitialization, we have a less
stringent assumption, since only our ¢ = 0 isocontour needs to stay well
behaved. Any problems that creep up elsewhere are wiped out when the
level set is reinitialized. For example, Merriman, Bence, and Osher [114]
proposed numerical techniques that destroy the nice properties of the level
set function and show that poor numerical solutions are obtained using
these degraded level set functions. Then they show that periodic reini
tialization to a signed distance function repairs the damage, producing
high-quality numerical results. Numerical techniques need to be effective
only for the ¢ = 0 isocontour, since the rest of the implicit surface can be
repaired by reinitializing ¢ to a signed distance function. This greatly in-

7.3. Crossing Times 65

creases flexibility in algorithm design, since difficulties away from the 1> = 0
isocontour can be ignored.

7.3 Crossing Times

One of the difficulties associated with the direct computation of signed
distance functions is locating and discretizing the interface. This can be
avoided in the following fashion. Consider a point x E n+. If x does not lie
on the interface, we wish to know how far from the interface it is so that
we can set ¢(x) = +d. If we move the interface in the normal direction
using equation (6.1) with a = 1, the interface eventually crosses over x,
changing the local value of ¢ from positive to negative. If we keep a time
history of the local values of ¢ at x, we can find the exact time when ¢ was
equal to zero using interpolation in time. This is the time it takes the zero
level set to reach the point x, and we call that time to the crossing time.
Since equation (6.1) moves the level set normal to itself with speed a = 1,
the time it takes for the zero level set to reach a point x is equal to the
distance the interface is from X. That is, the crossing time to is equal to the
distance d. For points x E n-, the crossing time is similarly determined
using a = -1 in equation (6.1).

In a series of papers, [20j, [97], and [100j, Kimmel and Bruckstein intro
duced the notion of using crossing times in image-processing applications.
For example, [lOOj used equation (6.1) with a = 1 to create shape offsets,
which are distance functions with distance measured from the boundary of
an image. The idea of using crossing times to solve some general Hamilton
Jacobi equations with Dirichlet boundary conditions was later generalized
and rigorized by Osher [123].

7.4 The Reinitialization Equation

In [139j, Rouy and Tourin proposed a numerical method for solving IV'¢I =
f(x) for a spatially varying function f derived from the intensity of an
image. In the trivial case of J(x) = 1, the solution ¢ is a signed distance
function. They added f(x) to the right-hand side of equation (6.1) as a
source term to obtain

¢t + IV'¢I = J(x), (7.1)

which is evolved in time until a steady state is reached. At steady state,
the values of ¢ cease to change, implying that ¢t = O. Then equation (7.1)
reduces to IV'¢\ = J(x), as desired. Since only the steady-state solution
is desired, [139] used an accelerated iteration method instead of directly
evolving equation (7.1) forward in time.

66 7. Constructing Signed Distance Functions

Equation (7.1) propagates information in the normal direction, so infor
mation flows from smaller values of <P to larger values of <p. This equation
is of little use in reinitializing the level set function, since the interface lo
cation will be influenced by the negative values of <p. That is, the <p = 0
isocontour is not guaranteed to stay fixed, but will instead mOVe around
as it is influenced by the information flowing in from the negative values
of <p. One way to avoid this is to compute the signed distance function for
all the grid points adjacent to the interface by hand. Then

(7.2)

can be solved in n+ to update <p based on those grid points adjacent to
the interface. That is, the grid points adjacent to the interface are not
updated, but instead used as boundary conditions. Since there is only a
single band of initialized grid cells on each side of the interface, one cannot
apply higher-order accurate methods such as HJ WENO. However, if a
two-grid-cell-thick band is initialized in n- (in addition to the one-grid
cell-thick band in n+), the total size if the band consists of three grid
cells and the HJ WENO scheme can then be used. Alternatively, one could
initialize a three-grid-cell-thick band of boundary conditions in n- and
use these to update every point in n+ including those adjacent to the
interface. Similarly, a three grid cell thick band of boundary conditions can
be initialized in n+ and used to update the values of <p in n- by solving

<Pt -1V'<p1 = -1 (7.3)

to steady state. Equations (7.2) and (7.3) reach steady state rather quickly,
since they propagate information at speed 1 in the direction normal to the
interface. For example, if D.t = 0.5D.x, it takes only about 10 time steps to
move information from the interface to 5 grid cells away from the interface.

In [160J, Sussman, Smereka, and Osher put all this together into a
reinitialization equation

(7.4)

where S(<Po) is a sign function taken as 1 in n+, -1 in n-, and 0 on the
interface, where we want <p to stay identically equal to zero. Using this
equation, there is no need to initialize any points near the interface for use
as boundary conditions. The points near the interface in n+ use the points
in n- as boundary conditions, while the points in n- conversely look at
those in n+. This circular loop of dependencies eventually balances out,
and a steady-state signed distance function is obtained. As long as <p is
relatively smooth and the initial data are somewhat balanced across the
interface, this method works rather well. Unfortunately, if <p is not smooth
or <p is much steeper on one side of the interface than the other, circular
dependencies on initial data can cause the interface to move incorrectly
from its initial starting position. For this reason, [160] defined S(<Po) using
the initial values of <p (denoted by <Po) so that the domain of dependence

7.4. The Reinitialization Equation 67

does not change if the interface incorrectly crosses over a grid point. This
was addressed directly by Fedkiw, Aslam, Merriman, and Osher in the
appendix of [63], where incorrect interface crossings were identified as sign
changes in the nodal values of ¢. These incorrect interface crossings were
rectified by putting the interface back on the correct side of a grid point X,
setting ¢(x) = ±E, where ±E is a small number with the appropriate sign.

In discretizing equation (7.4), the S(¢o)IV'¢1 term is treated as motion in
the normal direction as described in Chapter 6. Here S(¢o) is constant for
all time and can be thought of as a spatially varying "a" term. Numerical
tests indicate that better results are obtained when S(¢o) is numerically
smeared out, so [160] used

S(A.) _ ¢o
'+'0 - J¢~+(6,x)2

(7.5)

as a numerical approximation. Later, Peng, Merriman, Osher, Zhao, and
Kang [130] suggested that

S(¢) = J¢2 + 1;¢12(6x)2
(7.6)

was a better choice, especially when the initial ¢o was a poor estimate of
signed distance, i.e., when IV'¢ol was far from 1. In equation (7.6), it is im
portant to update S{¢) continually as the calculation progresses so that the
IV'¢I term has the intended effect. In contrast, equation (7.5) is evaluated
only once using the initial data. Numerical smearing of the sign function
decreases its magnitude, slowing the propagation speed of information near
the interface. This probably aids the balancing out of the circular depen
dence on the initial data as well, since it produces characteristics that do
not look as far across the interface for their information. We recommend
using Godunov's method for discretizing the hyperbolic S(¢o)IV'¢1 term.
After finding a numerical approximation to S(¢o)IV'¢I, we combine it with
the remaining S (¢o) source term at each grid point and update the resulting
quantity in time with a Runge-Kutta method.

Ideally, the interface remains stationary during the reinitialization pro
cedure, but numerical errors will tend to move it to some degree. In [158],
Sussman and Fatemi suggested an improvement to the standard reini
tialization procedure. Since their application of interest was two-phase
incompressible flow, they focused on preserving the amount of material
in each cell, i.e., preserving the area (volume) in two (three) spatial di
mensions. If the interface does not move during reinitialization, the area is
preserved. On the other hand, one can preserve the area while allowing the
interface to move, implying that their proposed constraint is weaker than
it should be. In [158] this constraint was applied locally, requiring that the
area be preserved individually in each cell. Instead of using the exact area,
the authors used equation (1.15) with f(x) = 1 to approximate the area in

68 7. Constructing Signed Distance Functions

each cell as

Ai,j = k . H(¢) dx,
'.J

(7.7)

where Oi,j is an individual grid cell and H is the smeared-out Heaviside
function in equation (1.22). In both [158] and the related [159] by Sussman,
Fatemi, Smereka, and Osher this local constraint was shown to significantly
improve the results obtained with the HJ ENO scheme. However, this local
constraint method has not yet been shown to improve upon the results ob
tained with the significantly more accurate HJ WENO scheme. The concern
is that the HJ WENO scheme might be so accurate that the approximations
made by [158] could lower the accuracy of the method.

This local constraint is implemented in [158] by the addition of a
correction term to the right-hand side of equation (7.4),

(7.8)

where the multidimensional delta function J = J(¢)IV'¢I from equa
tion (1.19) is used, since the modifications are needed only near the interface
where Ai,j is not trivially equal to either zero or the volume of Oi,j. The
constraint that Ai,j in each cell not change, i.e., (Ai,j)t = 0, is equivalent
to

(7.9)

or

in . J(¢) (-S(¢o)(IV'¢I- 1) + AJ(¢)IV'¢I) dx = 0,
'oJ

(7.10)

using equation (7.8) and the fact that H'(¢) = J(¢) (see equation (1.18)).
A separate Ai,j is defined in each cell using equation (7.10) to obtain

In . J(¢) (-S(¢o)(IV'¢I-l)) dx
Ai,j = - ',J In. J2(¢)IV'¢1 dx ' (7.11)

',J

or

(7.12)

where equation (7.4) is used to compute ¢n+l from ¢n. In summary, first
equation (7.4) is used to update ¢n in time using, for example, an RK
method. Then equation (7.12) is used to compute a Ai,j for each grid
cell. Sussman and Fatemi in [158] used a nine-point quadrature formula
to evaluate the integrals in two spatial dimensions. Finally, the initial
guess for ¢n+l obtained from equation (7.4) is replaced with a corrected
¢n+l + L-tAJ(¢)IV'¢I. It is shown in [158] that this specific discretization
exactly cancels out a first order error term in the previous formulation. This

7.5. The Fast Marching Method 69

procedure is very similar to that used by Rudin, Osher, and Fatemi [142]
as a continuous in time gradient projection method. In [142] a set of con
straints needs to be preserved under evolution, while in [158] the evolution
is not inherited from gradient descent on a functional to be optimized.

Reinitialization is still an active area of research. Recently, Russo and
Smereka [143J introduced yet another method for computing the signed
distance function. This method was designed to keep the stencil from in
correctly looking across the interface at values that should not influence it,
essentially removing the balancing act between the interdependent initial
data across the interface. Their idea replaces equation (7.4) with a com
bination of equations (7.2) and (7.3) along with interpolation to find the
interface location. In [143] marked improvement was shown in using low
order HJ ENO schemes, but the authors did not address whether they can
obtain improved results over the recommended HJ WENO discretization
of equation (7.4). Moreover, implementing a high-order accurate version of
the scheme in [143] requires a number of ghost cells, as discussed above.

7.5 The Fast Marching Method

In the crossing-time approach to constructing signed distance functions, the
zero isocontour moves in the normal direction, crossing over grid points at
times equal to their distance from the interface. In this fashion, each grid
point is updated as the zero isocontour crosses over it. Here we discuss a
discrete algorithm that mimics this approach by marching out from the
interface calculating the signed distance function at each grid point.

Suppose that all the grid points adjacent to the interface are initialized
with the exact values of signed distance. We will discuss methods for ini
tializing this band of cells later. Starting from this initial band, we wish
to march outward, updating each grid point with the appropriate value of
signed distance. Here we describe the algorithm for marching in the nor
mal direction to construct the positive distance function, noting that the
method for marching in the direction opposite the normal to construct the
negative distance function is applied in the same manner. In fact, if the val
ues in the initial band are multiplied by -1, the positive distance function
construction can be used to find positive distance values in n- that can
then be multiplied by -1 to obtain appropriate negative distance values in
this region.

In order to march out from the initial band, constructing the distance
function as we go, we need to decide which grid point to update first. This
should be the one that the zero isocontour would cross first in the crossing
time method, i.e., the grid point with the smallest crossing time or smallest
value of distance. So, for each grid point adjacent to the band, we calculate a
tentative value for the distance function. This is done using only the values

70 7. Constructing Signed Distance Functions

of ¢ that have already been accepted into the band; i.e., tentative values
do not use other tentative values in this calculation. Then we choose the
point with the smallest tentative value to add to the band of accepted grid
points. Since the signed distance function is created with characteristics
that flow out of the interface in the normal direction, this chosen point
does not depend on any of the other tentative grid points that will have
larger values of distance. Thus, the tentative value of distance assigned
to this grid point is an acceptable approximation of the signed distance
function.

Now that the band of accepted values has been increased by one, we
repeat the process. Most of the grid points in the tentative band already
have good tentative approximations to the distance function. Only those
adjacent to the newly added point need modification. Adjacent tentative
grid points need their tentative values updated using the new information
gained by adding the chosen point to the band. Any other adjacent grid
point that did not yet have a tentative value needs to have a tentative
value assigned to it using the values in the band of accepted points. Then
we choose the smallest tentative value, add it to the band, and repeat
the algorithm. Eventually, every grid point in n+ gets added to the band,
completing the process. As noted above, the grid points in n- are updated
with a similar process.

The slowest part of this algorithm is the search through all the tentative
grid points to find the one with the smallest value. This search can be
accelerated using a binary tree to store all the tentative values. The tree
is organized so that each point has a tentative distance value smaller than
the two points located below it in the tree. This means that the smallest
tentative point is always conveniently located at the top of the tree. New
points are added to the bottom of the tree, where we note that the method
works better if the tree is kept balanced. If the newly added point has
a smaller value of distance than the point directly above it, we exchange
the location of these two points in the tree. Recursively, this process is
repeated, and the newly added point moves up the tree until it either sits
below a point with a smaller tentative distance value or it reaches the
top of the tree. We add points to the bottom of the tree as opposed to
the top, since newly added points tend to be farther from the interface
with larger distance values than those already in the tree. This means that
fewer comparisons are generally needed for a newly added point to find an
appropriate location in the tree.

The algorithm proceeds as follows. Remove the point from the top of the
tree and add it to the band. The vacated space in the tree is filled with the
smaller of the two points that lie below it. Recursively, the holes opened up
by points moving upward are filled with the smaller of the two points that
lie below until the bottom of the tree is reached. Next, any tentative values
adjacent to the added point are updated by changing their tentative values.
These then need to be moved up or down the tree in order to preserve the

7.5. The Fast Marching Method 71

ordering based on tentative distance values. In general, tentative values
should only decrease, implying that the updated point may have to be
moved up the tree. However, numerical error could occasionally cause a
tentative distance value to increase (if only by round-off error) in which
case the point may need to be moved down lower in the tree. Tentative
distance values are calculated at each new adjacent grid point that was not
already in the tree, and these points are added to the tree. The algorithm
is O(N log N), where N is the total number of grid points.

This algorithm was invented by Tsitsiklis in a pair of papers, [166] and
[167]. The most novel part of the algorithm is the extension of Dijkstra's
method for computing the taxicab metric to an algorithm for computing
Euclidean distance. In these papers, ¢i,j,k is chosen to be as small as pos
sible by obtaining the correct solution in the sense of first arrival time.
First, each quadrant is independently considered to find the characteris
tic direction 0 = (01, O2 , (h), where each Os > 0 and :E Os = 1, that gives
the smallest value for ¢i,j,k. Then the values from all the quadrants are
compared, and the smallest of these is chosen as the tentative guess for
¢i,j,k. That is, the characteristic direction is found by first finding the best
candidate in each quadrant and then comparing these (maximum of eight)
candidates to find the best global candidate.

In [166] and [167], the minimum value of ¢i,j,k in a particular quadrant
is found by minimizing

¢i,j,k = 7(0) + 01 ¢1 + 02¢2 + (h¢3

over all directions 0, where

- / 2 2 2
7(0) = V (01.6X1) + (02.6x2) + (03.6x3)

(7.13)

(7.14)

is the distance traveled and "'£ f)s¢s is the starting point in the particular
quadrant. There are eight possible quadrants, with starting points deter
mined by ¢1 = ¢i±l,j,k, ¢2 = ¢i,j±l,k, and ¢3 = ¢i,j,k±l. If any of the arms
of the stencil is not in the band of updated points, this arm is simply ig
nored. In the minimization formalism, this is accomplished by setting points
outside the updated band to 00 and using the convention that 0 . 00 = O.
This sets the corresponding Os¢s term in equation (7.13) to zero for any
¢ = 00 not in the band of updated points simply by setting Os = 0, i.e., by
ignoring that direction of the stencil.

A Lagrange multiplier). is added to equation (7.13) to obtain

(7.15)

where 1 - :E Os = O. For each Os, we take a partial derivative and set it to
zero, obtaining

(7.16)

72 7. Constructing Signed Distance Functions

in standard fashion. Solving equation (7.16) for each ¢s and plugging the
results into equation (7.13) yields (after some cancellation) ¢i,j,k = A; i.e.,
A is our minimum value. To find A, we rewrite equation (7.16) as

(7.17)

and sum over all spatial dimensions to obtain

(7.18)

using equation (7.14) to reduce the right-hand side of equation (7.18) to 1.
In summary, [166] and [167] compute the minimum value of ¢i,j,k in each

quadrant by solving the quadratic equation

(7.19)

Then the final value of ¢i,j,k is taken as the minimum over all the quadrants.
Equation (7.19) is a first-order accurate approximation of 1'\7¢12 = 1, i.e.,
the square of 1'\7 ¢I = 1.

The final minimization over all the quadrants is straightforward. For
example, with ¢2 and ¢3 fixed, the smaller value of ¢i,j,k is obtained as
¢l = min(¢i-l,j,k, ¢i+l,j,k), ruling out four quadrants. The same considera
tions apply to ¢2 = min(¢i,j-l,k, ¢i,j+l,k) and ¢3 = min(¢i,j,k-l, ¢i,j,k+l).
Equation (7.19) is straightforward to solve using these definitions of ¢l,
¢2, and 1>3. This is equivalent to using either the forward difference or the
backward difference to approximate each derivative of ¢. If these defini
tions give ¢s = 00, than neither the forward nor the backward difference
is defined since both the neighboring points in that spatial dimension are
not in the accepted band. In this instance, we set ()s = 0, which according
to equation (7.17) is equivalent to dropping the troublesome term out of
equation (7.19) setting it to zero.

Each of ¢l, ¢2, and ¢3 can potentially be equal to 00 if there are no
neighboring accepted band points in the corresponding spatial dimension.
If one of these quantities is equal to 00, the corresponding term vanishes
from equation (7.19) as we set the appropriate ()s = O. Since there is always
at least one adjacent point in the accepted band, at most two of the three
terms can vanish, giving

(¢i,j,k-¢S)2 =1,
DXs

(7.20)

which can be solved to obtain ¢i,j,k = ¢s ± Dxs. The larger term, denoted
by the "+" sign, is the one we use, since distance increases as the algorithm

7.5. The Fast Marching Method 73

proceeds. When there are two nonzero terms, equation (7.19) becomes

(¢i,j,k - ¢Sl)2 + (¢i,j,k - ¢S2)2 = 1,
~XSl ~XS2

(7.21)

where Sl and S2 represent different spatial dimensions. This quadratic equa
tion can have zero, one, or two solutions. While this theoretically should not
happen, it can be caused by poor initial data or numerical errors. Defining

P(¢i,j,k) = (¢i,j,k - ¢Sl)2 + (¢i,j,k - ¢S2)2 (7.22)
~XSl ~XS2

allows us to write P(max{ ¢sp ¢S2}) ::; 1 as a necessary and suffi
cient condition to find an adequate solution ¢i,j,k of equation (7.21). If
P(max{¢Sl'¢S2}) > 1, then ¢i,j,k < max{¢SP¢S2} if a solution ¢i,j,k ex
ists. This implies that something is wrong (probably due to poor initial data
or numerical error), since larger values of ¢ should not be contributing to
smaller values. In order to obtain the best solution under the circumstances,
we discard the term with the larger ¢s and proceed with equation (7.20).
Otherwise, when P(max{¢SP¢S2})::; 1, equation (7.21) has two solutions,
and we use the larger one, corresponding to the "+" sign in the quadratic
formula. Similarly, when all three terms are present, we define

P(¢i . k) = (¢i,j,k - ¢1)2 + (¢i,j,k - ¢2)2 + (¢i,j,k - ¢3)2 (7.23)
,J, ~x ~y ~z

and take the larger solution, corresponding to the "+" sign, when
P(max{¢s}) ::; 1. Otherwise, when P(max{¢s}) > 1 we omit the term
with the largest ¢s and proceed with equation (7.22).

Consider the initialization of the grid points in the band about the inter
face. The easiest approach is to consider each of the coordinate directions
independently. If ¢ changes sign in a coordinate direction, linear interpola
tion can be used to locate the interface crossing and determine a candidate
value of ¢. Then ¢ is initialized using the candidate with the smallest mag
nitude. Both this initialization routine and the marching algorithm itself
are first-order accurate. For this reason, the reinitialization equation is of
ten a better choice, since it is highly accurate in comparison. On the other
hand, reinitialization is significantly more expensive and does not work well
when ¢ is not initially close to signed distance. Thus, in many situations
this optimal O(N log N} algorithm is preferable.

Although the method described above was originally proposed by Tsitsik
lis in [166] and [167], it was later rediscovered by the level set community;
see, for example, Sethian [148] and Helmsen, Puckett, Colella, and Dorr
[85], where it is popularly referred to as the fast marching method (FMM).
In [149], Sethian pointed out that higher-order accuracy could be achieved
by replacing the first-order accurate forward and backward differences used
by [166] and [167] in equation (7.19) with second-order accurate forward
and backward differences whenever there are enough points in the updated

74 7. Constructing Signed Distance Functions

band to evaluate these higher-order accurate differences. The second-order
accurate versions of equations (1.3) and (1.4) are

acP r::::; cPi+l - cPi + (LX) (cPi+2 - 2cPi+l + cPi) = cPi+2 - 4cPi+l + 3cPi
ax Lx 2 (Lx)2 2Lx

and

(7.24)

3cPi - 4cPi-l + cPi-2
2Lx

(7.25)

respectively. This lowers the local truncation error whenever more accepted
band points are available. As pointed out in [149], higher-order accurate
(higher than second order) forward and backward differences could be used
as well. One difficulty with obtaining higher-order accurate solutions is that
the initial band adjacent to the interface is constructed with first-order
accurate linear interpolation. In [49J, Chopp proposed using higher-order
accurate interpolants to initialize the points adjacent to the interface. This
leads to a set of equations that are not trivial to solve, and [49] used a
variant of Newton iteration to find an approximate solution. When the
iteration method (occasionally) fails, [49J uses the lower-order accurate lin
ear interpolation to initialize the problematic points. Overall, the iteration
scheme converges often enough to significantly improve upon the results
obtained using the lower-order accurate linear interpolation everywhere.

8
Extrapolation in the Normal Direction

8.1 One-Way Extrapolation

In the last chapter we constructed signed distance functions by following
characteristics that flow outward from the interface. Similar techniques can
be used to propagate information in the direction of these characteristics.
For example,

(8.1)

is a Hamilton-Jacobi equation (in S) that extrapolates S normal to the
interface, i.e. so that S is constant on rays normal to the interface. Since
H('VS) = N· 'VS, we can solve this equation with the techniques presented
in Chapter 5 using Hl = n!, H2 = n2, and H3 = n3.

While central differencing can be used to compute the normal, it is usu
ally advantageous to use upwind differencing here, since this equation is
propagating information along these characteristics. At a given point Xi,j,k

where the level set function is ¢i,j,k, we determine ¢x by considering both
¢i-l,j,k and ¢Hl,j,k' If either of these values is smaller than ¢i,j,k, we use
the minimum of these two values to compute a one-sided difference. On the
other hand, if both of these values are larger than ¢i,j,k, we set ¢x = 0;
noting that no S information should be flowing into this point along the x
direction. After computing ¢y and ¢z in the same fashion, equation (1.2)
can be used to define the normal direction.

Suppose that S is initially defined only in n- and we wish to extend its
values across the interface from n- into n+. Solving equation (8.1) in n+

76 8. Extrapolation in the Normal Direction

using the values of S in n- as boundary conditions extrapolates S across
the interface constant in the normal direction. This was done by Fedkiw,
Aslam, Merriman, and Osher in [63] to solve multiphase flow problems with
a ghost fluid method. We can extrapolate S in the opposite direction from
n+ to n- by solving

St - N· V'S = 0 (8.2)

in n- using the values of S in n+ as boundary conditions. Of course, the
upwind normal should be computed using the larger neighboring values
of ¢ instead of the smaller neighboring values.

8.2 Two-Way Extrapolation

Just as we combined equations (7.2) and (7.3) to obtain equation (7.4),
equations (8.1) and (8.2) can be combined to obtain

(8.3)

to extrapolate S away from the interface. Here the upwind version of N
is computed using smaller values of ¢ in n+ and larger values of ¢ in n- .
Equation (8.3) can be applied to any value S that needs to be smoothed
normal to the interface. For example, if this equation is solved indepen
dently for each component of the velocity field, i.e., S = u, S = v, and
S = w, we obtain a velocity field that is constant normal to the interface.
Velocity fields of this type have a tendency to preserve signed distance
functions, as discussed by Zhao, Chan, Merriman, and Osher in [175]. This
velocity extrapolation is also useful when the velocity is known only near
the interface. For example, in [43], Chen, Merriman, Osher, and Smereka
computed the velocity field for grid cells adjacent to the interface using
local information from both sides of the interface. Then the velocity values
in this band were held fixed, and equation (8.3) was used to extend each
component of the velocity field outward from this initial band.

8.3 Fast Marching Method

As in the construction of signed distance functions, the fast marching
method can be used to extrapolate S in an efficient manner. For exam
ple, consider a fast marching method alternative to equation (8.1). The
normal is computed using the smaller neighboring values of ¢ (as above).
The binary heap structure can be precomputed using all the points in n+,
as opposed to just using the points adjacent to the initialized band, since ¢
is already defined throughout n+. Once the points are ordered, we choose
the point with the smallest value of ¢ and compute an appropriate value

8.3. Fast Marching Method 77

for S. Then we find the next smallest value of ¢, compute S, and continue in
this fashion. The tentative values play no role, since we already know ¢ and
thus the characteristic directions, i.e., assuming that ¢ is a signed distance
function.

At each grid point, S is determined using the values of S at the neigh
boring points in a fashion dictated by the neighborinJS values of ¢. Since S
should be constant normal to the interface, we set N . V'S = O. Or equiv
alently, since N and V' ¢ point in the same direction, we set V' ¢ . V'S = 0,
where the derivatives in V' ¢ are computed in the fashion outlined above for
computing normals. Then

(8.4)

is discretized using V' ¢ to determine the upwind direction. That is, we use
Sx = D- Si,j,k when ¢x > 0 and Sx = D+ Si,j,k when ¢x < O. When ¢x = 0,
the neighboring values of ¢ are larger than ¢i,j,k, and no S information can
be obtained from either of the neighboring nodes. In this case, we drop the
Sx term from equation (8.4). The Sy and Sz terms are treated in a similar
fashion. If ¢ is a signed distance function, this method works well. For more
details on the fast marching alternative to equation (8.1), see Adalsteinsson
and Sethian [1].

9
Particle Level Set Method

9.1 Eulerian Versus Lagrangian Representations

The great success of level set methods can in part be attributed to the
role of curvature in regularizing the level set function such that the proper
vanishing viscosity solution is obtained. It is much more difficult to ob
tain vanishing viscosity solutions with Lagrangian methods that faithfully
follow the characteristics. For these methods one usually has to delete (or
add) characteristic information "by hand" when a shock (or rarefaction) is
detected. This ability of level set methods to identify and delete merging
characteristics is clearly seen in a purely geometrically driven flow where
a curve is advected normal to itself at constant speed, as shown in Fig
ures 9.1 and 9.2. In the corners of the square, the flow field has merging
characteristics that are appropriately deleted by the level set method. We
demonstrate the difficulties associated with a Lagrangian calculation of
this interface motion by initially seeding some marker particles interior to
the interface, as shown in Figure 9.3 and passively advecting them with
Xt = Vex, t); where the velocity field vex, t) is determined from the level
set solution. Figure 9.4 illustrates that a number of particles incorrectly
escape from inside the level set solution curve in the corners of the square
where the characteristic information (represented by the particles them
selves) needs to be deleted so that the correct vanishing viscosity solution
can be obtained.

When using level set methods to model fluid flows, one is usually
concerned with preserving mass (or volume for incompressible flow). Unfor-

80 9. Particle Level Set Method

I .

2

~~ 111~~!
l~;'~0-.

• ,"'''-'

1
-......; '--

'------- -f--

r--- --
0 -

r-- I----•
I----

1 -:--1----

•

111i
:::;;;/'l
....... " .. ,;.
//~~

2 /C-:-/J

-1.

- 1 -0.' 0 ..

Figure 9.1. Initial square interface location and converging velocity field.

Figure 9.2. Square interface location at a later time correctly computed by the
level set method.

9.1. Eulerian Versus Lagrangian Representations 81

-0 •

..

. u • I

Figure 9.3. Initial square interface location and the location of a number of
particles seeded interior to the interface .

...

-.
-. -0 ..

Figure 9.4. Final square interface location and the final location of the particles
initially seeded interior to the interface. A number of particles have incorrectly
escaped from the interior and need to be deleted in order to obtain the correct
vanishing viscosity solution.

82 9. Particle Level Set Method

tunately, level set methods have a tendency to lose mass in underresolved
regions of the flow. Attempts to improve mass (or volume) conservation
in level set methods have led to a variety of reinitialization techniques, as
discussed in Chapter 7. On the other hand, despite a lack of explicit en
forcement of mass (or volume) conservation, Lagrangian schemes are quite
successful in conserving mass, since they preserve material characteristics
for all time; i.e., they are not regularized out of existence to obtain vanish
ing viscosity solutions. The difficulty stems from the fact that the level set
method cannot accurately tell whether characteristics merge, separate, or
run parallel in underresolved regions of the flow. This indeterminacy leads
to vanishing viscosity solutions that can incorrectly delete characteristics
when they appear to be merging.

9.2 Using Particles to Preserve Characteristics

In [61], Enright, Fedkiw, Ferziger, and Mitchell designed a hybrid parti
cle level set method to alleviate the mass loss issues associated with the
level set method. In the case of fluid flows, knowing a priori that there
are no shocks present in the fluid velocity field, one can assert that char
acteristic information associated with that velocity field should never be
deleted. They randomly seed particles ncar the interface and passively ad
vect them with the flow. When marker particles cross over the interface,
this indicates that characteristic information has been incorrectly deleted,
and these errors are fixed by locally rebuilding the level set function using
the characteristic information present in these escaped marker particles.

Since there is characteristic information on both sides of the interface,
two sets of marker particles are needed. Initially, particles of both types are
seeded locally on both sides of the interface, as shown in Figure 9.5. Then
an equation of the form

Xnew = X + (1)new -1>(x)) N (9.1)

is used to attract particles initially located at x on the 1> = 1>(x) isocontour
to the desired 1> = 1>new isocontour. 1>new is chosen to place the particles on
the correct side of the interface in a slightly randomized position. Figure 9.6
shows the initial placement of particles after an attraction step.

The particles are initially given a fixed radius of influence based on their
distance from the interface after the seeding and attraction algorithms
have been employed. As the particles are integrated forward in time using
Xt = V, their position is continually monitored in order to detect possible
interface crossings. When a particle crosses over the interface, indicating
incorrectly deleted characteristic information, the particle's sphere of in
fluence is used to restore this lost information. This is done with a locally
applied Boolean union operation that simply adds the particle's sphere of
influence to the damaged level set function; i.e., at each grid point of the

9.2. Using Particles to Preserve Characteristics 83

95

90

eo

"'75

45 eo 70

Figure 9.5. Initial placement of both types of particles on both sides of the
interface. (See also color figure, Plate 1.)

5

90

IlS

eo

"'15

70

65

60

55
3D 00 45 50 55 eo 65 10

Figure 9.6. Particle positions after the initial attraction step is used to place them
on the appropriate side of the interface. (See also color figure, Plate 2.)

84 9. Particle Level Set Method

cell containing the particle, the local value of ¢ is changed to accurately
reflect the union of the particle sphere with the existing level set function.

Figures 9.7 and 9.8 show the rigid-body rotation of a notched sphere
using the level set method and the particle level set method, respectively.
Similarly, Figures 9.9 and 9.10 show the results of the "Enright test," where
a sphere is entrained by vortices and stretched out very thin before the flow
time reverses returning the sphere to its original form. The particle level
set solution in Figure 9.10 returns (almost exactly) to its original spherical
shape, while the level set solution in Figure 9.9 shows an 80% volume loss
on the same 1003 grid.

9.2. Using Particles to Preserve Characteristics 85

Figure 9.7. Smeared-out level set solution of a rigidly rotating notched sphere.

Figure 9.8. High-quality particle level set solution of a rigidly rotating notched
sphere.

86 9. Particle Level Set Method

Figure 9.9. Level set solution for the "Enright test" with 80% volume loss by the
final frame.

Figure 9.10. Particle level set solution for the "Enright Test." The sphere returns
almost exactly to its original shape in the time reversed flow.

10
Co dimension-Two Objects

10.1 Intersecting Two Level Set Functions

Typically, level set methods are used to model codimension-one objects such
as points in ~1, curves in ~2, and surfaces in ~3. Burchard, Cheng, Merri
man, and Osher [22] extended level set technology to treat co dimension-two
objects using the intersection of the zero level sets of two level set func
tions. That is, instead of implicitly representing codimension-one geometry
by the zero isocontour of a function ¢, codimension-two geometry is rep
resented as the intersection of the zero isocontour of a function ¢1 with
the zero isocontour of another function ¢2. In one spatial dimension, zero
isocontours are points, and their intersection is usually the empty set. In
two spatial dimensions, zero isocontours are curves, and the intersections
of curves tend to be points which are of codimension two. In three spatial
dimensions, the zero isocontours are surfaces, and the intersections of these
surfaces tend to be co dimension two curves.

10.2 Modeling Curves in ~3

In order to model curves as the intersection of the ¢1 = 0 and ¢2 = 0
isocontours of functions ¢1 and ¢2 in ~3, a number of relevant geometric
quantities need to be defined. To find the tangent vectors f, note that
'V ¢1 x 'V ¢2, taken on the curve, is tangent to the curve. So the tangent

88 10. Codimension-Two Objects

0.5 0.5 6 0 0

-0.5 -0.5 6
-1 -1

~ -1 -1
0 0

1 -1 0 1 -1 0

0.5 () 0.5

0
0 0

-0.5 () -0.5 0
-1

/\"
-1

-1 -1 ~

0 0
1 -1 0 1 -1 0

Figure 10.1. Two helices evolving under curvature motion eventually touch and
merge together.

vectors are just a normalization of this:

f = \1 <P1 X \1 <P2 .
\\1<p1 X \1 <P2\

(10.1)

Note that replacing <P1 with -<PI reverses the direction of the tangent
vectors. This is also true when <P2 is replaced with -<P2'

The curvature times the normal, liN, is the derivative of the tangent
vector along the curve, i.e., with respect to arc length s,

(10.2)

Using directional derivatives, this becomes

(10.3)

o

1
1

1

o

1
1

o

1 1

10.2. Modeling Curves in !R3 89

1

o

1
1

1

o

1
1

o

1

1

Figure 10.2. Two rings evolving under curvature motion eventually touch and
merge together.

where T1 , T2, and T3 are the components of the tangent vector T. Then
the normal vectors can be defined by normalizing this quantity,

- K,N N=-_-,
IK,NI

(10.4)

and the binormal vectors are defined as

- T x N B= _ _.
ITxNI

(10.5)

The torsion times the normal vector is defined as TN = -\1 ii . T. All these
geometric quantities can be written in terms of ¢l and ¢2 and computed
at each grid point one uses similar to the way the normal and curvature
are computed when using standard level set technology for codimension
one objects. Interpolation can be used to define these geometric quantities
between grid points.

Both ¢1 and ¢2 are evolved in time using the standard level set equation.
A velocity of V = K,N gives curvature motion in the normal direction.

90 10. Codimension-Two Objects

Setting V = N or V = jj gives motion in the normal or binormal direction,
respectively. Figures 10.1 and 10.2 show curves evolving under curvature
motion in three spatial dimensions. In Figure 10.1 (page 88), two helices
touch and merge. Similarly, in Figure 10.2 (page 89), two closed curves
evolve independently until they touch and merge together.

10.3 Open Curves and Surfaces

Level set methods are used to represent closed curves and surfaces that
may begin and end at the boundaries of the computational domain. How
ever, it is not clear how to devise methods for curves and surfaces that
have ends or edges (respectively) within the computational domain. Curves
in ~2 have co dimension two ends given by points, while surfaces in ~3 have
codimension-two edges given by curves. A first step in this direction was
carried out by Smereka [152] in the context of spiral crystal growth. In two
spatial dimensions, he used the intersection of two level set functions ¢
and 'IjJ to represent the codimension-two points at the beginning and end
of an open curve. The curve of interest was defined as the ¢ = ° isocontour
in the region where 'IjJ > 0, while a ghost curve was defined as the ¢ = 0
isocontour in the region where 'IjJ < 0. Velocities were derived for both the
curve and the fictitious ghost curve that exists only for computational pur
poses. Figure 10.3 shows an initial configuration where the curve moves
upward and the ghost curve moves downward, as shown at a later time in
Figure lOA. Figure 10.5 shows this open curve rolling up and subsequently
merging with itself, pinching off independently evolving closed curves.

10.4 Geometric Optics in a Phase-Space-Based
Level Set Framework

In [124], Osher et al. introduced a level-set-based approach for ray tracing
and for the construction of wave fronts in geometric optics. The approach
automatically handles the multivalued solutions that appear and automat
ically resolves the wave fronts. The key idea, first introduced by Engquist,
Runborg, and Tornberg [60], but used in a "segment projection" method
rather than level set fashion, is to use the linear Liouville equation in twice
as many independent variables, (actually, 2d - 1, using a normalization)
and solve in this higher-dimensional space via the idea introduced by Bur
chard et al. [22]. In two-dimensional ray tracing this involves solving for an
evolving curve in x, y, () space, where () is the angle of the normal to the
curve. This, of course, uses two level set functions and gives codimension-2
motion in 3-space plus time. A local level set method can be used to make

10.4. Geometric Optics in a Phase-Space-Based Level Set Framework 91

¢>O

7/J < 0 7/J>O 7/J < 0

t
• •

¢<O

Figure 10.3. The hortizontalline marks the set where ¢ = 0 while the two veritical
lines mark the set where 'l/J = O. The arrow in the center indicates the motion of
the real curve while the arrows to the right and left indicate the motion of the
ghost curves.

¢>O

7/J<O 7/J > 0 7/J < 0

¢<O

Figure 10.4. The arrow in the center indicates the motion of the real curve while
the arrows to the right and left indicate the motion of the ghost curves.

92 10. Co dimension-Two Objects

10 10,-----~--~---~--_,

(J

-2 -2

-4 -4

-6 -6

-8 -8

-10 -10
-10 -5 10 -10 -5 10

10

Figure 10.5. Four snapshots of the evolving open curve at various times. The curve
rolls up subsequently merging with itself pinching off independently evolving
closed curves.

the complexity tractable, O(n2 Iog(n)), for n the number of points on the
curve for every time iteration. The memory requirement is O(n2).

In three-dimensional ray tracing this involves solving for an evolving two
dimensional surface in x, y, Z, 0, ¢ space, where 0, ¢ give the angle of the
normal, and this results in codimension-3 motion in 5-space, plus time. The
complexity goes up by a power of n over the two-dimensional case, as does
the memory requirement, where n is the one-dimensional number of points.
Again, this involves a local level set method, this time using three level set
functions.

Standard ray tracing is the ultimate Lagrangian method. Since merg
ing and topological changes are not an issue--we actually want fronts to
cross through each other without intersecting-the usual level set method
has difficulties, especially with self-intersecting fronts, see, e.g., Figure 6
in [124J. However, there are many advantages of an Eulerian fixed-grid ap-

10.4. Geometric Optics in a Phase-Space-Based Level Set Framework 93

proach. Ray tracing gives inadequate spatial resolution of the wave front.
This is due to the fact that points close together may diverge at later
times, leaving holes in the wave front. Interpolation steps must be added.
The method in [124] overcomes this resolution problem and also the usual
Eulerian problem of how to get the solution when waves become multi
valued and singularities such as swallowtails or caustics develop. Eulerian
approaches such as that in [59] suffer from the second problem, and the
ingenious dynamic surface extension of Steinhoff et al. [156], with some im
provements in Ruuth et al. [144], needs both interpolation and a method
to keep track of singularities due to multiple crossing rays.

Part III

Image Processing and
Computer Vision

The fields of image processing and computer vision are incredibly vast, so
we do not make any attempt either to survey them or to impart any deep
insight. In the following chapters we merely illustrate a few applications of
level set methods in these areas.

The use of partial differential equations in image processing and com
puter vision, in particular the use of the level set method and dynamic
implicit surfaces, has increased dramatically in recent years. Historically,
the field of computer vision was probably the earliest to be affected signif
icantly by the level set method. There are many good general references,
e.g., [145, 29, 77, 120]. In this section we present three examples that are
prototypes for a far wider class of applications.

The first chapter discusses a basic (perhaps the basic) issue in image
processing, namely restoration of degraded images. The second concerns
image segmentation with snakes and active contours. The third concerns
reconstruction of surfaces from unorganized data points.

Traditionally, these closely related fields, image processing and computer
vision, have developed independently. However, level set and related PDE
based methods have served to provide both a new common language and
a new set of tools that have led to increased interaction;

11
Image Restoration

11.1 Introduction to PDE-Based Image
Restoration

A basic idea in this field is to view a gray-scale image as a function uo(x, y)
defined on a square n : {(x, y) 10 ::; x, y ::; I}, with Uo taking on discrete
values between 0 and 255, which we take as a continuum for the sake of
this discussion.

A standard operation on images is to convolve Uo with a Gaussian of
variance 0' > 0,

(11.1)

to obtain

u(x,y,O') = 11 J(x-x',y-y',CT)uo(x',y')dx'dy'=J*uo. (11.2)

This has the same effect as solving the initial value problem for the heat
equation

Ut = U xx + U yy

u(x, y, 0) = Uo(X, y)
(11.3)

for t > 0 (ignoring boundary conditions) to obtain u(x, y, 0') at t = 0' > 0,
i.e., the expression obtained in equation (11.2).

98 11. Image Restoration

Thus, one fundamental generalization is merely to replace the heat
equation with an appropriate flow equation of the form

Ut = F(u, Du, D2u, X, t) (11.4)

for t > 0 with intial data u(x, y, 0) = uo(x, y) defining u(x, y, t) as the
processed image. This is called defining a "scale space" with t > 0 as the
scale. As t increases, the image is generally (but not always) coarsened in
some sense. Here

(11.5)

and

UXy)
U yy

(11.6)

are the gradient and Hessian, respectively. The equation is typically of sec
ond order, as is the heat equation, although the assumption of parabolicity,
especially strict parabolicity, which implies smoothing in all directions, is
often weakened. Second order is usually chosen for several reasons: (1) The
numerical time-step restriction is typically 6.t = Cl (6.X)2 + C2 (6.y)2 for
explicit schemes, which is reasonable. (2) The method may have a useful
and appropriate maximum principle.

These generally nonlinear methods have become popular for the follow
ing reasons. Classical algorithms for image deblurring and denoising have
been mainly based on least squares, Fourier series, and other L 2-norm ap
proximations. Consequently, the results are likely to be contaminated by
Gibbs's phenomenon (ringing) and/or smearing near edges. Their compu
tational advantage comes from the fact that these classical algorithms are
linear; thus fast solvers are widely available. However, the effect of the
restoration is not local in space. Other bases of orthogonal functions have
been introduced in order to get rid of these problems, e.g., compactly sup
ported wavelets, but Gibbs's phenomenon and smearing are still present
for these linear procedures.

Rudin [140] made the important observation that images are charac
terized by singularities such as edges and boundaries. Thus nonlinearity,
especially ideas related to the numerical analysis of shocks in solutions of
systems of hyperbolic conservation laws, should play a key role in image
analysis. Later, Perona and Malik [131] described a family of nonlinear
second-order equations of the type given in equation (11.4) which have
an antidiffusive (hence deblurring) as well as a diffusive (hence denoising)
capability. This was modified and made rigorous by Catte et al. [41] and
elsewhere.

Perona and Malik proposed the following. Consider the equation

a 1(a 2
Ut = V . G(Vu) = ax G ux , uy) + ay G (ux , uy) (11. 7)

11.2. Total Variation-Based Image Restoration 99

with initial data u(x, y, 0) = u(x, y) in 0 with appropriate boundary con
ditions. This equation is parabolic (hence smoothing) when the matrix of
partial derivatives

(11.8)

is positive definite (or weakly parabolic when it is positive semidefinite).
When this matrix has a negative eigenvalue, equation (11.7) resembles the
backwards heat equation. One might expect such initial value problems to
result in unstable blowup, especially for nonsmooth initial data. However,
if we multiply equation (11.7) by U 2p- 1 j(2p) for p a positive integer and
integrate by parts, we arrive at

! !nIUI2P dO = - J (2P2; 1) (Vu· G(Vu)) lul 2p-2 dO. (11.9)

So if

(11.10)

the solutions stay bounded in all LP, p> 1, spaces, including p = 00, which
means that the maximum of u is nonincreasing. Then all one needs to do
is allow G to be backwards parabolic but satisfy equation (11.10) above,
and a restoring effect is obtained.

This initial value problem is not well posed; i.e., two nearby initial data
will generally result in very different solutions. There are many such ex
amples in the literature. In one spatial dimension parabolicity means that
the derivative of G1(ux) is positive, while equation (11.10) just means that
uxG1(ux) 2: O. Obviously, functions that have the same sign as their ar
gument but are sometimes decreasing in their argument will give bounded
restoring results in those ranges of U x .

11.2 Total Variation-Based Image Restoration

The total variation of a function of one variable u(x) can be defined as

TV(u) = ~~~ J I u(x + hk - u(x) I dx, (11.11)

which we will pretend is the same as J luxldx (analogous statements are
made in two or more spatial dimensions). Thus TV(u) is finite for any
bounded increasing or decreasing function, including functions with jump
discontinuities. On the other hand, this is not true for J lux IP dx for any
p > 1. Note that p < 1 results in a nonconvex functional; i.e., the tri
angle inequality is false. For this reason (among others) TV functions are
the appropriate class for shock solutions to conservation laws and for the
problems arising in processing images with edges.

100 11. Image Restoration

We also remark that it is very easy to show (formally at least) that
uxG(ux) ~ 0 implies that the evolution

a
Ut = ax G(ux) (11.12)

leads to the estimate

(11.13)

i.e., the evolution is total variation diminishing or TVD; see e.g., Harten
[80]. To see this, multiply equation (11.12) by sign U x and proceed for
mally. In fact it is easy to see that the finite difference approximation to
equation (11.12),

u,:+1 = u': + D.t (G (Ui+l -Ui) _ G (Ui -Ui_l)) ,
, t D.x D.x !:lx (11.14)

with a time-step restriction of

~ (G(Ux)) < ~
(!:lx)2 Ux 2

(11.15)

satisfies

(11.16)

i.e., it is also TVD.
All this makes one realize that TV, as predicted by Rudin [140], is in some

sense the right class in which to process images, at least away from highly
oscillatory textures. The work of Rudin [140] led to the TV preserving
shock filters of Rudin and Osher [125] and to the successful total variation
based restoration algorithms of Rudin et al. [142, 141] and Marquina and
Osher [111].

In brief, suppose we are presented with a noisy blurred image

Uo = J * u+n, (11.17)

where J is a given convolution kernel (see equation (11.2)) and n represents
noise. Suppose also that we have some estimate on the mean and variance of
the noise. We then wish to obtain the "best" restored image. Our definition
of "best" must include an accurate treatment of edges, i.e., jumps.

A straightforward approach is just to invert this directly. If the Fourier
transform of J, j = F J, is nonvanishing, then we could try

- F-1(J'-1') U - Uo . (11.18)

This gives poor results, even in the absence of noise, because high
frequencies associated with edges will be amplified, leading to major spu
rious oscillations. Of course, the presence of significant noise makes this
procedure disastrous.

11.2. Total Variation-Based Image Restoration 101

Another approach might be to regularize this procedure. We could try
adding a penalty term to a minimization procedure; i.e., choose u to solve
the following constrained minimization problem:

mJn (IL J lV'ul2dD + IIJ * u - uolli2) , (11.19)

where 5.. = 1L-1 > 0 is often a Lagrange multiplier. The minimizer is

U=p-l (J(~1,6)uo(~1,6)),
1L(~r + ~~) + IJ(6, 6) 12

(11.20)

where IL can be chosen so that the variance of the noise is given; i.e., we
can choose IL so that

J IJ * u - uol2dO = 0'2 = J IJu - uol 2 dO, (11.21)

which is a simple algebraic equation for 5... Alternatively, IL could be a
coefficient in a penalty term and could be obtained by trial and error.
Obviously, this is a very simple and fast procedure, but the effect of it is
either to smear edges or to allow oscillations. This is because the space of
functions we are considering does not allow clean jumps.

Instead, the very simple idea introduced by Rudin et al. [142] is merely
to replace the power of 2 by a 1 in the exponent of lV'ul in equation (11.19).
Thus, TV restoration is

mJn (J lV'ul dD + 5..1iJ * u - uoll2) , (11.22)

where >. > 0 is a Langrange multiplier and we drop the L2 subscript in
the second term. This leads us to the nonlinear Euler-Lagrange equations
(assuming J(x) = J(-x) for simplicity only)

V' . C~~I) ->'J * (J * u - uo) = 0, (11.23)

where>. = 25... Of course, Fourier analysis is useless here, so the standard
method of solving this is to use gradient descent, i.e., to solve

Ut = V' . (V'u) - >'J * (J * u - uo)
lV'ul

(11.24)

for t > 0 to steady state with u(x, y, 0) given. Again>. may be a chosen so
as to satisfy equation (11.21), although the procedure to enforce this is a
bit more intricate. First we note that if the mean of the noise is zero, i.e.,
J ndD = 0 and J JdD = 1, it is easy to see that the constraint

J (J * u(x, y, t) - uo) dD = 0 (11.25)

102 11. Image Restoration

is satisfied for all t > 0 if it is satisfied at t = O. This is true regardless of
the choice of A.

In order to satisfy the second constraint, equation (11.21), we use a
version ofthe projection gradient method of Rosen [138] introduced in [142].
We note that a nonvariational version of this idea was used by Sussman and
Fatemi [158] to help preserve area for the level set reinitialization step; see
Chapter 7. If we wish to solve minuJ f(u) dO. such that J g(u) dO. = 0, we
start with a function Va such that J g(Va) dO. = O. Then gradient descent
leads us to the evolution equation

(11.26)

for t > 0 with u(O) = Va. We wish to maintain the constraint under the
flow, which means

:t J g(u) dO. = 0 = J guUt dO. = - J fugu dO. - A J g~dn; (11.27)

thus we merely choose A(t) such that

A(t) = _ J fugu dO.
J g~dn .

(11.28)

Thus we have

(11.29)

and

(11.30)

by Schwartz's inequality, so the function to be minimized diminishes
(strictly, if gu and fu are independent), and convergence occurs when u
is such that fu + Agu = 0 for some A. These ideas generalize to much more
complicated situations, e.g., many independent constraints. In our present
setting this leads us to choosing A in equation (11.24) as

(11.31)

Thus we have our TV denoisingjdeblurring algorithm given by equa
tions (11.24) and (11.31). Again, we repeat that in practice J.L is often
picked by the user to be a fixed constant. Another difficulty with using
equation (11.31) comes in the initialization. Recall that we need u(x,y,O)
to satisfy equation (11.25) as well as

(J * u(x,y,O) - ua)2 = a2. (11.32)

11.3. Numerical Implementation of TV Restoration 103

11.3 Numerical Implementation of TV Restoration

We now turn to the issue of fast numerical implementation of this method,
as well as its connection with the dynamic evolution of surfaces. The evolu
tion equation (11.24) has an interesting geometric interpretation in terms
of level set evolution. We can view this as a procedure that first moves
every level set of the function u with velocity equal to its mean curvature
divided by the norm of the gradient of u and then projects back onto the
constraint set, for which the variance of the noise is fixed. The first step has
the effect of removing high-curvature specks of noise, even in the presence
of steep gradients, and leaving alone piecewise smooth clean functions at
their jump discontinuities.

From a finite difference scheme point of view, the effect at edges is easy
to describe. Suppose we wish to approximate equation (11.24) for ,\ = O.
The equation can be written as

a (U x) a (u y)
Ut = ax J ui + u~ + 8 + oy J ui + u~ + 8 '

(11.33)

where 8 > 0 is very small, chosen to avoid division by zero at places
where lV'ul = O. There are serious numerical issues here involving time-step
restrictions. Intuitively, an explicit scheme should be restricted by

(11.34)

for a constant c, which is terribly restrictive near flat (zero) gradients.
A typical scheme might be

(11.35)

where

(11.36)
and

104 11. Image Restoration

for
1 1

ui+!,j = "2Ui,j + "2 U i+1,j,

1 1
(11.38)

U·· 1 = -U' . + -U' '+1 ',J+2 2 ',J 2 ',J .

This is a second-order accurate spatial discretization.
At steady state u~j1 == ui,j == Ui,j, and we can solve for ui,j' obtaining

the nonlinear relationship

Ci+!,jUi+1,j + Ci _!,jUi-1,j + Di,j+! Ui,j+1 + Di,j_! Ui,j-1
U· .---~~--~~--~~----~~~--~----~~-----
',J- C'+1'+C, 1 .+D"+1+D .. 1 '

1, 2,J 1,-2') 'L,j 2' 1"J-'2

(11.39)
i.e., Ui,j is a weighted convex combination of its four neighbors. This
smoothing is anisotropic. If, for example, there is a large jump from Ui,j

to Ui+1,j, then Ci +1/2,j is close to zero, and the weighting is done in an
almost WENO fashion. This helps to explain the virtues of TV denoising:
The edges are hardly smeared. Contrast this with the linear heat equation,
which at steady state yields

(11.40)

Severe smearing of edges is the result. For further discussion and
generalizations, see Chan et al. [31].

The explicit time-step restriction in equation (11.34) leads us to believe
that convergence to steady state might be slow, especially in the presence
of significant blur and noise. Many attempts have been made to speed
this up; see e.g., Chan et al. [30]. Another interesting observation is that
equation (11.24) scales in a strange way. If U is replaced by h(u), with
h' > 0, h(O) = 0, and h(255) = 255, then equation (11.24) even for A = ° is
not invariant. This means that the evolution process is not morphological;
see Alvarez et al. [5]; i.e., it does not depend only on the level sets of the
intensity, but on their values. One possible fix for these two problems is the
following simple idea introduced by Marquina and Osher [111].

We merely multiply the right-hand side of equation (11.24) by l'Vul and
drive this equation to steady state. The effect of this is beneficial in various
aspects. Although the steady states of both models are analytically the
same, since l'Vul vanishes only in flat regions, there are strong numerical,
analytical, and philosophical advantages of this newer model.

(1) The time-step restriction is now b.tj(b.X)2 :::; c for some c > 0, so
simple explicit-in-time methods can be used.

(2) We can use ENO or WENO versions of Roe's entropy-condition
violating scheme for the convection term (there is no viscosity or
entropy condition for images) and central differencing for the reg
ularized anisotropic diffusion (curvature) term. This seems to give

11.3. Numerical Implementation of TV Restoration 105

better numerical answers; the numerical steady states do not have
the staircasing effect sometimes seen in TV reconstruction; see, e.g.,
Chambolle and Lions [42J.

(3) In the pure denoising case, i.e., J * u == u, there is a simple maximum
principle (analytical as well as numerical).

(4) The procedure is almost morphological; i.e., if we replace u by h(v)
and Uo by h(vo) with h'(u) > 0, then the evolution is transformed as
follows:

Ut = l\7ul \7 . C~~I) - '\1\7uIJ * (J * u - uo) (11.41)

transforms to

Vt = l\7vl\7· C~~I) - '\1\7vIJ * (J * h(v) - h(vo)) (11.42)

i.e., we still have motion by mean curvature followed by the slightly
modified projection on the constraint set.

The maximum principle is a mixed blessing in this case. If J * u = u,
i.e., we are doing the pure denoising case, then the fact that extrema
are not amplified is a good thing, and we may take as the initial data
u(x, y, 0) = uo(x, y); i.e., the noisy image is a good initial guess. This is not
a good choice for the deblurring case. There we merely use the linear decon
volved approximation in equation (11.20) where 11 is chosen to match the
constraint equation (11.21). Although this introduces spurious oscillations
in the initial guess, they seem to disappear rapidly when equation (11.41)
is used.

An interesting feature of this new approach is that we can view the right
hand side of equation (11.41) as consisting of an elliptic term added to a
Hamilton-J acobi term. The elliptic term uses standard central differences,
while the Hamilton-Jacobi term is upwinded according to the direction
of characteristics. What is a bit unusual here is that there should be no
entropy fix in the approximate Hamiltonian. The viscosity criterion does
not apply, and Roe's entropy-violating scheme is used. For details see [111J.

To repeat, one consequence of this approach is that although the steady
states of equations (11.24) and (11.41) are the same, the numerical solutions
differ, and staircasing, as described in [42J, seems to be minimized using
equation (11.41).

We demonstrate the results of our improved algorithms with the following
experiments. Figure 11.1 shows a noisy piecewise linear one-dimensional
signal with a signal-to-noise ratio approximately equal to 3. Figure 11.2
shows the recovered signal wtih denoised edges, but also with staircasing
effects based on the original TV method developed in [142J. Figure 11.3
shows the improved result without staircase effects in the linear region; see
[111J.

106 11. Image Restoration

2~r-------'-------~--------r--------r-------.--------.

_50~-------L--------L-------~--------~------~--------J
o 50 100 200 250 300

Figure 11.1. Original versus noisy signal in one spatial dimension.

Figures 11.4 and 11.5 show an original image and a noisy (signal-to-noise
ratio approximately 3) image, respectively. Figure 11.6 shows the usual TV
recovered image, while Figure 11.7 uses the method in [111] and seems to
do better in recovering smooth regions.

Figure 11.8 represents an image blurred by a discrete Gaussian blur
obtained by solving the heat equation with Figure 11.4 as initial data and
computing the solution at t = 10 on a 128 x 128 grid. Figure 11.9 shows
the result of an approximate linear deconvolution. Note that in the absence
of noise the result is oscillatory but greatly improved. Figure 11.10 shows
the result of using Figure 11.9 as an initial guess for our improved TV
restoration. Notice the good resolution without spurious oscillations.

Our most demanding experiment was performed on the blurry and noisy
image obtained from the original image represented in Figure 11.11. The
experimental point-spread function j(x, y) is shown in Figure 11.12, and we
add Gaussian noise, signal-to-noise ratio approximately 5. The blurry noisy
image is shown in Figure 11.13. The linear recovery is shown in Figure 11.14.
Finally, the improved TV restoration using Figure 11.14 as initial guess is
shown in Figure 11.15.

11.3. Numerical Implementation of TV Restoration 107

150 300

Figure 11.2. TV recovery using the original method of Rudin et al. [142J.

108 11. Image Restoration

~OL-------~~---------100~-------1~~---------~~-------2~~--------~~

Figure 11.3. Improved TV recovery.

11.3. Numerical Implementation of TV Restoration 109

50 100 150 200 250

Figure 11.4. Original image.

110 11. Image Restoration

Figure 11.5. Noisy image, signal-to-noise ratio approximately equal to 3.

11.3. Numerical Implementation of TV Restoration 111

50 100 150 200 2!50

Figure 11.6. Usual TV recovered image.

112 11. Image Restoration

50

50 100 150 200 250

Figure 11.7. Improved TV recovered image.

11.3. Numerical Implementation of TV Restoration 113

50

50 100 150 200 250

Figure 11.8. Image blurred by convolution with a Gaussian kernel.

114 11. Image Restoration

50

100

150

200

50 100 150 200

Figure 11.9. Linear deconvolution applied to Figure 11.8.

11.3. Numerical Implementation of TV Restoration 115

Figure 11.10. Improved TV restoration of Figure 11.8 using Figure 11.9 as an
initial guess.

116 11. Image Restoration

Figure 11.11. Original image.

11.3. Numerical Implementation of TV Restoration 117

Figure 11.12. Experimental point-spread function.

50 100 150 200 2SO

Figure 11.13. Blurry noisy version of Figure 11.11.

118 11. Image Restoration

100 ISO 200 2SO

Figure 11.l4. Linear restoration of Figure 11.13.

SO 100 ISO 200 2SO

Figure 11.15. Improved TV restoration of Figure 11.13 using Figure 11.14 as an
initial guess.

12
Snakes, Active Contours, and
Segmentation

12.1 Introduction and Classical Active Contours

The basic idea in active contour models (or snakes) is to evolve a curve,
subject to constraints from a given image uo, in order to detect objects in
that image. Ideally, we begin with a curve around the object to be detected,
and the curve then moves normal to itself and stops at the boundary of the
object. Since its invention by Kass et al. [94] this technique has been used
both often and successfully. The classical snakes model in [94] involves an
edge detector, which depends on the gradient of the image uo, to stop the
evolving curve at the boundary of the object.

Let uo(x, y) map the square 0 :S x, y :S 1 into R, whereuo is the image
and C(I) : [0,1] --+ R2 is the parametrized curve. The snake model is to
minimize

F1(C) = a 11IC'(s)12 ds + (31IC"(s)1 ds - A 111V'uo(C(S)W ds, (12.1)

where a, (3, and A are positive parameters. The first two terms control the
smoothness of the contour, while the third attracts the contour toward the
object in the image (the external energy). Observe that by minimizing the
energy, we are trying to locate the curve at the points of maximum lV'uol,
which act as an edge detector, while keeping the curve smooth.

An edge detector can be defined by a positive decreasing function g(Z),
depending on the gradient of the image uo, such that

lim g(Z) = O.
1;1 00

120 12. Snakes, Active Contours, and Segmentation

A typical example is

g(\7UO(X)) = 1 + jJ ~ \7uolP

for p 2:: 1, where J is a Gaussian of variance (T.

Rather than using the energy defined in equation (12.1), we can define a
compact version as in Caselles et al. [28] or Kichenassamy et al. [95] via

(12.2)

Using the variational level set formulation of Zhao et al. [175], we arrive
at

4>t = 1\74>1\7 . [g(\7Uo) (I~:I)]
= 1\74>1 (g(\7UO)1\: + \7g(\7uo) . I~:I)
= 1\74>lg(\7uo)1\: + \7g(\7uo) . \74>.

(12.3)

This is motion of the curve with normal velocity equal to its curvature
times the edge detector plus convection in the direction that is the gradient
of the edge detector. Thus, the image gradient determines the location of
the snakes.

The level set formulation of this came after the original snake model was
invented in [94]. This was first done in Caselles et al. [27] (without the
convection term), next by Malladi et al. [109], and the variational formula
tion used above came in [28] and [95]. Of course, this level set formulation
allows topological changes and geometrical flexibility, and has been quite
successful in two and three spatial dimensions. Most models have the same
general form as equation (12.3), involving an edge detector times curvature
plus linear advection. The higher-order terms coming from the term multi
plying f3 in equations (12.1) and (12.2) are usually omitted. We note that
this model depends on the image gradient to stop the curve (or surface)
evolution.

In a sequence of papers beginning with Chan and Vese [35] (see also [34]
and [32]) the authors propose a different active contour model without a
stopping i.e. edge function, i.e., a model that does not use the gradient
of the image Uo for the stopping process. The stopping term is based on
the Mumford-Shah segmentation technique, which we describe below. The
model these authors develop can detect contours both with and without
gradients, for instance objects that are very smooth, or even have discon
tinous boundaries. In addition, the model and its level set formulation are
such that interior contours are automatically detected, and the initial curve
can be anywhere in the image.

12.2. Active Contours Without Edges 121

Figure 12.1. A simple case, showing that the fitting term E1(r) is minimized
when the curve is on the boundary of the object.

12.2 Active Contours Without Edges

Define the evolving curve r as the boundary of a region n. We call n the
inside of r and the complement of n = nc the outside of r. The method
is the minimization of an energy-based segmentation. Assume that Uo is
formed by two regions of approximately piecewise constant intensities of
distinct values ub and uS. Assume further that the object to be detected
is represented by the region with value ub. Denote its boundary by roo
Then we have Uo ~ ub inside ro and Uo ~ uS outside roo Now consider the
"fitting" term

where r is any curve and Gl , G2 are the averages of Uo inside rand
outside r. In this simple case it is obvious that ro, the boundary of the
object, is the minimizer of the fitting term. See Figure 12.1.

In the active contour model proposed in [35] and [34] the fitting term
plus some regularizing terms will be minimized. The regularizing terms will
involve the length of the boundary r and the area of n, the region inside r.
This is in the spirit of the Mumford-Shah functional [117]. Thus, using the
variational level set formulation [175], the energy can be written, with ¢

122 12. Snakes, Active Contours, and Segmentation

the level set function associated with n, as

E(C1 , C2 , ¢) = {.t j 6(¢)1V'¢1 dx

+vjH(¢)dX

+ Al j luo(x) - C1 12 H(¢) dx

+ A2 j luo(x) - C2 12 (1- H(¢)) dx.

This involves the four nonnegative parameters {.t, v, >'1, and A2.

(12.5)

The classical Mumford-Shah functional is a more general segmentation
defined by

EMS(r, u) = {.t length(r) (12.6)

+ A j lu - uol 2 dx

+ v { lV'ul2 dx. Jre
Here u is the cartoon image approximating uo, u is smooth except for jumps
on the set r of boundary curves, and r segments the image into piecewise
smooth regions. The method defined in equation (12.5) differs from that
in equation (12.6) in that only two subregions are allowed in which u is
piecewise constant, so we may write

(12.7)

This was generalized considerably by Chan and Vese [36, 37]. We also
mention the approach of Koepfl.er et al. [99], which approximates equa
tion (12.6) by letting v = 0 and A = 1, where {.t is the scale parameter.
Again, u is piecewise constant, although many constants are allowed; i.e.,
the averages of u will generally be different in different segments of the
image. The parameter {.t defines the scale for the method in the sense that
if {.t = 00, then the length of the boundaries should be minimized. So we
take u to be the average of Uo over the whole image; this is the coarsest
scale. If {.t = 0, then there is no penalty for length; each grid point (pixel) is
the average of uo, or just the value of Uo; and the segmentation u is equal
to the original image. As {.t increases the segmentation coarsens. This is the
idea behind the segmentation of [99]; it is a split and merge method, not a
partial differential equations-based approach, as in [36, 37].

Returning to the model in equation (12.5), it is easy to see that with
respect to the constants C1 and C2 it is easy to express these two in terms

12.2. Active Contours Without Edges 123

of cP as

C () _ J uo(1)H(cp(1)) d1
1 cP - J H (cp(1)) d1 '

(12.8)

C (,j.,) = J uo(1)(1 - H(cp(1)) d1
2 'f' J(1 - H(cp(1)) d1 .

(12.9)

This expresses the fact that the best constant value for the segment u is
just the average of Uo over the subregion.

In order to compute the Euler-Lagrange equations we use the variational
level set approach and arrive at

~~ =1\7cpl [1t\7. C~:I) -V-Al(UO-Cl)2+A2(UO-C2)2]

(12.10)

cp(1, 0) = CPo(1). (12.11)

However, it was found in [35, 34]' that the nonmorphological approach
was more effective; i.e., l\7cpl is replaced by 6€(cp) in the term multiplying
the brackets in equation (12.10). Here

(12.12)

for E > 0 and small, which gives a globally positive approximation to the
delta function. This is necessary, as we shall discuss below. Thus the model
defined in [35, 34] is

~~ =6€(cp) [1t\7. C~:I) -V-Al(UO-Cl?+A2(UO-C2)2] (12.13)

with C1 and C2 defined in equations (12.8) and (12.9). Generally, the pa
rameters are taken to be v = 0, Al = A2 = 1, and It > 0 is the scale
parameter. Although only two regions nand n c can be constructed, they
can, and generally will, be disconnected into numerous components in the
fine-scale case, with each component having one of two constant values
for u.

One important remark concerning this model as opposed to other level
set evolutions is its global nature. All level sets of cp have the potential to
be important. This means that other isocontours corresponding to nonzero
values of cp might evolve so as to push through the cp = 0 barrier and create
new segmented regions. Thus reinitialization to the distance function is
not a good idea here (as pointed out by Fedkiw). One can even begin with
cp > 0 or cp < 0 throughout the region and watch new zeros develop. Of
course, this also explains why we need 6€(z) > 0 in equation (12.12). Again,
the goal here is to detect interior contours. The technical reason why this
works is that the image Uo acts in a nontrivial and nonlinear way as a

124 12. Snakes, Active Contours, and Segmentation

forcing function on all the level contours of ¢, forcing some to go through 0
spontaneously.

The scale parameter should be small if we have to detect many objects,
including small objects. If we have to detect only large objects (for example
a cluster of lights), the scale parameter J.l should be larger. An extremely
trivial but slightly instructive analytic example is the following. Let J.l = 0
and .xl = .x2 = .x, so the finest-scale segmentation occurs; i.e., every point
should be a boundary point and u(i) = uo(i). That this does occur follows
from the evolution

(12.14)

so steady state can occur only if the average of Uo over [2 equals its aver
age over [2c (which is an unstable equilibrium) or if ¢ == 0, which is the
desired equilibrium. If we take J.l > 0 and take the limit as J.l - 0, we
believe intuitively that the u = Uo, ¢ == 0 solution is the stable limit, since
the curvature term will tend to move the boundaries when these averages
happen to be equal. Numerical experiments indicate that this is true, and
hence an infinite (actually as many as there are grid points) number of new
zero-level contours develop in a stable fashion.

12.3 Results

We illustrate in Figures 12.2, 12.3, 12.4 and 12.5 the main advantages of
this active contour model without edges [34]: detection of cognitive contours
(which are not defined by gradients) in Figure 12.2, detection of contours
in a noisy image in Figure 12.3, detection of interior contours automatically
and extension to three dimensions in Figures 12.4 and 12.5. Also, note that
the initial curve does not need to enclose the objects, as in the classical
snakes and as in active contour models based on the gradient-edge detector.

12.4 Extensions

As in the original Mumford-Shah functional [117] and the implementations
of [99] and [34], one may propose the use of other channels, e.g., replacing Uo
by the curvature of its level sets V' . (V'uo/IV'uol), or by their orientations
Uo = tan-1 ((uo)x/(uo)y), to do texture segmentation.

Chan et al. [32] extended the method to vector-valued images as fol
lows. Let UO,i be the ith channel of an image on the usual square region
with N channels and r the evolving curve. See [32] for examples of these
channels, which include color images. The extension to the vector case is

12.4. Extensions 125

straightforward. The level set evolution becomes

(12.15)

Here the Ct are the averages of UO,i on ¢ > 0 and ¢ < 0, respectively.
Another extension, again using only one level set function, involves re

moving the piecewise constant assumption and allowing piecewise-smooth
solutions to the variational problem, smooth inside each zero isocontour
of ¢, with jumps across the edges, as described in Chan and Vese [37]. This
is in the spirit of the original Mumford-Shah functional, although multi
ple junctions are not yet allowed; see below for that. The minimization
procedure is

where

F(u+, u-, ¢) = J lu+ - uol 2 H(¢)dff

+ J lu- - uoI2(1- H(¢))dff

+ v J lV'u+12 H(¢)dff

+ v f lV'u-1 2(1- H(¢))dff

+ /l J IV'H(¢)ldff.

The Euler-Lagrange equations for u+ and u- are

u+ - Uo = vAu+ on {ff I ¢(ff) > O}

8;: = 0 on {ff I ¢(ff) = O}
u- - Uo = vAu- on {ff I ¢(ff) < O}

8;: = 0 on {ff I ¢(ff) = O}.

(12.16)

(12.17)

(12.18)

(12.19)

(12.20)

(12.21)

These two sets of elliptic boundary value problems will have a smoothing
and denoising effect on the image, but only inside homogeneous regions, not
across edges. The Euler-Lagrange equations for ¢, using gradient descent

126 12. Snakes, Active Contours, and Segmentation

in artificial time, as usual, is

~~ = 8e«p) (JL\7 . C~~I) -Iu+ - uol2 + lu- - uol2 (12.22)

- vl\7u+12 + vl\7u-12).

The new numerical challenge is to obtain the numerical solution of the set
of elliptic boundary value problems in equations (12.18) to (12.21) for u
and u+ in multiply connected regions. This is done by first extending u- on
{x I ¢(x) > O} while retaining boundary conditions, and similarly for u+.
There are several methods suggested; see [37] for a brief description. (One
is the ghost fluid method of Fedkiw et al. [63].) See [37] for some interesting
results.

The last extension is to get several, or indeed many, different regions
corresponding to different level set functions. The idea is as follows. Based
on the four color theorem, we can "color" all regions in a partition using
only four colors such that any two adjacent regions have different colors.
Therefore, using two level set functions we can identify the four colors by
the four possibilities ¢i > 0, ¢i < 0, i = 1,2. This automatically gives a
segmentation of the image. However, as we shall see below, this modifies
the minimization problem a bit.

As above, the link between the four regions can be made by introducing
four functions u++, u+-, u-+, and u++ in an obvious fashion:

(12.23)

This gives us

U =u++ H(¢1)H(¢2) + u+-H(¢l)(l - H(¢2)) (12.24)

+ u-+(l - H(¢d)H(¢2) + u--(1- H(¢l)(l- H(¢2)).

The energy in level set formulation based on the Mumford-Shah functional
is

F(u, ¢) = j lu++ - uol2 H(¢dH(¢2) dx

+v jl\7u++ 12H(¢1)H(¢2)dX

+ j lu+- - uol2 H(¢l)(l - H(¢2)) dx

+ v j l\7u+-12 H(¢d(l - H(¢2)) dx

(12.25)

12.4. Extensions 127

+ J lu-+ - uo12(1 - H(¢>I))H(¢>2) dx

+ V J lY'u-+12(1 - H(¢>I))H(¢>2) dx

+ J lu-- - uo12(1 - H(¢>I))(1 - H(¢>2)) dx

+ v J lY'u--12(1- H(¢>I))(1- H(¢>2)) dx

+ It J IY'H(¢>I)I dx + It J IY'H(¢>2)I dx.

As the authors themselves note in [37], the last expression J I Y' H (¢>r) I dx+
J I Y' H (¢>2) I dx is not the length of the free boundary. However, it is certainly
between one and two times that quantity. Some segments are counted once,
some twice. However, this releases the Mumford-Shah functional from the
well-known restriction that only 120°-angle functions are possible, within
the class of multiple junctions. If one wishes to minimize the precise term
proportional to length in a multi phase problem, one can use the technique
involving constraints and more level set functions that was introduced by
Zhao et al. [175]. For the segmentation active contours problem described
here, this technique involving 2 (or [log2 n] if one does not use the four color
result and n is the number of separate regions desired) level set functions
seems to work quite well for the piecewise constant case (see [36]).

The Euler-Lagrange equations for the four u functions are as in the two
phase case which means that they decouple. The time-dependent coupled
gradient descent equations for ¢>1 and ¢>2 are easily solved with very simple
changes over the two-phase, one-¢> case.

In Figures 12.6 and 12.7 the vector-valued active contour model from
[32J is used, where objects are recovered from combined channels with
missing information in each channel. In Figures 12.9, 12.10, and 12.11,
the piecewise-constant four-phase segmentation model from [36J is used, as
a particular case of the piecewise-smooth four-phase model from [37J. A
similar result from [36J is shown in Figure 12.12, where triple junctions are
also detected in a color image, with the piecewise-constant segmentation
model using three level set functions.

128 12. Snakes, Active Contours, and Segmentation

Figure 12.2. Europe night-lights [34].

12.4. Extensions 129

Figure 12.3. Detection of the contours of a plane in a noisy environment [34].

130 12. Snakes, Active Contours, and Segmentation

Figure 12.4. Evolution of an active surface using the 3D version of the active
contour without edges from [33] on volumetric MRI brain data. We show here
only a 61 x 61 x 61 cube from the 3D calculations performed on a larger domain
containing the brain.

12.4. Extensions 131

Figure 12.5. Cross-sections of the previous 3D calculations showing the evolv
ing contour and the final segmentation on a slice of the volumetric image. We
illustrate here how interior boundaries are automatically detected.

132 12. Snakes, Active Contours, and Segmentation

Figure 12.6. Numerical results using the multichannel version of the active con
tour model without edges (from [32]) to detect the full contour of an airplane from
two channels. Note that channell has an occlusion, while channel 2 is noisy.

12.4. Extensions 133

Figure 12.7. Color image, its gray-level version, and the three RGB channels. (See
also color figure, Plate 3.)

134 12. Snakes, Active Contours, and Segmentation

Figure 12.8. Recovered objects without well-defined boundaries, using the multi
channel version of the active contour model without edges from [32] . The three
objects could not be recovered using only one channel or the intensity image.
(See also color figure , Plate 4.)

12.4. Extensions 135

.. . ..

Figure 12.9. Original and segmented images (top row); final segments (second
and third rows) [36J.

136 12. Snakes, Active Contours, and Segmentation

Figure 12.10. Evolution of the four-phase segmentation model using two level
set functions. Left: the evolving curves. Right: corresponding piecewise-constant
segmentations. Initially, we seed the image with small circles to speed up the
numerical calculation [36].

12.4. Extensions 137

.. "W . '0 .. ,~ ..
.... 1

----.. . ' .. '

Figure 12.11. Segmentation of an outdoor picture using two level set functions
and four phases. In the bottom row we show the four segments obtained [36].

138 12. Snakes, Active Contours, and Segmentation

Figure 12.12. Color picture with junctions. Three level set functions representing
up to eight regions. Six segments are detected. We show the final zero level sets
[36]. (See also color figure, Plate 5.)

13
Reconstruction of Surfaces from
Unorganized Data Points

13.1 Introduction

Surface reconstruction from an unorganized data set is very challenging.
The problem is ill-posed, i.e., there is no unique solution. Furthermore, the
ordering or connectivity of the data set and the topology of the real surface
can be rather complicated. A desirable reconstruction procedure should be
able to deal with complicated topology and geometry as well as noise and
nonuniformity of the data to construct a surface that is a good approxi
mation of the data set and has some smoothness (regularity). Moreover,
the reconstructed surface should have a representation and data structure
that is not only good for static rendering but also good for deformation,
animation, and other dynamic operations on surfaces.

For parametric surfaces such as NURBS (see Peigl and Tiller [128] or
Rogers [137]), the reconstructed surface is smooth, and the data set can
be nonuniform. However, this requires one to parameterize the data set
in a nice way such that the reconstructed surface is a graph in the pa
rameter space. The parameterization and patching can be difficult for
surface reconstruction from an arbitrary data set. Also, noise in the data is
difficult to deal with. Another popular approach is to reconstruct a trian
gulated surface using Delaunay triangulations and Voronoi diagrams. The
reconstructed surface is typically a subset of the faces of the Delaunay tri
angulations. A lot of work has been done along these lines (see, for example,
Amenta and Bern [6], Boissonat and Cazals [17], and Edelsbrunner [58]),
and efficient algorithms are available to compute Delaunay triangulations

140 13. Reconstruction of Surfaces from Unorganized Data Points

and Voronoi diagrams. Although this approach is more versatile in that
it can deal with more general data sets, the constructed surface is only
piecewise linear, and it is difficult to handle nonuniform and noisy data.
Furthermore, the tracking of large deformations and topological changes
can be difficult using explicit surfaces.

Recently, implicit surfaces, or volumetric representations, have attracted
significant attention. The traditional approach (see Bloomenthal et al. [16])
uses a combination of smooth basis function primitives such as blobs to
find a scalar function such that all data points are close to an isocontour
of that scalar function. This isocontour represents the constructed implicit
surface. However, computation costs are very high for large data sets, since
the construction is global, which results in solving a large linear system;
i.e., the basis functions are coupled together, and a single data point change
can result in globally different coefficients. This makes human interaction,
incremental updates, and deformation difficult. However, recently, Carr et
al. [26] used polyharmonic radial basis functions (RBF) to model large
data sets by a single RBF. The key new idea here is the use of the Fast
Multipole Method (FMM) of Greengard and Rokhlin [76] to greatly reduce
the storage and computational costs of the method. Another crucial idea is
the use of off-surface points on both sides of the point cloud. However, the
ability to interpolate curves and surface patches, the ability to do dynamic
deformation, the performance on coarse data sets, and the speed of the
method all seem to be inferior to the method we describe below. On the
other hand, the method proposed by [26] does give an analytic, grid-free
expression and exact control of the filtering error.

Zhao et al. [177, 176] proposed a new weighted minimal surface model
based on variational formulations. Only the unsigned distance function to
the data set is used, and the reconstructed surface is smoother than piece
wise linear. The formulation is a regularization that is adaptive to the local
sampling density that can keep sharp features if a local sampling condi
tion is satisfied. The method handles noisy as well as nonuniform data and
works well in three spatial dimensions.

13.2 The Basic Model

Let S denote a general data set, which can include data points, curves, and
pieces of surfaces. Define d(x) = dist(x, S) to be the distance function to S.
The following surface energy is defined for the variational formulation:

1

E(r) = [l dP(x) dS]", 1 '5. p '5. 00, (13.1)

where r is an arbitrary surface and ds is the surface area. The energy
functional is independent of parameterization and is invariant under ro-

13.2. The Basic Model 141

tation and translation. When p = 00, E(f) is the value of the distance
of the point i on f furthest from S. We take the local minimizer of our
energy functional, which mimics a weighted minimal surface or an elastic
membrane attached to the data set, to be the reconstructed surface.

The gradient flow of the energy functional in equation (13.1) is

! = - [[dP(i) dS] ~-~P-l(i) [\7d(i).N +~d(i)~] N, (13.2)

and the minimizer or steady-state solution of the gradient flow satisfies the
Euler-Lagrange equation

dP- 1 (i) [\7 d(i) . N + ~d(i)~] = O. (13.3)

We see a balance between the attraction \7d(i)· N and the surface tension
d(i)~. Moreover, the nonlinear regularization due to surface tension has a
desirable scaling d(i). Thus the reconstructed surface is more flexible in the
region where the sampling density is high and is more rigid in the region
where the sampling density is low. We start with an initial surface that
encloses all the data and follow the gradient flow in equation (13.2). When
p = 1, the surface energy defined in equation (13.1) has the dimension
of volume and the gradient flow in equation (13.2) is scale-invariant. In
practice we find that p = 1 is a good choice.

We use the same motion law for all level sets of the level set function,
which results in a morphological partial differential equation. The level set
formulation becomes

(13.4)

If the data contain noise, we can use a simple postprocessing for the
implicit surface. There are many ways to view this process, derived by
Whitaker [172], but perhaps the most relevant here is based on TV denois
ing of images described in Chapter 11. Consider 1>0, the level set function
whose zero isocontour is the surface we wish to smooth. Then we let
Uo = H(1)o) (H is the Heaviside function) be the noisy image, which we
input into the TV denoising algorithm. Then we minimize

where J.,l > 0 is the regularization parameter that balances between fidelity
and regularization. The variational level set method of Zhao et al. [175]
gives

(13.5)

and we take 1>0 as the initial guess.

142 13. Reconstruction of Surfaces from Unorganized Data Points

13.3 The Convection Model

The evolution equation (13.2) involves the mean curvature of the surface,
and it is a nonlinear parabolic equation. A time-implicit scheme is not
currently available. A stable time-explicit scheme requires a restrictive-time
step size, f).t = O(l:;x2). Thus it is desirable to have an efficient algorithm
to find a good approximation before we start the gradient flow for the
minimal surface. We propose the following physically motivated convection
model for this purpose.

If a velocity field is created by a potential field F, then if = -\7:F. In
our convection model the potential field is the distance function d(i) to
the data set S. This leads to the convection equation

~~ = \7d(i) . \7¢. (13.6)

For a general data set S, a particle will be attracted to its closest point
in S unless the particle is located an equal distance from two or more data
points. The set of equal distance points has measure zero. Similarly, points
on our surface, except those equal distance points, are attracted by their
closest points in the data set. The ambiguity at those equal distance points
is resolved by adding a small surface tension force, which automatically
exists as numerical viscosity in our finite difference schemes. Those equal
distance points on the curve or surface are dragged by their neighbors, and
the whole curve or surface is attracted to the data set until it reaches a
local equilibrium, which is a polygon or polyhedron whose vertices belong
to the data set as the viscosity tends to zero.

The convection equation can be solved using a time step f).t = O(l:;x),
leading to significant computational savings over typical parabolic f).t =
O(l:;x2) time-step restrictions. The convection model by itself very often
results in a good surface construction.

13.4 Numerical Implementation

There are three key numerical ingredients in our implicit surface recon
struction. First, we need a fast algorithm to compute the distance function
to an arbitrary data set on rectangular grids. Second, we need to find a good
initial surface for our gradient flow. Third, we have to solve time-dependent
partial differential equations for the level set function.

We can use an arbitrary initial surface that contains the data set such as
a rectangular bounding box, since we do not have to assume any a priori
knowledge for the topology of the reconstructed surface. However, a good
initial surface is important for the efficiency of our method. We start from
any initial exterior region that is a subset of the true exterior region. All
grid points that are not in the initial exterior region are labeled as interior
points. Those interior grid points that have at least one exterior neighbor

13.4. Numerical Implementation 143

are labeled as temporary boundary points. Then we use the following pro
cedure to march the temporary boundary inward toward the data set. We
put all the temporary boundary points in a heap-sort binary tree structure,
sorting according to distance values. Take the temporary boundary point
that has the largest distance (on the heap top) and check to see whether
it has an interior neighbor that has a larger or equal distance value. If it
does not have such an interior neighbor, turn this temporary boundary
point into an exterior point, take this point out of the heap, add all this
point's interior neighbors into the heap, and re-sort according to distance
values. If it does have such an interior neighbor, we turn this temporary
boundary point into a final boundary point, take it out of the heap, and
re-sort the heap. None of its neighbors are added to the heap. We repeat
this procedure on the temporary boundary points until the the maximum
distance of the temporary boundary points is smaller than some tolerance,
e.g., the size of a grid cell, which means that all the temporary boundary
points in the heap are close enough to the data set. Finally, we turn these
temporary boundary points into the final set of boundary points, and our
tagging procedure is finished. Since we visit each interior grid point at most
once, the procedure will be completed in no more than O(N log N) oper
ations, where log N comes from the heap-sort algorithm. Moreover, since
the maximum distance for the boundary heap is strictly decreasing, we can
prove that those interior points that have a distance no smaller than the
maximum distance of the temporary boundary heap at any time will re
main as interior points; i.e., there is a nonempty interior region when the
tagging algorithm is finished. We can also show that at least one of the
final boundary points is within the tolerance distance to the data set.

Starting from an arbitrary exterior region that is a subset of the final
exterior region, the furthest point on the temporary boundary is tangent to
a distance contour and does not have an interior point that is farther away.
The furthest point will be tagged as an exterior point, and the boundary
will move inward at that point. Now another point on the temporary bound
ary becomes the furthest point, and hence the whole temporary boundary
moves inward. After a while the temporary boundary is close to a distance
contour and moves closer and closer to the data set, following the distance
contours until the distance contours begin to break into spheres around
data points. The temporary boundary point at the breaking point of the
distance contour, which is equally distant from distinct data points, will
have neighboring interior points that have a larger distance. So this tem
porary boundary point will be tagged as a final boundary point by our
procedure, and the temporary boundary will stop moving inward at this
breaking point. The temporary boundary starts deviating from the distance
contours and continues moving closer to the data set until all temporary
boundary points either have been tagged as final boundary points or are
close to the data points. The final boundary is approximately a polyhedron
with vertices belonging to the data set.

144 13. Reconstruction of Surfaces from Unorganized Data Points

Figure 13.1 shows the reconstruction of a torus with missing data. The
hole is filled nicely with a patch of minimal surface. Figure 13.2 shows the
reconstruction of a rat brain from MRI data, which is both noisy and highly
nonuniform between slices. Next we show the reconstruction of a dragon on
a 300 x 212 x 136 grid using high-resolution data in Figure 13.3(a) and much
lower resolution data in figure 13.3(b). Figure 13.4 shows the reconstruction
of a statuette of the Buddha on two different grids using the same data set
composed of 543,652 points.

Other extensions are possible. Suppose we are given values of the normal
to the surface at the same or different set S' of points. The first step,
analogous to the fast computation of unsigned distance, is to construct
a unit vector defined throughout the grid that interpolates this set. One
possibility involves the construction of a harmonic map, which is easier
than in sounds using any of the techniques developed by Vese and Osher
[170], Alouges [4], E and Wang [57], or Tang et al. [162]. Given this unit
vector N(5J) we add to our energy E(r) another quantity cE'(f), where
c > 0 is a constant whose dimension is length,

P 1.

E'(f) = ([(1- N· C~:I)) dS) P (13.7)

Again using our variational level set calculus, we see that the gradient
descent evolution associated with equation (13.7) is

(13.8)

for p = 1. See Burchard et al. [21].

13.4. Numerical Implementation 145

(a) data points (b) reconstruction (c) reconstruction

Figure 13.1. Hole-filling for a torus.

(a) data points (b) initial guess (c) final reconstruction

Figure 13.2. Reconstruction of a rat brain from data of MRI slices.

(a) 437,645 points (b) 100,250 points

Figure 13.3. Reconstruction of a dragon using data sets of different resolution on
a 300 x 212 x 136 grid.

146 13. Reconstruction of Surfaces from Unorganized Data Points

(a) 146x350x146 grid (b) 63x150x64 grid

Figure 13.4. Reconstruction of a "Happy Buddha" from 543,652 data points on
different grid resolutions.

95

90

85

80

>- 75

70

65

60

55
~ ~ ~ • ~ ~ 60 65 ro

x

Plate l. (Figure 9.5). Initial
placement of both types of
particles on both sides of the
interface.

95

90

85

80

>- 75

70

65

60

55~ ~ 40 45 ~ 55 60
x

65 70

Plate 2. (Figure 9.5).
Particle positions after the
initial attraction step is used
to place them on the appro
priate side of the interface.

Plate 3 (Figure 12.7). Color image, its gray-level version,
and the three RGB channels.

••. ~~.~ . ' . . .
, .,

·'0·'·,· ~ , '.
. :;

o
Plate 4 (Figure 12.8). Recovered objects without well
defined boundaries, using the multi-channel version of the
active contour model without edges from [32]. The three
objects could not be recovered using only one channel or
the intensity image .

Plate 5 (Figure 12.12) . Color picture with junctions. Three
level sct functions rcpresenting up to eight regions. Six seg
ments are detected. We show the final zero level sets [36] .

3

2.5

2

1.5

log(den)

0.5 ~
0

- 0.5 ,......-

0 2 4 6

entropy

x 105

12

10 I

" 8 ~

6

4

2

0

0 2 4 6

vel

0 -

500

1000

1500

2000

8 10 0 2 4 6 8 10

press

x 107

6

5

4

3

2

8 10 o 2 4 6 8 10

Plate 6 (Figure 15.9). The gamma-law gas is depicted in
red, while the stiff Tait equation of state water is depicted
in green. Note that the log of the density is shown, since
the density ratio is approximately 1000 to 1. This calcula~
tion uses only 100 grid cells.

3

2.5

2

1.5

log(den)

0.5 ~

vel

500

1000 ,

1500

o 2000 ,

- 0.5 ,--..-

o 2 4 6 8 10

entropy

X 105
12

10 1 ~
8 '

6

4

2

o

o 2 4 6 8 10

o 2 4 6 8 10

press

5

4

3

2

-0 ---'

o 2 4 6 8 10

Plate 7 (Figure 15.10). This is the same calculation as in
Figure 15.9, except that 500 grid cells are used.

log(den) vel

3 500 ---/

2.5 400

2 300

200
1.5

100

1~
0

0 2 4 6 8 10 0 2 4 6 8 10

entropy press
x 104 X 106

10 '- 10 ---9

8 8

7
6 6

5
4

4

2 3

0 ~~
0 2 4 6 8 10 0 2 4 6 8 10

Plate 8 (Figure 15.11). In this calculation two interfaces are
present , since the air surrounds the water on both sides.
This calculation uses only 100 grid cells.

log (den) vel

3 500 ----
2.5 400

2 300

200
1.5

100

01
o 2 4 6 8 10 o 2 4 6 8 10

entropy press

10 __ _ 10· ----
8 8

6 6

4 4

2

o

o 2 4 6 8 10
o o 2 4 6 8 10

Plate 9 (Figure 15.12). This is the same calculation as in
Figure 15.11, except that 500 grid cells are used.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Plate 10 (Figure 17.1). A shock wave propagating through a
gas bounded on top and bottom by Lagrangian materials
with strength.

Plate 11 (Figure 18.1) . A warm smoke plume injected from
left to right rises under the influence of buoyancy.

Plate 12. (Figure 18.2). Small-scale eddies are generated as
smoke flows past a sphere.

I - r' ~ f J) ". ' • ~ " -. • • ••

.. • .Jtt..'~
,;.J ' .' _

~ .--- ~ --- - ~-~""""-"''''---~-----~-

Plate 13. (Figure 19.1). A splash is generated as a sphere is
thrown into the water.

, -' . -, '.. ..~-
~

I ~. .~

~ • • • '! -- ~~ ,f~.

-... _. ':.' ";"~

I .. . ~.

Plate 14. (Figure 19.2). An interesting spray effect is gener
ated as a slightly submerged ellipse slips through the water.

Plate 15. (Figure 19.3). A thin water sheet is generated by
a sphere thrown into the water.

Plate 16 (Figure 19.4). Pouring water into a cylindrical
glass using the particle level set method.

Plate 17. (Figure 19.5). Pouring water into a cylindrical
glass using the particle level set method.

Plate 18. (Figure 20.1). An incompressible droplet traveling
to the right in a compressible gas flow. Note the lead shock
wave.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

velocity field ,

o .
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Plate 19. (Figure 20.2). A shock wave impinging on an
incOlnpressible droplet producing a reflected wave and a
(very) weak transmitted wave.

Plate 20. (Figure 21.2). A water drop falls through the air
into the water. Surface tension forces cause the spherically
shaped region at the top of the water jet in the last frame.

Plate 21. (Figure 22.4). Typical blue cores rendered using
the zero isocontour of the level set function.

Plate 22. (Figure 22.5). The density ratio of the unburnt to
burnt gas is increased from left to right, illustrating the
effect of increased expansion.

Plate 23. (Figure 22.6). A flammable ball catches on fire as
it passes through a flame.

Plate 24. (Figure 22.7). Campfire with realistic lighting of
the surrounding rocks.

Part IV

Computational Physics

While the field of computational fluid dynamics is quite broad, a large por
tion of it is dedicated to computations of compressible flow, incompressible
flow, and heat flow. In fact, these three classes of problems can be thought
of as the basic model problems for hyperbolic, elliptic, and parabolic par
tial differential equations. Volumes have been filled with both broad and
detailed work dedicated to these important flow fields; see, for example,
[86], [87], [7], [8], and the references therein. One might assume that there
is little left to add to the understanding of these problems. In fact, many
papers are now concerned with smaller details, e.g., the number of grid
points in a shock wave or contact discontinuity. Other papers are devoted
to rarely occurring pathologies, e.g., slow-moving shock waves and shock
overheating at solid wall boundaries.

One area where significant new ideas are still needed is multicomponent
flow, for example, multicomponent compressible flow where different flu
ids have different equations of state, multicomponent incompressible flow
where different fluids have different densities and viscosities with surface
tension forces at the interface, and Stefan-type problems where the individ
ual materials have different thermal conductivities. These problems have
interfaces separating the different materials, and special numerical tech
niques are required to treat the interface. The most commonly used are
front tracking, volume of fluid, and level set methods. In the next three
chapters we discuss the use of level set methods for the canonical equations
of computational fluid dynamics.

The first chapter discusses basic one-phase compressible flow, and the
subsequent chapter shows how the level set method can be used for two
phase compressible flow problems where the equations of state differ across
the interface. Then, the use of level set techniques for deflagration and det
onation discontinuities is discussed in the third chapter. The fourth chapter
introduces techniques for coupling an Eulerian grid to a Lagrangian grid.
This is useful, for example, in compressible solid/fluid structure problems.
After this, we turn our attention to incompressible flow with a chapter
focused on the basic one-phase equations including a computer graphics
simulation of smoke, a chapter on level set techniques for free surface flows

148

including a computer graphics simulation of water, and finally a chapter on
fully two-phase incompressible flow. We wrap up this incompressible flow
material with a chapter on incompressible flames, including applications in
computer graphics, and a chapter on techniques for coupling a compressible
fluid to an incompressible fluid. Finally, we turn our attention to heat flow
with a chapter discussing the heat equation and a chapter discussing level
set techniques for solving Stefan problems.

14
Hyperbolic Conservation Laws and
Compressible Flow

We begin this chapter by addressing general systems of hyperbolic conserva
tion laws including numerical techniques for computing accurate solutions
to them. Then we discuss the equations for one-phase compressible flow as
an example of a system of hyperbolic conservation laws.

14.1 Hyperbolic Conservation Laws

A continuum physical system is described by the laws of conservation of
mass, momentum, and energy. That is, for each conserved quantity, the rate
of change of the total amount in some region is given by its flux (convective
or diffusive) through the region boundary, plus whatever internal sources
exist. The integral form of this conservation law is

dd [u dV + [f(u) . dA = [s(u) dV
t in ian in (14.1)

where u is the density of the conserved quantity, /(u) is the flux, and s(u)
is the source rate. By taking n to be an infinitesimal volume and applying
the divergence theorem, we get the differential form of the conservation
law,

au -at + V' . f(u) = s(u), (14.2)

which is the basis for the numerical modeling of continuum systems. A
physical system can be described by a system of such equations, i.e., a

150 14. Hyperbolic Conservation Laws and Compressible Flow

system of conservation laws. These also form the basis for their numerical
modeling.

A conserved quantity, such as mass, can be transported by convective
or diffusive fluxes. The distinction is that diffusive fluxes are driven by
gradients, while convective fluxes persist even in the absence of gradi
ents. For most flows where compressibility is important, e.g., flows with
shock waves, one needs to model only the convective transport and can ig
nore diffusion (mass diffusion, viscosity and thermal conductivity) as well
as the source terms (such as chemical reactions, atomic excitations, and
ionization processes). Moreover, convective transport requires specialized
numerical treatment, while diffusive and reactive effects can be treated with
standard numerical methods, such as simple central differencing, that are
independent of those for the convective terms. Stiff reactions, however, can
present numerical difficulties; see, for example, Colella et al. [50]. Conserva
tion laws with only convective fluxes are known as hyperbolic conservation
laws. A vast array of physical phenomena are modeled by such systems,
e.g., explosives and high-speed aircraft.

The important physical phenomena exhibited by hyperbolic conserva
tion laws are bulk convection, waves, contact discontinuities, shocks, and
rarefactions. We briefly describe the physical features and mathematical
model equations for each effect, and most importantly note the implica
tions they have on the design of numerical methods. For more details on
numerical methods for conservation laws, see, e.g., LeVeque [105] and Toro
[164].

14.1.1 Bulk Convection and Waves

Bulk convection is simply the bulk movement of matter, carrying it from
one spot to another, like water streaming from a hose. Waves are small
amplitude smooth disturbances that are transmitted through the system
without any bulk transport like ripples on a water surface or sound waves
through air. Whereas convective transport occurs at the gross velocity
of the material, waves propagate at the "speed of sound" in the system
(relative to the bulk convective motion of the system). Waves interact by
superposition, so that they can either cancel out (interfere) or enhance each
other.

The simplest model equation that describes bulk convective transport is
the linear convection equation

Ut + v· 'Vu = 0, (14.3)

where v is a constant equal to the convection velocity. The solution to this
is simply that u translates at the constant speed v. This same equation can
also be taken as a simple model of wave motion if u is a sine wave and v is
interpreted as the speed of sound. The linear convection equation is also an
important model for understanding smooth transport in any conservation

14.1. Hyperbolic Conservation Laws 151

law. As long as f is smooth and u has no jumps in it, the general scalar
conservation law

Ut + '\1. feu) = 0 (14.4)

can be rewritten as

Ut + leu) . '\1u = 0, (14.5)

where l (u) acts as a convective velocity. That is, locally in smooth parts
of the flow, a conservation law behaves like bulk convection with velocity
J'{u). This is called the local characteristic velocity of the flow.

Bulk convection and waves are important because they imply that sig
nals propagate in definite directions at definite speeds. This is in contrast
to diffusion, which propagates signals in all directions at arbitrarily large
speeds depending on the severity of the driving gradients. Thus we antici
pate that suitable numerical methods for hyperbolic systems will also have
directional biases in space, which leads to the idea of upwind differencing
and a definite relation between the space and time steps (discrete propa
gation speed), which will roughly be that the discrete propagation speed
Ax / At must be at least as large as the physical propagation speeds (char
acteristic speeds) in the problem. The general form of this relation is called
the Courant-Friedrichs-Lewy (CFL) restriction.

Wave motion and bulk convection do not create any new sharp features
in the flow. The other remaining phenomena are all special because they
involve discontinuous jumps in the transported quantities. Because smooth
features can be accurately represented by a polynomial interpolation, we
expect to be able to develop numerical methods of extremely high accuracy
for the wave and convective effects. Conversely, since jump functions are
poorly represented by polynomials, we expect little accuracy and perhaps
great difficulty in numerically approximating the discontinuous phenomena.

14.1.2 Contact Discontinuities

A contact discontinuity is a persistent discontinuous jump in mass density
moving by bulk convection through a system. Since there is negligible mass
diffusion, such a jump persists. These jumps usually appear at the point
of contact of different materials; for example, a contact discontinuity sep
arates oil from water. Contacts move at the local bulk convection speed,
or more generally the characteristic speed, and can be modeled by using
step-function initial data in the bulk convection equation (14.3). Since con
tacts are simply a bulk convection effect, they retain any perturbations
they receive. Thus we expect contacts to be especially sensitive to numeri
cal methods; i.e., any spurious alteration of the contact will tend to persist
and accumulate.

152 14. Hyperbolic Conservation Laws and Compressible Flow

14.1.3 Shock Waves

A shock is a spatial jump in material properties, like pressure and tem
perature, that develops spontaneously from smooth distributions and
then persists. The shock jump is self-forming and also self-maintaining.
This is unlike a contact discontinuity, which must be put in the sys
tem initially and will not resharpen itself if it is smeared out by some
other process. Shocks develop through a feedback mechanism in which
strong impulses move faster than weak ones, and thus tend to steepen
themselves up into a "step" profile as they travel through the system. Fa
miliar examples are the "sonic boom" of a jet aircraft and the "bang"
from a gun. These sounds are our perceptions of a sudden jump in air
pressure.

The simplest model equation that describes shock formation is the one
dimensional Burgers' equation

(14.6)

which looks like the convection equation (14.3) with a nonconstant convec
tive speed of u, i.e., Ut + UUx = O. Thus larger U values move faster, and
they will overtake smaller values. This ultimately results in the develop
ment of, for example, a right-going shock if the initial data for u constitute
any positive, decreasing function.

Shocks move at a speed that is not simply related to the bulk flow speed
or characteristic speed, and they are not immediately evident from exam
ining the flux, in contrast to contacts. Shock speed is controlled by the
difference between influx and outflux of conserved quantity into the region.
Specifically, suppose a conserved quantity u with conservation law

Ut + f(u)x = 0 (14.7)

has a step function profile with constant values extending both to the left,
UL, and to the right, UR, with a single shock jump transition in between
moving with speed s. Then the integral form of the conservation law (14.1),
applied to any interval containing the shock, gives the relation

(14.8)

which is just another statement that the rate at which U appears, s(UR -

UL), in the interval of interest is given by the difference in fluxes across
the interval. Thus we see that the proper speed of the shock is directly
determined by conservation of U via the flux f. This has an important
implication for numerical method design; namely, a numerical method will
"capture" the correct shock speeds only if it has "conservation form," i.e.,
if the rate of change of u at some node is the difference of fluxes that are
accurate approximations of the real flux f.

14.1. Hyperbolic Conservation Laws 153

The self-sharpening feature of shocks has two implications for numerical
methods. First, it means that even if the initial data are smooth, steep
gradients and jumps will form spontaneously. Thus, our numerical method
must be prepared to deal with shocks even if none are present in the ini
tial data. Second, there is a beneficial effect from self-sharpening, because
modest numerical errors introduced near a shock (smearing or small os
cillations) will tend to be eliminated, and will not accumulate. The shock
is naturally driven toward its proper shape. Because of this, computing
strong shocks is mostly a matter of having a conservative scheme in order
to get their speed correct.

14.1.4 Rarefaction Waves

A rarefaction is a discontinuous jump or steep gradient in properties that
dissipates as a smooth expansion. A common example is the jump in air
pressure from outside to inside a balloon, which dissipates as soon as the
balloon is burst and the high-pressure gas inside is allowed to expand.
Such an expansion also occurs when the piston in an engine is rapidly
pulled outward from the cylinder. The expansion (density drop) associated
with a rarefaction propagates outward at the sound speed of the system,
relative to the underlying bulk convection speed. A rarefaction can be
modeled by Burgers' equation (14.6) with initial data that start out as
a steep increasing step. This step will broaden and smooth out during the
evolution.

A rarefaction tends to smooth out local features, which is generally ben
eficial for numerical modeling. It tends to diminish numerical errors over
time and make the solution easier to represent by polynomials, which form
the basis for our numerical representation. However, a rarefaction often
connects to a smooth (e.g., constant) solution region and this results in
a "corner," which is notoriously difficult to capture accurately. The main
numerical problem posed by rarefactions is that of initiating the expansion.
If the initial data is are perfect, symmetrical step, such as u(x) = sign(x),
it may be "stuck" in this form, since the steady-state Burgers' equation is
satisfied identically (Le., the flux u2 /2 is constant everywhere, and similarly
in any numerical discretization). However, local analysis can identify this
stuck expansion, because the characteristic speed u on either side points
away from the jump, suggesting its potential to expand. In order to get
the initial data unstuck, a small amount of smoothing must be applied to
introduce some intermediate-state values that have a nonconstant flux to
drive expansion. In numerical methods this smoothing applied at a jump
where the effective local velocity indicates expansion should occur is called
an "entropy fix," since it allows the system to evolve from the artificial
low entropy initial state to the proper increased entropy state of a free
expansion.

154 14. Hyperbolic Conservation Laws and Compressible Flow

14.2 Discrete Conservation Form

To ensure that shocks and other steep gradients are captured by the scheme,
i.e., that they move at the right speed even if they are unresolved, we must
write the equation in a discrete conservation form. That is, a form in which
the rate of change of conserved quantities is equal to a difference of fluxes.
This form guarantees that we discretely conserve the total amount of the
states u (e.g., mass, momentum, and energy) present, in analogy with the
integral form given by equation (14.1). More important, this can be shown
to imply that steep gradients or jumps in the discrete profiles propagate at
the physically correct speeds; see, for example, LeVeque [105].

Usually, conservation form is derived for control volume methods, that
is methods that evolve cell average values in time rather than nodal values.
In this approach, a grid node Xi is assumed to be the center of a grid cell
(Xi-l/2, Xi+l/2), and we integrate the conservation law (14.7) across this
control volume to obtain

(14.9)

where u is the integral of u over the cell, and Ui±1/2 are the (unknown)
values of u at the cell walls. This has the desired conservation form in that
the rate of change of the cell average is a difference of fluxes. The difficulty
with this formulation is that it requires transforming between cell averages
of u (which are directly evolved in time by the scheme) and cell wall values
of u (which must be reconstructed) to evaluate the needed fluxes. While this
is manageable in one spatial dimension, in higher-dimensional problems the
series of transformations necessary to convert the cell averages to cell wall
quantities becomes increasingly complicated. The distinction between cell
average and midpoint values can be ignored for schemes whose accuracy
is no higher than second order (e.g., TVD schemes), since the cell average
and the midpoint value differ by only O(b.x2).

Shu and Osher [150, 151] proposed a fully conservative finite difference
scheme on uniform grids that directly evolves nodal values (as opposed
to the cell average values) forward in time. They defined a numerical flux
function F by the property that the real flux divergence is a finite difference
of numerical fluxes

f(u)x = F(x + b.x/2) - F(x - b.x/2)
b.x

(14.10)

at every point x. We call F the numerical flux, since we require it in our
numerical scheme, and also to distinguish it from the closely related "phys
ical flux" f(u). It is not obvious that the numerical flux function exists, but
from relationship (14.10) one can solve for its Taylor expansion to obtain

(b.x)2 7(b.X)4
F = f(u) - 24 f(u)xx + 5760 f(u)xxxx - ... , (14.11)

14.3. ENO for Conservation Laws 155

which shows that the physical and numerical flux functions are the same
to second-order accuracy in Llx. Thus, a finite difference discretization can
be based on

Ut + F(x + Llx/2) - F(x - Llx/2) = °
Llx

(14.12)

to evolve point values of U forward in time using numerical flux functions F
at the cell walls.

14.3 ENO for Conservation Laws

14.3.1 Motivation

Essentially nonoscillatory (EN 0) methods were developed to address the
special difficulties that arise in the numerical solution of systems of non
linear conservation laws. Numerical methods for these problems must be
able to handle steep gradients, e.g., shocks and contact discontinuities,
that may develop spontaneously and then persist in these flows. Classical
numerical schemes had a tendency either to produce large spurious oscil
lations near steep gradients or to greatly smear out both these gradients
and the fine details of the flow. The primary goal of the ENO effort was
to develop a general-purpose numerical method for systems of conservation
laws that has high accuracy (e.g., third order) in smooth regions and cap
tures the motion of unresolved steep gradients without creating spurious
oscillations and without the use of problem-dependent fixes or tunable pa
rameters. The philosophy underlying the ENO methods is simple: When
reconstructing a profile for use in a convective flux term, one should not
use high-order polynomial interpolation across a steep gradient in the data.
Such an interpolant would be highly oscillatory and ultimately corrupt the
computed solution. ENO methods use an adaptive polynomial interpola
tion constructed to avoid steep gradients in the data. The polynomial is also
biased to use data from the direction of information propagation (upwind)
for physical consistency and stability.

The original ENO schemes developed by Harten et al. [81] were based
on the conservative control volume discretization of the equations, which
yields discrete evolution equations for grid cell averages of the conserved
quantities, e.g. mass, momentum, and energy. This formulation has the
disadvantage of requiring complicated transfers between cell averages and
cell center nodal values in the algorithm. In particular, the transfer pro
cess becomes progressively more complicated in one, two, and three spatial
dimensions. The formulation also results in space and time discretizations
that are coupled in a way that becomes complicated for higher-order accu
rate versions. To eliminate these complications, Shu and Osher [150, 151]
developed a conservative finite difference form of the ENO method that uses

156 14. Hyperbolic Conservation Laws and Compressible Flow

only nodal values of the conserved variables. Their method is faster and eas
ier to implement than the cell-averaged formulation. In addition, the finite
difference ENO method extends to higher dimensions in a dimension-by
dimension fashion, so that the one-dimensional method applies unchanged
to higher-dimensional problems. We emphasize that this is not dimensional
splitting in time, which has accuracy limitations unlike the dimension-by
dimension approach. Shu and Osher also use the method of lines for time
integration, decoupling the time and space discretizations.

We consider the treatment of a one-dimensional contact discontinuity
to illustrate how the method works. Assuming that the time evolution
takes place exactly, each time step At should rigidly translate the spatial
profile by the amount vAt as governed by equation (14.3). Spatially, the
contact is initially represented by a discrete step function, i.e., nodal values
that are constant at one value UL on nodes Xl, ... , X J, and constant at a
different value U R on all remaining nodes X J +1, ... , X N. To update the
value Ui in time at a given node Xi, we first reconstruct the graph of a
function u(x) near Xi by interpolating nearby nodal U values, shift that
u(x) graph spatially by vAt (the exact time evolution), and then reevaluate
it at the node Xi to obtain the updated Ui. We require our local interpolant
be smooth at the point Xi, since in actual practice we are going to use it to
evaluate the derivative term U x there. The simplest symmetric approach to
smooth interpolation near a node Xi is to run a parabola through the nodal
data at Xi-I, Xi, and Xi+l. This interpolation is an accurate reconstruction
of u(x) in smooth regions, where it works well. However, near the jump
between XJ and XJ+l the parabola will significantly overshoot the nodal U

data by an amount comparable to the jump UL - UR, and this overshoot
will show up in the nodal values once the shift is performed. Successive
time steps will further enhance these spurious oscillations. This approach
corresponds to standard central differencing.

To avoid the oscillations from parabolic interpolation, we could instead
use a smooth linear interpolation near Xi, noting that there are two linear
interpolants to choose from, namely the line through the data at nodes Xi

and Xi-I, and the line through the data at Xi and xi+ 1. The direction of in
formation propagation determines which should be used. If the convection
speed v is positive, the data are moving from left to right, and we use Xi

and Xi-I. This linear interpolation based on upwind nodes will not intro
duce any new extrema in U as long as the shift vAt is less than the width
of the interval Ax = Xi - Xi-I, which is exactly the CFL restriction on the
time step. The main problem with the linear upwind biased interpolant is
that it has low accuracy smearing out the jump over more and more nodes.
If we naively go to higher accuracy by using a higher-order upwind biased
interpolant, such as running a parabola through Xi, Xi-I, and Xi-2 to ad
vance Ui, we run into the spurious oscillation problem again. In particular,
at nodes XJ+I and XJ+2, this upwind parabola will interpolate across the
jump and thus have large overshoots. By forcing the parabola to cross a

14.3. ENO for Conservation Laws 157

jump, it no longer reflects the data on the interval that will be arriving at
xJ+1 (or XJ+2) during the next time step.

The motivation for ENO is that we must use a higher-degree polynomial
interpolant to achieve more accuracy, and it must involve the immediate up
wind node to properly represent the propagation of data. But we must also
avoid polluting this upwind data with spurious oscillations that come from
interpolating across jumps. Thus, the remaining interpolation nodes (after
the first upwind point) are chosen based on smoothness considerations. In
particular, this approach will, if at all possible, not run an interpolant across
a jump in the data. However, very small interpolation overshoots do occur
near extrema in the nodal data, as they must, since any smooth function
will slightly overshoot its values as sampled at discrete points near extrema.
This is the sense in which the method is only essentially nonoscillatory.

14.3.2 Constructing the Numerical Flux Function

We define the numerical flux function through the relation

f(.) - Fi+l/2 - F i - 1/ 2
U~ x - Dox (14.13)

as in equation (14.12). To obtain a convenient algorithm for computing this
numerical flux function, we define hex) implicitly through the equation

1 l x +£::"X/2
f(u(x)) = -;;::- h(y) dy, (14.14)

uX x-£::"x/2

and note that taking a derivative on both sides of this equation yields

f(()) - hex + 6x/2) - hex - 6x/2)
u x x - 6x ' (14.15)

which shows that h is identical to the numerical flux function at the cell
walls. That is, F i ±1/2 = h(Xi±1/2) for all i. We calculate h by finding its
primitive

H(x) = r hey) dy
} X-l/2

(14.16)

using polynomial interpolation, and then take a derivative to get h. Note
that we do not need the zeroth-order divided differences of H that vanish
with the derivative.

The zeroth order divided differences, D?+1/2 and all higher-order even
divided differences of H exist at the cell walls and have the subscript i±1/2.
The first order divided differences D} and all higher-order odd divided
differences of H exist at the grid points and will have the subscript i. The
first-order divided differences of Hare

D}H = H(Xi+1/2);;:(Xi- 1/2) = f(U(Xi)), (14.17)

158 14. Hyperbolic Conservation Laws and Compressible Flow

where the second equality sign comes from

lX
i+1 /2 i (lXj+1 / 2)

H(Xi+1/2) = X_l/2 h(y) dy = ~ Xj-l/2 h(y) dy (14.18)

i

= 6x Lf(u(xj)), (14.19)
j=O

and the higher divided differences are

D2 H - f(U(Xi+l)) - f(U(Xi)) - ~Dl f
i+l/2 - 26x - 2 i+1/2 , (14.20)

3 1 2
DiH='3Dd, (14.21)

continuing in that manner.
According to the rules of polynomial interpolation, we can take any path

along the divided difference table to construct H, although not all paths
give good results. ENO reconstruction consists of two important features.
First, choose D} H in the upwind direction. Second, choose higher-order
divided differences by taking the smaller in absolute value of the two pos
sible choices. Once we construct H(x), we evaluate H'(Xi+l/2) to get the
numerical flux Fi+l/2'

14.3.3 ENO-Roe Discretization (Third-Order Accurate)

For a specific cell wall, located at Xio+l/2, we find the associated numerical
flux function Fio+1/2 as follows. First, we define a characteristic speed
Aio+l/2 = !'(Uio+l/2), where Uio+1/2 = (Uio + Uio+l)/2 is defined using a
standard linear average. Then, if Aio+l/2 > 0, set k = io. Otherwise, set
k = io + 1. Define

(14.22)

If IDLl/2HI :::; ID~+1/2HI, then c = DLl/2H and k* = k -1. Otherwise,

c = D~+1/2H and k* = k. Define

Q2(X) = c(x - Xk-l/2)(X - Xk+1/2)' (14.23)

If ID~*HI :::; ID~*+lHI, then c* = D~*H. Otherwise, c* = D~*+lH. Define

Q3(X) = c*(x - Xk*-1/2)(X - Xk*+1/2)(X - Xk*+3/2)' (14.24)

Then

F io+1/ 2 = H'(Xio+l/2) = Q~ (Xio+l/2)+Q;(Xio+1/2)+Q~(Xio+l/2)' (14.25)

which simplifies to

Fio+1/ 2 = D~H + c(2(io - k) + 1) 6x + c* (3(io - k*)2 -1) (6x)2.
(14.26)

14.3. ENO for Conservation Laws 159

14.3.4 ENO-LLF Discretization (and the Entropy Fix)

The ENO-Roe discretization can admit entropy-violating expansion shocks
near sonic points. That is, at a place where a characteristic velocity changes
sign (a sonic point) it is possible to have a stationary expansion shock so
lution with a discontinuous jump in value. If this jump were smoothed out
even slightly, it would break up into an expansion fan (Le., rarefaction)
and dissipate, which is the desired physical solution. For a specific cell wall
Xio+l/2, if there are no nearby sonic points, then we use the ENO-Roe dis
cretization. Otherwise, we add high-order dissipation to our calculation of
F io+1/ 2 to break up any entropy-violating expansion shocks. We call this
entropy-fixed version of the ENO-Roe discretization ENO-Roe fix or just
ENO-RF. More specifically, we use Aio = f'(Uio) and Aio+! = f'(uio+d to
decide whether there are sonic points in the vicinity. If Aio and Aio+! agree
in sign, we use the ENO-Roe discretization where Aio+l/2 is taken to have
the same sign as Aio and Aio+!' Otherwise, we use the ENO-LLF entropy
fix discretization given below. Note that ENO-LLF is applied at both ex
pansions where Aio < 0 and Aio+l > 0 and at shocks where Aio > 0 and
Aio+! < O. While this adds extra numerical dissipation at shocks, it is not
harmful, since shocks are self-sharpening. In fact, this extra dissipation pro
vides some viscous regularization which is especially desirable in multiple
spatial dimensions. For this reason, authors sometimes use the ENO-LLF
method everywhere as opposed to mixing in ENO-Roe discretizations where
the upwind direction is well determined by the eigenvalues A.

The ENO-LLF discretization is formulated as follows. Consider two prim
itive functions H+ and H-. We compute a divided difference table for each
of them, with their first divided differences being

1 ± 1 1
Di H = '2!(Ui) ± '2Qio+l/2Ui, (14.27)

where

(14.28)

is our dissipation coefficient. The second and third divided differences,
D~+1/2H± and Dr H±, are then defined in the standard way, like those
ofH.

For H+, set k = i o. Then, replacing H with H+ everywhere, define
Ql(X), Q2(X), Q3(X), and finally Fi!+!/2 using the ENO-Roe algorithm
above. For H-, set k = io + 1. Then, replacing H with H- everywhere,
define Ql(X), Q2(X), Q3(X), and finally Fi~+1/2 again by using the ENO
Roe algorithm above. Finally,

(14.29)

is the new numerical flux function with added high-order dissipation.

160 14. Hyperbolic Conservation Laws and Compressible Flow

14.4 Multiple Spatial Dimensions

In multiple spatial dimensions, the ENO discretization is applied inde
pendently using a dimension-by-dimension discretization. For example,
consider a two-dimensional conservation law

Ut + f(u)x + g(u)y = 0 (14.30)

on a rectangular 2D grid. Here, we sweep through the grid from bottom
to top performing ENO on 1D horizontal rows of grid points to evaluate
the f(u)x term. The g(u)y term is evaluated in a similar manner, sweeping
through the grid from left to right performing ENO on 1D vertical rows
of grid points. Once we have a numerical approximation to each of the
spatial terms, we update the entire equation in time with a method-of-lines
approach using, for example, a TVD Runge-Kutta method.

14.5 Systems of Conservation Laws

In general, a hyperbolic system will simultaneously contain a mixture of
processes: smooth bulk convection and wave motion, and discontinuous
processes involving contacts, shocks, and rarefactions. For example, if a gas
in a tube is initially prepared with a jump in the states (density, velocity,
and temperature) across some surface, as the evolution proceeds in time
these jumps will break up into a combination of shocks, rarefactions, and
contacts, in addition to any bulk motion and sound waves that may exist
or develop.

The hyperbolic systems we encounter in physical problems are written
in what are effectively the mixed variables where the apparent behavior
is quite complicated. A transformation is required to decouple them back
into unmixed fields that exhibit the pure contact, shock, and rarefaction
phenomena (as well as bulk convection and waves). In a real system, this
perfect decoupling is not possible, because the mixing is nonlinear, but it
can be achieved approximately over a small space and time region, and
this provides the basis for the theoretical understanding of the structure of
general hyperbolic systems of conservation laws. This is called a transfor
mation to characteristic variables. As we shall see, this transformation also
provides the basis for designing appropriate numerical methods.

Consider a simple hyperbolic system of N equations

(14.31)

in one spatial dimension. The basic idea of characteristic numerical schemes
is to transform this nonlinear system to a system of N (nearly) independent
scalar equations of the form

Ut + AUx = 0 (14.32)

14.5. Systems of Conservation Laws 161

and discretize each scalar equation independently in an upwind biased
fashion using the characteristic velocity A. Then transform the discretized
system back into the original variables.

14-5.1 The Eigensystem

In a smooth region of the flow, we can get a better understanding of the
structure of the system by expanding out the derivative as

(14.33)

where J = 8F/8tJ is the Jacobian matrix of the convective flux function.
If J were a diagonal matrix with real diagonal elements, this system would
decouple into N independent scalar equations, as desired. In general, J
is not of this form, but we can transform this system to that form by
multiplying through by a matrix that diagonalizes J. If the system is indeed
hyperbolic, J will have N real eigenvalues AP , p = 1, ... , N, and N linearly
independent right eigenvectors. If we use these as columns of a matrix R,
this is expressed by the matrix equation

JR=RA, (14.34)

where A is a diagonal matrix with the elements AP , p = 1, ... , N, on the di
agonal. Similarly, there are N linearly independent left eigenvectors. When
these are used as the rows of a matrix L, this is expressed by the matrix
equation

LJ=AL, (14.35)

where Land R can be chosen to be inverses of each other, LR = RL =
I. These matrices transform to a system of coordinates in which J is
diagonalized,

LJR=A, (14.36)

as desired.
Suppose we want to discretize our equation at the node Xo, where Land R

have values Lo and Ro. To get a locally diagonalized form, we multiply our
system equation by the constant matrix Lo that nearly diagonalizes J over
the region near Xo. We require a constant matrix so that we can move it
inside all derivatives to obtain

(14.37)

where we have inserted I = RoLo to put the equation in a more recognizable
form. The spatially varying matrix LoJRo is exactly diagonalized at the
point Xo, with eigenvalues Ab, and it is nearly diagonalized at nearby points.
Thus the equations are sufficiently decoupled for us to apply upwind biased
discretizations independently to each component, with Ab determining the
upwind biased direction for the pth component equation. Once this system

162 14. Hyperbolic Conservation Laws and Compressible Flow

is fully discretized, we multiply the entire system by La1 = Ro to return
to the original variables.

In terms of our original equation (14.31), our procedure for discretizing
at a point Xo is simply to multiply the entire system by the left eigenvector
matrix Lo,

(14.38)

and discretize the N scalar components of this system, indexed by p,

(14.39)

independently, using upwind biased differencing with the upwind direction
for the pth equation determined by the sign of).p. We then multiply the
resulting spatially discretized system of equations by Ro to recover the
spatially discretized fluxes for the original variables

(14.40)

where Do stands for the upwind biased discretization operator, i.e., either
the ENO-RF or ENO-LLF discretization.

We call).P the pth characteristic velocity or speed, (LoU)p = Lg . U
the pth characteristic state or field (here LP denotes the pth row of L,
i.e., the pth left eigenvector of J), and (LoF(U))p = Lg . F(U) the pth
characteristic flux. According to the local linearization, it is approximately
true that the pth characteristic field rigidly translates in space at the pth
characteristic velocity. Thus this decomposition corresponds to the local
physical propagation of independent waves or signals.

14,5.2 Discretization

At a specific flux location Xio+l/2 midway between two grid nodes, we wish

to find the vector numerical flux function Fio+1/ 2 . First we evaluate the

eigensystem at the point Xio+l/2 using the standard average Uio+1/2 =
(Ui + Ui+l)/2. Note that there are more advanced ways to evaluate the
eigensystem, as detailed by Donat and Marquina [55] j see also Fedkiw et al.
[65]. Then, in the pth characteristic field we have an eigenvalue).P(Uio+1/ 2),

left eigenvector V(Uio+1/ 2), and right eigenvector R.P(Uio+1/ 2)' We put U
values and F(U) values into the pth characteristic field by taking the dot
product with the left eigenvector,

u = LP(Uio +1/2) . U (14.41)

f(u) = LP(Uio+1/ 2) • F(U) (14.42)

where u and f(u) are scalars. Once in the characteristic field we perform a
scalar version of the conservative ENO scheme, obtaining a scalar numer
ical flux function F io+1/ 2 in the scalar field. We take this flux out of the

14.6. Compressible Flow Equations 163

characteristic field by multiplying by the right eigenvector,

Ffo+l/2 = Fio+l/2 RP(Oio+l/2), (14.43)

where Ffo+l/2 is the portion of the numerical flux function f io+1/2 from
the pth field. Once we have evaluated the contribution to the numerical
flux function from each field, we get the total numerical flux by summing
the contributions from each field,

f io+1/2 = L Jt+l/2' (14.44)
p

completing the evaluation of our numerical flux function at the point

14.6 Compressible Flow Equations

The equations for one-phase compressible flow are a general system of
convection-diffusion-reaction conservation equations in up to three spatial
dimensions. For example, in two spatial dimensions, the equations are of
the form

(14.45)

where 0 is the vector of conserved variables, F(O) and CeO) are the vectors
of convective fluxes, Fd(VO) and Gd(VO) are the vectors of diffusive fluxes,
and 8(0) is the vector of reaction terms. Again, for high-speed flow with
shocks, one can usually ignore the diffuse fluxes. We choose to ignore the
source terms (e.g., the effects of chemical reaction) here as well. For more
details on the diffuse terms and the source terms, see, for example, Fedkiw
et al. [68, 67, 69).

The inviscid Euler equations for one-phase compressible flow in the
absence of chemical reactions are then

which can be written in detail as

(:u
pv
pw
E

(

pu
pu2+p

+ puv
puw

t (E+p)u

+

x

pv
puv

pv2 +p
pvw

(E + p)v

+

y

pw
puw
pvw

pw2 +p
(E+p)w

(14.46)

=0

z
(14.47)

where p is the density, 17 = (u, v, w) are the velocities, E is the total energy
per unit volume, and p is the pressure. The total energy is the sum of the

164 14. Hyperbolic Conservation Laws and Compressible Flow

internal energy and the kinetic energy,

E = pe + p(u2 + v2 + w 2)/2, (14.48)

where e is the internal energy per unit mass. The two-dimensional Euler
equations are obtained by setting w = 0, while the one-dimensional Euler
equations are obtained by setting both v = 0 and w = o.

The pressure can be written as a function of density and internal energy,
p = pep, e). The speed of sound is defined by

~
C = yPP +--;;:, (14.49)

where Pp and Pe are partial derivatives of the pressure with respect to the
density and internal energy, respectively.

14.6.1 Ideal Gas Equation of State

For an ideal gas we have p = pRT where R = Ru/M is the specific gas
constant, with Ru ~ 8.31451 J/(mol K) the universal gas constant and M
the molecular weight of the gas. Also valid for an ideal gas is cp - Cv = R,
where cp is the specific heat at constant pressure and Cv is the specific heat
at constant volume. The ratio of specific heats is given by 'Y = cp/cv . For
an ideal gas, one can write

de = cvdT, (14.50)

and assuming that Cv does not depend on temperature (calorically perfect
gas), integration yields

(14.51)

where eo is not uniquely determined, and one could choose any value for e
at 0 K (although one needs to use caution when dealing with more than
one material to be sure that integration constants are consistent with the
heat release in any chemical reactions that occur). For more details, see,
e.g., Atkins [7]. Note that

R
p = pRT = -pee - eo) = ("(- 1)p(e - eo), (14.52)

Cv

and equation (14.51) are used frequently with eo = 0 arbitrarily for
simplicity.

14.6.2 Eigensystem

For brevity we consider only the two-dimensional eigensystem here. The
two-dimensional Euler equations can be obtained by setting w = 0 so that
both the fourth equation in equations (14.47) and the entire ii(iJ)z term
vanish.

14.6. Compressible Flow Equations 165

The eigenvalues and eigenvectors for the Jacobian matrix of FCU) are
obtained by setting A = 1 and B = 0 in the following formulas, while those
for the Jacobian of O(U) are obtained with A = 0 and B = l.

The eigenvalues are

..\ 1 = U - e, ..\ 2 = ..\3 = u, ..\4 = U + e,

and the eigenvectors are

f1 = (b2 + U _ b1 U _ A _ b1 V _ B b1)

2 2e' 2 2c' 2 2c' 2 '
~2
L = (1- b2 , b1 U, b1 v, -b1),

~3 A

L = (v,B,-A,O),

i.4 _ (b2 _ U _ b1 U A _ b1 V B b1)

- 2 2c' 2 + 2c' 2 + 2c' 2 '

.... 1 (U ! Ac) 2 (~) R= B' R= ,
~ ~ u~ H _v1/ b1

R3=(~) R4 =(U:AC) -A ' v + Be '
-v H +uc

where

u= Au+Bv, v = Av - Bu,

r=Pe/P,
r.r;

c= VPp+ p' H=(E+p)/p,

b2 = 1 + b1q2 - b1H.

(14.53)

(14.54)

(14.55)

(14.56)

(14.57)

(14.58)

(14.59)

(14.60)

(14.61)

(14.62)

The choice of eigenvectors one and four is unique (up to scalar multi
pIes), but the choice for eigenvectors two and three is not unique. Any two
independent vectors from the span of eigenvectors two and three could be
used instead. In fact, the numerical method designed by Fedkiw et al. [67]
exploits this fact.

The eigensystem for the one-dimensional Euler equations is obtained by
setting v = O.

14.6.3 Numerical Approach

Since the three-dimensional Euler equations are a system of conservation
laws, the methods outlined earlier in this chapter can be applied in a
straight-foward fashion. That is, each of FCO)x, O(U)y, and ii(U)z can

166 14. Hyperbolic Conservation Laws and Compressible Flow

1 5

o

330

325

Clen

02 0.4 0 .6 08

lemp

32n-..-1IIIt!c

o 02 0 .4 0 .6 0.8

vel

80

70

60

50 ,

30

20

'tJ
--~--------------~ o 0.2 0.4 0 .6 0.8

press

1.4

12

o 0.2 0 .4 06 0.8

Figure 14.1. Standard shock tube test case. The solution computed with 100 grid
cells is depicted by circles, while the exact solution is drawn as a solid line.

be independently approximated using either an ENO-RF or ENO-LLF dis
cretization scheme. A sample calculation in one spatial dimension is shown
in Figure 14.1. The initial data consisting of two constant states form (from
left to right) a rarefaction wave, a contact discontinuity, and a shock wave.
The solution computed with 100 grid cells is depicted by circles, while the
exact solution is drawn as a solid line. The figures show solutions at a later
time for density, velocity, temperature, and pressure.

15
Two-Phase Compressible Flow

15.1 Introduction

Chronologically, the first attempt to use the level set method for flows in
volving external physics was in the area of two-phase inviscid compressible
flow. Mulder et al. [115] appended the level set equation

(15.1)

to the standard equations for one-phase compressible flow, equation (14.47).
Here V is taken to be the velocity of the compressible flow field, so that the
zero level set of ¢ corresponds to particle velocities and can be used to track
an interface separating two different compressible fluids. The sign of ¢ is
used to identify which gas occupied which region, i.e., to determine the local
equation of state. In [115], only gamma law gas models were considered,
with I = 11 for ¢ > 0 and I = 12 for ¢ S o. Later, Karni [93J pointed
out that this method suffered from spurious oscillations at the interface.
Figure 15.1 shows a sample calculation using the method proposed in [115].
Here a right going shock wave impinges upon the interface, producing both
reflected and transmitted shock waves. Note the spurious oscillations in
both the pressure and the velocity profiles near the centrally located contact
discontinuity that separates the two different gamma-law gases.

168 15. Two-Phase Compressible Flow

den vel

':1 120 ~

100 >

80 -
3.5

3 60

2 .5 40 ~

2 -
(~ 20

1.5 S
o·

1 ~
0 02 0.4 0 .6 0 .8 0 0 .2 0 .4 0.6 0 .8

)(10' enlropy)(lOS press

0
I 8 ~
17

:l 1.6 1

1.
7

1.4
6

5
I 3 [

1.2
4

3 1.: t
2 I

0 02 0.4 0 .6 0 .8 0 0.2 0 .4 0 .6 0.8

Figure 15.1. Spurious oscillations in pressure and velocity obtained using the
method proposed by Mulder et al. [115J. The solution computed with 100 grid
cells is depicted by circles, while the exact solution is drawn as a solid line.

15.2 Errors at Discontinuities

The exact solution in Figure 15.1 clearly shows that the pressure and ve
locity are continuous across the contact discontinuity (in fact, they are
constant in this case), while the density and entropy are discontinuous.
Since discontinuous quantities indicate the absence of spatial derivatives
needed in equation (14.47), one should be suspicious of the behavior of nu-

15.3. Rankine-Hugoniot Jump Conditions 169

merical methods in that region. In fact, even the supposedly well-behaved
solution shown in Figure 14.1 (page 166) is not entirely adequate near the
discontinuities. While the rarefaction wave (to the left) is continuous in na
ture, both the contact discontinuity and the shock wave should have jump
discontinuities in the computed solution. However, the computed solution
smears out these discontinuities over a number of grid cells, leading to
0(1) errors. Turning our attention to Figure 15.1 we note that the density
profile near the contact discontinuity (near the center) should only have
values near 1.5 on the left and values near 4.75 on the right; i.e., none of
the intermediate values should be present. Intermediate values, such as the
one near 2.5, represent a rather significant 0(1) error. In light of this, the
oscillations in the pressure and velocity shown in Figure 15.1 are no worse
than should be expected given the significant errors in the density profile.
The only difference is that the density errors are dissipative in nature, while
the pressure and velocity errors are dispersive in nature.

Of course, one could argue that dispersive errors are worse than dissi
pative errors, since dispersive errors produce new extrema, changing the
monotonicity of the solution, while dissipative errors only connect two ad
missible states, producing no new extrema. While this argument is valid for
the shock and the contact discontinuity in Figure 14.1 and valid for both
of the shocks in Figure 15.1, it is not valid for the contact discontinuity.
The gas to the left should never take on values above p = 1.5, and the
gas to the right should never take on values below p = 3, except at the
smeared-out contact discontinuity, which can produce new extrema for the
gas to the left and for the gas to the right. Since both of these gases are well
behaved gamma-law gases, it turns out that the oscillations in pressure and
velocity can be removed without removing the numerical smearing of the
density. However, if one of these gases is replaced with a compressible (and
stiff) Tait equation of state for water (that cavitates for densities less than
around 999 kg/m3), it becomes rather difficult to remove the oscillations
in the pressure and velocity while still allowing the rather large dissipative
errors in the density profile. On the other hand, we will see (below) that it
is rather easy to remove all these errors at once.

15.3 Rankine-Hugoniot Jump Conditions

As can be seen in Figure 15.1, the pressure and velocity are continuous
across the contact discontinuity, while the density and entropy are discon
tinuous. If we wish to remove the numerical errors caused by nonphysical
smearing of discontinuous quantities, we need to identify exactly what is
and what is not continuous across the interface.

In general, conservation of mass, momentum, and energy can be applied
to an interface in order to abstract continuous variables. One can place a

170 15. Two-Phase Compressible Flow

flux on the interface-oriented tangent to the interface so that material that
passes through this flux passes through the interface. If the interface is
moving with speed D in the normal direction, this flux will also move with
speed D. From conservation, the mass, momentum, and energy that flow
into this flux from one side of the interface must flow back out the other side
of the interface. Otherwise, there would be a mass, momentum, or energy
sink (or source) at the interface, and conservation would be violated. This
tells us that the mass, momentum, and energy flux in this moving reference
frame (moving at speed D) are continuous variables. We denote the mass,
momentum, and energy flux in this moving reference frame by Fp, Fpy,
and FE, respectively. The statement that these variables are continuous
is equivalent to the Rankine-Hugoniot jump conditions for an interface
moving with speed D in the normal direction.

To define Fp, Fpy, and FE, we write the equations in conservation form
for mass, momentum, and energy as in equation (14.47). The fluxes for
these variables are then rewritten in the reference frame of a flux that is
tangent to the interface by simply taking the dot product with the normal
direction,

(15.2)

where Vn = V· N is the local fluid velocity normal to the interface, and the
superscript "T" designates the transpose operator. Then the measurements
are taken in the moving reference frame (speed D) to obtain

(p(VT_~D~T)) (Vn- D)+ (p~T),
+ plV-DNI + 0 pe 2 p

(15.3)

from which we can define

Fp = P(Vn - D), (15.4)

(15.5)

(15.6)

as continuous variables across the interface. That is, these quantities should
be continuous across the interface in order to enforce conservation.

We define the jump in a quantity across the interface as [a] = a 1 - a2 ,

where a 1 is the value of a in fluid 1, and a 2 is the value of a in fluid 2.

15.4. Nonconservative Numerical Methods 171

Then we can summarize by stating that [FpJ = 0, [FpvJ = 0, and [Fel = 0
across an interface moving with speed D in the normal direction.

15.4 Nonconservative Numerical Methods

Traditionally, Eulerian-based numerical methods for compressible flow are
based on the Lax-Wendroff theorem [104J, which dictates that numerical
methods should be fully conservative, and it is well known that noncon
servative methods produce shocks with incorrect speeds and strengths.
However, Karni [92] advocated nonconservative form at lower-dimensional
(e.g., one-dimensional in a two-dimensional calculation) material interfaces
(contact discontinuities) in order to alleviate the oscillations observed in
[115J. In [92], full conservation was applied away from interfaces, and a
nonconservative method was applied near the interface without adversely
affecting the shock speeds or strengths. Since shocks do not move at the
local interface velocity, any portion of a shock is in contact only with an
interface, and thus the nonconservative discretization employed there, on
a set of measure zero in space and time, minimizing the accumulation of
error.

While it is true that others have used nonconservative discretizations,
Karni [92] is responsible for markedly increasing their popularity in the
shock-capturing community, where practitioners usually required conser
vation at all cost. It is interesting to note that many front-tracking and
volume-of-fluid schemes are actually nonconservative; Le., they do not sat
isfy the strict flux-differencing conservation form usually thought to be
required by the Lax-Wendroff theorem. In this sense, many of these schemes
share similar properties with the ideology proposed in [92]. For example,
consider the front-tracking approach of Pember et al. [129], where a high
order Godunov method is used to obtain a nonconservative update near the
tracked interface and a fully conservative update away from the tracked in
terface. All flow features including shock speeds and strengths as well as
the speed of the tracked front are correctly determined, as is ensured by the
solutions of the appropriate Riemann problems. Then the authors go one
step further and correct the lack of conservation at the interface using a re
distribution procedure due to Chern and Colella [45J that is (presumably)
not necessary for obtaining a grid-resolved solution, but is used only to
maintain exact conservation. In fact, the nature of this redistribution pro
cedure does not allow strict application of the Lax-Wendroff theorem, and
one must assume that the correct solutions are obtained because the numer
ical method is fully conservative except at the lower-dimensional tracked
interface, which is updated correctly based on solutions of Riemann prob
lems. Similar loss of exact conservation occurs in volume-of-fluid methods,
where nonphysical overshoots may occur in the volume fraction equation;

172 15. Two-Phase Compressible Flow

see Puckett et al. [134J. These overshoots can be ignored when they violate
conservation, or redistributed in a manner similar to [45J to preserve exact
conservation.

15.5 Capturing Conservation

In summary, conservation of mass, momentum and energy at a disconti
nuity tells us which variables are continuous across the interface, although
as pointed out by Karni [92J one does not necessarily need exact flux
differenced conservative form in order to obtain the correct weak solution.
That is, one can instead obtain the correct weak solution in a different man
ner, for example by solving an associated Riemann problem as in [129J.
Therefore, Fedkiw et al. [63J proposed implicitly capturing the Rankine
Hugoniot jump conditions at the interface in order to avoid the intricate
details (e.g., multidimensional solution of Riemann problems) that are in
volved in explicitly enforcing the conservation at the interface. This idea
of implicitly capturing conservation as opposed to explicitly enforcing it is
in the flavor of level set methods that implicitly capture the location of an
interface as opposed to explicitly tracking it. Similar to level set methods,
this implicit capturing method for enforcing conservation gives rise to a
simple-to-implement numerical algorithm.

This implicit approach to capturing conservation is applied by creating a
set of fictitious ghost cells on each side of the interface corresponding to the
real fluid on the other side. These ghost cells are populated with a specially
chosen (ghost) fluid that implicitly captures the Rankine-Hugoniot jump
conditions across the interface. In [63], this method was referred to as the
ghost fluid method (GFM).

15.6 A Degree of Freedom

A contact discontinuity (or material interface) has speed D = Vn . Rewriting
[FpJ = 0 as pl(V~ - D) = p2(V~ - D) using equation (15.4) and choosing
either D = V~ or D = V~ leads directly to V~ = V~ or [VnJ = O. This
is our first jump condition, [VnJ = 0, implying that the normal velocity is
continuous across the interface. Setting D = V~ = V~ in [FpvJ = 0 leads to

[PJNT = 0, using equation (15.5) and the fact that the normal is the same
on both sides of the interface, i.e., [NJ = O. Multiplying [PJNT = 0 by N
leads to our second jump condition, [PJ = 0, implying that the pressure is
continuous across the interface. Note that multiplying [PJNT = 0 by any
tangent vector (there are two of these in three spatial dimensions) leads to
o = 0 and the failure to produce a jump condition or a continuous variable.
Plugging D = V~ = V~ into [FEJ = 0 also leads to 0 = 0 and again a failure

15.7. Isobaric Fix 173

to produce a jump condition or a continuous variable. Thus, at a contact
discontinuity in three spatial dimensions we have two jump conditions,
[Vn) = 0 and [P) = 0, along with three degrees of freedom corresponding to
the ° = 0 trivially satisfied jump conditions.

There are five eigenvalues present in the equations of compressible flow
in three spatial dimensions. Two of these correspond to the genuinely
nonlinear field associated with sound waves, and the other three of these
correspond to the linearly degenerate particle velocity. Since a contact dis
continuity moves with the linearly degenerate particle velocity, nothing
represented by the linearly degenerate fields can cross the interface, mean
ing that these quantities, the two-dimensional tangential velocity and the
entropy, do not cross the interface and may be discontinuous there. In fact,
since these quantities are uncoupled across the interface, they are usually
discontinuous there. We can write

(15.7)

where S is the entropy, to indicate that entropy is advected along stream
lines. Then since S and the contact discontinuity move at the same speed
in the normal direction, information associated with S cannot cross the
interface. (As a disclaimer we note that equation (15.7) is not valid for
streamlines that cross shock waves, i.e., entropy jumps across a shock wave.
However, shock waves do not move at the linearly degenerate speed, so this
equation is true except for a lower-dimensional subset of space and time.)

Note that in the case of the full viscous Navier-Stokes equations,
the physical viscosity imposes continuity of the tangential velocities and
thermal conductivity imposes continuity of the temperature.

15.7 Isobaric Fix

In [66], Fedkiw et al. exploited this degree of freedom in order to signifi
cantly reduce errors caused by nonphysical wall heating. The well-known
"overheating effect" occurs when a shock reflects off of a solid wall bound
ary, causing overshoots in the temperature and density, while the pressure
and velocity remain constant. In one spatial dimension, a solid wall bound
ary condition can be applied with the aid of ghost cells by constructing a
symmetric pressure and density reflection and an asymmetric normal ve
locity reflection about the solid wall. Then a shock wave impinging on the
wall will collide with a shock in the ghost cells that has equal strength
traveling in the opposite direction, producing the desired shock reflection.
Menikoff [113) and Noh [122) showed that overheating errors are a symptom
of smeared-out shock profiles and that sharper shocks usually produce less
overheating. They also showed that the pressure and velocity equilibrate
quickly, while errors in the temperature and density persist. In order to
dissipate these errors in temperature and density, [122) proposed adding

174 15. Two-Phase Compressible Flow

artificial heat conduction to the numerical method in a form similar to ar
tificial viscosity. Later, Donat and Marquina [55] proposed a flux-splitting
method with a built-in heat conduction mechanism that dissipates these
errors throughout the fluid.

For the one-dimensional Euler equations, the Rankine-Hugoniot jump
conditions for the solid wall moving at the local flow velocity D = VN are
[VN] = 0, [P] = 0, and 0 = O. These describe the relationship between the
external flow field and the internal one; Le., both the normal velocity and
the pressure must be continuous across the solid wall boundary extending
into the ghost cells. Since these jump conditions are inherently part of
the equations and thus part of any consistent numerical method, jumps
in pressure and velocity are hard to maintain for any duration of time at
a solid wall boundary; Le., jumps between the fluid values and the ghost
cell values are quickly dissipated. In this sense, one can think of pressure
and velocity equilibration at a solid wall boundary as an intrinsic action of
the boundary conditions. There is no such condition for the temperature
or the density. In the case of a complete equation of state (see Davis [54])
only one variable in the linearly degenerate field need be defined, and all
other variables can be determined from the equation of state relations. In
this sense, there is no boundary condition for the linearly degenerate field,
as is emphasized by the trivially satisfied jump condition 0 = O. Since a
solid wall boundary is an initial boundary value problem, the value of the
temperature at the wall must come from the initial data, as one can see from
equation (15.7) which states that entropy is advected along streamlines of
the fluid. This implies that the entropy near the wall stays near the wall,
since the wall moves with the local fluid velocity.

In [66], equation (15.7) was used to develop the isobaric fix, which is a
boundary condition type of treatment for the linearly degenerate field at a
solid wall boundary. The isobaric fix modifies the linearly degenerate field
at a solid wall without changing the values of the pressure or the normal
velocity. Noting that entropy is advected along streamlines and that the
entropy within a fluid is usually continuous, we see that the entropy errors
at the wall are repaired using new values of entropy extrapolated from
the surrounding flow. For example, replacing the entropy at the wall with
the entropy of the neighboring cell gives a first-order accurate value of
the entropy at the wall for smooth entropy profiles. Higher-order accurate
extrapolation can be used as well, but this has been found to be quite
dangerous in practice due to the presence of discontinuous shock waves
that can cause large overshoots when one extrapolates with higher than
first-order accuracy. In multiple spatial dimensions the solid wall can be
represented as the zero isocontour of a level set function and moved rigidly
using the level set equation (3.2) where the velocity is chosen as the rigid
wall velocity (or even the velocity of a deforming wall). Then the isobaric
fix can be applied using extrapolation of entropy in the normal direction,
as discussed in Chapter 8. Note that one does not have to deal with the

15.8. Ghost Fluid Method 175

entropy directly, which can sometimes be difficult to compute for general
equations of state, but one can choose any variable corresponding to the
equation of state degree of freedom in the linearly degenerate field, e.g.,
density or temperature.

Although the overheating effect is traditionally discussed in the context
of shock reflection from stationary walls, more significant cumulative over
heating effects are generated by moving walls. Figure 15.2 shows the errors
generated in density and temperature by a solid wall moving from left to
right. The wall, initially at rest, is instantaneously accelerated to a velocity
of 1000 mls forming the shock wave seen in the figure. The isobaric fix does
not completely eliminate all of the density and temperature errors, but does
reduce them by at least an order of magnitude, as shown in Figure 15.3.

15.8 Ghost Fluid Method

In [63J, Fedkiw et al. pointed out that a two-phase contact discontinuity
could be discretized with techniques similar to those used for the solid
wall boundary, except that they are applied twice, i.e., once for each fluid.
Conceptually, each grid point corresponds to one fluid or the other, and
ghost cells can be defined at every point in the computational domain so
that each grid point contains the mass, momentum, and energy for the
real fluid that exists at that point (according to the sign of the level set
function) and a ghost mass, momentum, and energy for the other fluid that
does not really exist at that grid point (the fluid from the other side of the
interface). Once the ghost cells are defined, standard one-phase numerical
methods can be used on the entire domain for each fluid; i.e., we now have
two separate single-fluid problems. After each fluid is advanced in time,
the level set function is updated using equation (3.2) to advect the level
set with the local fluid velocity il, and the sign of the level set function
is used to determine the appropriate real fluid values at each grid point.
While ghost cells are defined everywhere for the sake of exposition, only a
band of 3 to 5 ghost cells is actually needed in practice.

Contact discontinuities move at the local fluid velocity, and the Rankine
Hugoniot jump conditions are [VN J = 0, [PJ = 0, and 0 = 0 three times. Only
the pressure and normal velocities can be determined from the boundary
conditions, while the entropy and both tangential velocities remain unde
termined. Since certain properties are discontinuous across the interface,
one should be careful in applying finite difference methods across the inter
face, since differencing discontinuous quantities leads erroneously to terms
of the form 1/6.x that increase without bound as the grid is refined. There
fore, the layer of ghost cells should be introduced so that there is continuity
with the neighboring fluid that needs to be discretized. For variables that
are already continuous across the interface, e.g., pressure and normal ve-

176 15. Two-Phase Compressible Flow

den

45 0:0 1111111111111 Q)

o 0

40 0
0

35

0
30

25

20

15 0

10

0.4 0.45 0.5 0.55

o

10

o

5

o

O~ __ ~ ____ ~ ____ ~ __ --J

0.4 0.45 0.5 0.55

vel

2000

1500

100

0

500

0

0

0.4 0.45 0.5 0.55

temp
1400r---~----~----~----.

o
1200 0

o
Q:o'IIIIIIIIIIIIIQ:,

1000 o

800

600 o

400

200~--~----~----~--~

0.4 0.45 0.5 0.55

Figure 15.2. Overheating errors in density and temperature generated by a piston
moving to the right.

locity, the ghost fluid values can be set equal to the real fluid values at each
grid point, implicitly capturing the correct interface values of these vari
ables. This is the key mechanism in coupling the two distinct sets of Euler
equations. On the other hand, the discontinuous variables move with the
speed of the interface, and information in these variables does not cross the
interface and is not coupled to the corresponding information on the other
side of the interface. Moreover, in order to avoid numerical smearing or
spurious oscillations, these discontinuous variables should not be nonphys-

15.8. Ghost Fluid Method 177

den vel

45 2000

° 40

35 1500

°
30

100
25 °
20

500

° ° 15

10
rL 0

0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55

temp

110
o ~v

1000 o

10 o
900

800

700 o

600
5

500
o

400

300 0On:a:a:J0DJ:lj>
o~ __ ~ ____ ~ ____ ~ __ ~
0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55

Figure 15.3. The isobaric fix significantly reduces the overheating errors in both
density and temperature.

ically coupled together or forced to be continuous across the interface. The
most obvious way of defining the discontinuous variables in the ghost cells
is by extrapolating that information from the neighboring real fluid nodes;
e.g., the entropy can be extrapolated into the ghost cells using extrapo
latation in the normal equation in the same fashion as it was in applying
the isobaric fix. Again, as with to the isobaric fix, one does not have to
deal with the entropy directly, but can choose any variable in the linearly
degenerate field, e.g., density or temperature.

178 15. Two-Phase Compressible Flow

In order to to extrapolate the tangential velocity, we first extrapolate
the entire velocity field iT. Then, at every cell in the ghost region we have
two separate velocity fields, one from the real fluid and one from the ex
trapolated fluid. For each velocity field, the normal component of velocity,
VN, is put into a vector of length three, VNN, and then the tangential
velocity field is defined by another vector of length three, iT - VN N. We
add together the normal component of velocity, VNN, from the real fluid
and the tangential component of velocity, iT - VNN, from the extrapo
lated fluid. This new velocity is our ghost fluid velocity. For the full viscous
Navier-Stokes equations, the physical viscosity imposes continuity of the
tangential velocities, so that the entire velocity field is continuous. In this
case the entire velocity field can be copied over into the ghost cells in a
node-by-node fashion. Similar statements hold for the temperature in the
presence of a nonzero thermal conductivity.

Next, we describe the one-dimensional method in more detail. Suppose
that the interface lies between nodes i and i + 1. Then fluid 1 is defined to
the left and includes node i, while fluid 2 is defined to the right and includes
node i + 1. In order to update fluid 1, we need to define ghost fluid values of
fluid 1 at nodes to the right, including node i + 1. For each of these nodes we
define the ghost fluid values by combining fluid 2's pressure and velocity at
each node with the entropy of fluid 1 from node i; see Figure 15.4. Likewise,
we create a ghost fluid for fluid 2 in the region to the left, including node i.
This is done by combining fluid 1's pressure and velocity at each node with
the entropy of fluid 2 from node i + 1. In order to apply the isobaric fix
technique, we change the entropy at node i to be equal to the entropy at
node i - 1 without modifying the values of the pressure and velocity at
node i; see Figure 15.5. Likewise, we change the entropy at node i + 1 to
be equal to the entropy at node i + 2.

An important aspect of this method is its simplicity. We do not need to
solve a Riemann problem, consider the Rankine-Hugoniot jump conditions,
or solve an initial boundary value problem at the interface. We capture the
appropriate interface conditions by defining a fluid that has the pressure
and velocity of the real fluid at each point, but the entropy of some other
fluid. Consider the case of air and water. In order to solve for the air,
we replace the water with ghost air that acts like the water in every way
(pressure and velocity) but appears to be air (entropy). In order to solve
for the water, we replace the air with ghost water that acts like the air in
every way (pressure and velocity) but appears to be water (entropy). Since
the ghost fluids behave in a fashion consistent with the real fluids that they
are replacing, the appropriate boundary conditions are captured. Since the
ghost fluids have the same entropy as the real fluid that is not replaced, we
are solving a one-phase problem.

Figure 15.6 shows how the ghost fluid method removes the spurious os
ciallations in the pressure and velocity obtained using the method proposed
in [115] as shown in Figure 15.1. Note that the density profile remains sharp

15.8. Ghost Fluid Method 179

Interface

Fluid 2

P=pressure i+l i+2 i+3

V=velocity • • • S=entropy

p V P V P V

e e e e
i-2 i-I

Fluid 1 Ghost Cells

Figure 15.4. Fluid 1's ghost fluid values are constructed by combining fluid 2's
pressure and velocity with the entropy of fluid 1 from node i.

Interface

Fluid 2

P=pressure i+l i+2 i+3

V=velocity • • • S=entropy

p V P V P V

S
e e e e
i-2 i-I

Fluid 1 Ghost Cells

Figure 15.5. In applying the isobaric fix in conjunction with the ghost fluid
method, the entropy from node i - 1 is used instead of the entropy from node i.

180 15. Two-Phase Compressible Flow

den vel
5 1201

4.5
l00 ~ :J

4 ~
80

3:[60

2 .5 1 40 t

1.:r :[::>

l L - I
0 0.2 0 .4 06 08 0 0 .2 0 .4 0 .6 0 .8

)(10' entropy)(10$ press

9
" [1.6 rg c::

:,

8 1

7 1.4

6 13

5
1.2

4
1.1

3 P
2

0 0 .2 0 .4 06 08 0 0 .2 0.4 06 08

Figure 15.6. The spurious oscillations are removed using the ghost fluid method.
Moreover, the density profie remains sharp at the contact discontinuity. The
solution computed with 100 grid cells is depicted by circles, while the exact
solution is drawn as a solid line.

across the contact discontinuity. While Figure 15.6 is computed using only
100 grid cells, Figure 15.7 is computed with 400 grid cells to illustrate the
behavior of the method under mesh refinement. A two-dimensional exam
ple of an air shock hitting a helium bubble is shown in Figure 15.8. The
black circle indicates the initial location of the Helium bubble before it was
hit by the air shock. Figures 15.9, 15.10, 15.11, and 15.12 show two phase
flow calculations where one phase is a gamma-law gas model of air with a

den

5

4.5

4

3.5

3

25

2

1 .5.~1 _,..~
l IL ____ ~--

o 0.2 0 .4 06 08

entropy
~-~----,

9

8

7

6

5

4

3

2
0'-- 0 .2 0.4 0 .6 0.8

15.8. Ghost Fluid Method 181

vel

120

100 l
80 l::

(

60

40

20

:>

o

o 0.2 0 .4 0 .6 0.8

press

7

1. 6 Ii c

1
1 .

.4

.3
~

.2

.1
I>

1

o 0.2 0.4 06 08

Figure 15.7. This figure illustrates how the ghost fluid method converges as the
grid is refined. The solution computed with 400 grid cells is depicted by circles,
while the exact solution is drawn as a solid line.

density around 1 kg/m3 and the other phase is a stiff Tait equation of state
model for water with a density around 1000 kg/m3 . In the figures the air
is depicted in red and the water is depicted in green. Note that there is no
numerical smearing of the density at the interface itself which is fortunate,
since water cavitates when it drops to a density slightly above 999 kg/m3 ,

leading to host of nonphysical problems near the interface. Note that the
pressure and velocity are continuous across the interface, although there
are kinks in both of these quantities.

182 15. Two-Phase Compressible Flow

Figure 15.8. Schlieren image for an air shock impinging upon a helium bubble
using the ghost fluid method to resolve the contact discontinuity. The black circle
indicates the initial location of the helium bubble. This image was generated by
Tariq Aslam, of Los Alamos National Laboratory.

15.9. A Robust Alternative Interpolation 183

15.9 A Robust Alternative Interpolation

The interface values of pressure and normal velocity need to be determined
using some sort of interpolation technique, where we note that these vari
ables are continuous but may possess kinks due to differing equations of
state across the interface. Copying these variables into the ghost cells in a
node-by-node fashion, as proposed above (and in [63]) corresponds to one
choice of interpolation. Using the fluid on one side of the interface to deter
mine the interface pressure and the fluid on the other side of the interface
to determine the interface normal velocity corresponds to another choice.
Different interpolation techniques lead to O(.0.x) differences in the interface
values of pressure and normal velocity, which vanish as the mesh is refined,
guaranteeing convergence as the Rankine-Hugoniot jump conditions are
implicitly captured.

It is not clear exactly which interpolation technique should be used, and
the answer is most likely problem related. For smooth well-behaved prob
lems with commensurate equations of state, the method proposed above
(and in [63]) is probably superior, while using one fluid to define the pres
sure and the other fluid to define the normal velocity is probably superior
when one fluid is very stiff compared to the other. For example, consider
interactions between a stiff Tait equation-of-state for water and a gamma
law gas model for air as shown, for example, in Figures 15.9, 15.10, 15.11,
and 15.12. Since the technique discussed in the last section gives equal
weighting to the values of the pressure and normal velocity on both sides
of the interface, any kinks in these values will be smeared out to some ex
tent, causing small errors in the captured interface values of these variables.
Small errors in the normal velocity of the water create small density errors
when the equation for conservation of mass in updated. In turn, these small
density errors can lead to large spurious pressure oscillations in the water,
since the Tait equation of state is quite stiff. While small errors in the ve
locity of the air cause the same small density errors, these have little effect
on the gas, since the gamma-law gas equation of state is rather robust.
Again, since the Tait equation of state is rather stiff, one can expect large
variations in the pressure of the water near the interface, which in turn
can lead to poor predictions of the interface pressure. While these errors
in the interface pressure have a relatively small effect on the heavier water,
they can have a rather large effect on the lighter gas. Conversely, since the
gamma-law gas equation of state is rather robust, the gas pressure tends
to be smooth near the interface and is therefore a good candidate for the
interface pressure.

The aforementioned difficulties can be removed in large part by using the
water to determine the interface normal velocity and the air to determine
the interface pressure, producing a more robust version of the interpolation.
When the stiffer fluid (in this case the Tait equation of state water) is
updated, pressure is still copied over node by node in the ghost region, while

184 15. Two-Phase Compressible Flow

log(den) vel

3
0

2.5

2 -500

1.5

-1000

0.5 . ..---
-1500

0

-0.5 -2000

0 2 4 6 8 10 0 2 4 6 8 10

X 10' entropy x 107 press

3

10
.. "- ..

2.5

8 .. ---.
2

6
1.5

4
:,..

2 0.5
. ...----

0 0 --
0 2 4 6 8 10 0 2 4 6 8 10

Figure 15.9. The gamma-law gas is depicted in red, while the stiff Tait equation
of state water is depicted in green. Note that the log of the density is shown,
since the density ratio is approximately 1000 to 1. This calculation uses only 100
grid cells. (See also color figure, Plate 6.)

the total velocity and the entropy are extrapolated into the ghost cells. In
updating the fluid with the more robust equation of state (in this case the
gamma-law gas air), the normal velocity is still copied over node by node
in the ghost region, while the pressure, entropy, and tangential velocity are
extrapolated into the ghost cells. This new robust interpolation technique
was first proposed by Fedkiw in [62]. Numerical results have shown that

3

2.5

2

1.5

0.5

o

-0.5

o

X 10·
12

log (den)

2 4 6

entropy

10 ~
8~

6

4

2

o

o 2 4 6

15.9. A Robust Alternative Interpolation 185

8 10

8 10

o

-500

-1000

-1500

-2000

o

X 107

6

5

4

3

2

o

o

vel

2 4 6 8 10

press

:.

2 4 6 8 10

Figure 15.10. This is the same calculation as in Figure 15.9, except that 500 grid
cells are used. (See also color figure, Plate 7.)

this new method behaves in a fashion similar to the original method, except
for the increased interface dissipation, which leads to greater stability.

In Figures 15.9 and 15.10 an interface separates gas on the left from
water on the right. Solid-wall boundary conditions are enforced on both
sides of the domain. Initially, a right-going shock wave is located in the
gas, and a left-going shock wave is located in the water. These shock waves
propagate toward the interface, producing a complex wave interaction. In
the figures one can see reflected shock waves traveling outward near x = 1

186 15. Two-Phase Compressible Flow

and x = 8. The robustnesss of the new interpolation technique is illustrated
by the high quality of the solution obtained with as few as 100 grid cells,
as shown in Figure 15.9.

In Figures 15.11 and 15.12 interfaces separate gas on the outside of the
domain from water on the inside of the domain. A solid-wall boundary is
enforced on the left, and an outflow boundary condition is enforced on the
right. Initially, all the fluids are moving to the right at 500m/s causing
a rarefaction wave to start at the solid wall on the left. This rarefaction
wave propagates to the right, slowing down the fluids. Note that it is much
easier to slow down the lighter gas as opposed to the heavier water. The
figures show the steep pressure profile that forms in the water and acts to
to slow the water down. One of the difficulties encountered in [63] was a
nonphysical pressure overshoot in the water near the interface on the left.
This new robust interpolation technique removes the overshoot, producing
a monotone pressure profile near the interface even in the coarse 100-grid
cell solution in Figure 15.11.

15.9. A Robust Alternative Interpolation 187

log(den) vel

3 500

2.5 400

300
2

200
1.5

100

0

0 2 4 6 8 10 0 2 4 6 8 10

X 10' entropy X 10· press

10'-... ___ _ 10 ---9

8 8

7

6
6

5
4

4

2
3

o

o 2 4 6 8 10 o 2 4 6 8 10

Figure 15.11. In this calculation two interfaces are present, since the air surrounds
the water on both sides. This calculation uses only 100 grid cells. (See also color
figure, Plate 8.)

188 15. Two-Phase Compressible Flow

log(den) vel

3 500

2.5

2

1.5

o

o 2 4 6 8 10 o 2 4 6 8 10

entropy x 10· press

lOr-____ _ 10

8 8

6
6

4 !
4

2

o

o 2 4 6 8 10

Figure 15.12. This is the same calculation as in Figure 15.11, except that 500
grid cells are used. (See also color figure, Plate 9.)

16
Shocks, Detonations, and Deflagrations

16.1 Introduction

For a contact discontinuity we separated the variables into two sets based on
their continuity across the interface. The continuous variables were copied
into the ghost fluid in a node-by-node fashion, capturing the correct in
terface values, while the discontinuous variables were extrapolated in a
one-sided fashion to avoid numerical dissipation errors. In order to apply
this idea to a general interface moving at speed D in the normal direction,
we need to correctly determine the continuous and discontinuous variables
across the interface. For example, consider a shock wave where all variables
are discontinuous, and extrapolation of all variables for both the preshock
and postshock fluids obviously gives the wrong answer, since the physical
coupling is ignored. We generally state, For each degree of freedom that is
coupled across a discontinuity, one can define a variable that is continu
ous across the discontinuity, and all remaining degrees of freedom can be
expressed as discontinuous variables that can be extrapolated across the dis
continuity in a one-sided fashion, as the key to extending the GFM. For
the Euler equations, conservation of mass, momentum, and energy can be
applied to any discontinuity in order to abstract continuous variables; i.e.,
the Rankine-Hugoniot jump conditions always dictate the coupling between
the prediscontinuity and postdiscontinuity fluids. This idea was proposed
by Fedkiw et al. [64J to create sharp profiles for shock waves, detonation
waves, and deflagration waves.

190 16. Shocks, Detonations, and Deflagrations

16.2 Computing the Velocity of the Discontinuity

For a contact discontinuity, we use equation (15.1) to update the interface
location, but a more general discontinuity moving at speed D in the normal
direction is governed by

(16.1)

where W = DN is the velocity of the discontinuity. The authors of [64]
proposed a capturing method to compute W without explicitly computing
it on the interface. Suppose 0(1) and 0(2) represent states on different sides
of the interface. Then, in general, the velocity of the interface is defined

- - -(1) -(2) by W = W(Uint , Uint) where the "int" subscript designates a variable
that has been interpolated to the interface in a one-sided fashion. Gen
erally, W is a continuous function of its arguments, and application of
W = W(O(1), 0(2)) in a node-by-node fashion will implicitly capture the
correct value ofW at the interface. This computation ofW = W(O(1), 0(2))
in a node-by-node fashion requires values of 0(1) and 0(2) at every node.
We accomplish this by extrapolating 0(1) across the interface into the re
gion occupied by 0(2) (using equation (8.1)), and likewise extrapolating
0(2) across the interface into the region occupied by 0(1). Of course, we
only need to extrapolate values in a thin band of grid cells near the in-

- -. - - -(1) -(2) - -(1) -(2) -terface. When W = DN, I.e., W = W(Uint> Uint) = D(Uint , Uint)N, we
can compute D in a node-by-node fashion and obtain W by multiplying D
byN.

When using the ghost fluid method for general discontinuities, we need
to accurately determine the interface speed D. For shock waves and deto
nation waves, D can be found by solving an appropriate Riemann problem
in a node-by-node fashion [64]. In fact, there is no reason one cannot solve
a Riemann problem in the case of a contact discontinuity as well, using
W = DN in equation (16.1) to update the level set function as opposed
to using equation (15.1) with the less-accurate local fluid velocity. In fact,
a combination of ghost cells and Riemann problems is commonly used in
front tracking algorithms; see, e.g., Glimm et al. [73, 72], where a Rie
mann problem is solved at the interface and the results are extrapolated
into ghost cells. The difference between the ghost fluid method and typi
cal front-tracking algorithms is in the order of operations. Front-tracking
algorithms first solve a Riemann problem using flow variables interpolated
to the (possibly) multidimensional interface and then extrapolate the re
sults into ghost cells, while the ghost fluid method first extrapolates into
ghost cells and then solves the Riemann problem in a node-by-node fashion,
removing complications due to interface geometry.

For a deflagration wave, the Riemann problem is not well posed unless
the speed of the deflagration (D) is given. However, the G-equation for
flame discontinuities, see Markstein [110], represents a flame front as a dis-

16.3. Limitations of the Level Set Representation 191

continuity in the same fashion as the level set method, so that one can easily
consult the abundant literature on the G-equation to obtain deflagration
wave speeds.

16.3 Limitations of the Level Set Representation

The level set function is designed to represent interfaces where the interface
crosses material at most once due to an entropy condition; see Sethian [147]
and Osher and Seian [126]. Contact discontinuities move with the local
material velocity, and thus never cross over material. On the other hand, if
one material is being converted into another, then the interface may include
a regression rate for this conversion. When the regression rate is based on
some sort of chemical reaction, the interface can pass over a material exactly
once, changing it into another material. The same chemical reaction cannot
occur to a material more than once, and the reverse reaction is usually
not physically plausible due to an entropy condition. However, for readily
reversible chemical reactions, the zero level set may pass over a material in
one direction (the reaction) and then pass back over the same material in
the opposite direction (the reverse reaction).

Shocks can be interpreted as the conversion of an uncompressed material
into a compressed material. Here D is the shock speed, and the ghost fluid
method can be used to follow a lead shock, but since shocks can pass over a
material more than once in the same direction, all subsequent shocks must
be captured or modeled by separate level set functions.

16.4 Shock Waves

Consider the representation of a lead shock by a level set function where the
positive values of </.> correspond to the unshocked material and the negative
values of </.> correspond to the shocked material. Then the normal N points
from the shocked material into the unshocked material.

In one spatial dimension, the normal velocity is defined as Vn = V . N,
and equations (15.4), (15.5) and (15.6) become

Fp = P(Vn - D)

Fpv = p(u - DNT)(Vn - D) + pNT

FE ~ (pe + pl. -2DNI' +p) (V. - D)

where it is useful to define

(16.2)

(16.3)

(16.4)

(16.5)

192 16. Shocks, Detonations, and Defiagrations

and to rewrite equation (16.4) as

FE = (pe + p(Vn ; D)2 + p) (Vn - D) (16.6)

using the fact that N = ±1 in one spatial dimension.
Our goal is to implicitly capture the Rankine-Hugoniot jump conditions

by implicitly enforcing continuity of Fp, Fpvn' and FE. These quantities
can be evaluated at each real grid node by plugging the local values of the
conserved variables into equations (16.2), (16.5) and (16.6) to obtain Ff},
F{!vn' and FC', respectively, where the "R" superscript designates a real
grid node value. In order to implicitly capture the values of these variables
with ghost node values, we want the ghost node values to result exactly in
Ff}, F{!vn' and FC' when plugged into equations (16.2), (16.5) and (16.6),
That is, we want ghost node values of density, velocity, internal energy, and
pressure such that

pG(VnG - D) = Ff}, (16.7)

PG(v:G _ D)2 + pG = FR
n pVn '

(16.8)

(pGeG + pG(VnG2 - D)2 + pG) (vrf _ D) = FC', (16.9)

at each grid node, where the "G" subscript designates a ghost node value.
Adding the equation of state for the ghost fluid as

pG = (,p _l)pGeG (16.10)

yields four equations for four unknowns, which can be arranged into a
quadratic equation for vrf - D, where

expresses the two solutions. Choosing one of these two solutions for VnG

allows us to obtain pG from equation (16.7), pG from equation (16.8), and
eG from equation (16.10). In addition, uG = vrf N.

In order to choose the correct solution (of the two choices) from equa
tion (16.11), we have to determine whether the ghost fluid is an unshocked
(preshock) fluid or a shocked (postshock) fluid. Node by node, we use the
real values of the unshocked fluid to create a shocked ghost fluid. Likewise,
we use the real values of the shocked fluid to create an unshocked ghost
fluid. If the ghost fluid is a shocked fluid, then D is subsonic relative to
the flow; i.e., vrf - cG < D < vrf + cG or IVrf - DI < cG. If the ghost
fluid is an unshocked fluid, then D is supersonic relative to the flow; i.e.,
IVnG - DI > cG. Therefore, the "±" sign in equation (16.11) should be cho
sen to give the minimum value of IVrf - DI when a shocked ghost fluid is

16.5. Detonation Waves 193

constructed and the maximum value of IVnG - DI for an unshocked ghost
fluid.

For a simple nonreacting shock, the shock speed D can be defined directly
from the mass balance equation as

p(l)u(1) _ p(2)u(2)
D='-----,.-,---'-=:--

p(l) _ p(2)
(16.12)

in a node-by-node fashion. However, this simple definition of the shock
speed will erroneously give D = 0 in the case of a standard shock tube
problem where both fluids are initially at rest. A somewhat better estimate
of the shock speed can be derived by combining equation (16.12) with the
momentum balance equation to obtain

p(l) (u(l)) 2 + p(l) _ p(2) (u(2)) 2 _ p(2)

p(l) _ p(2) D= (16.13)

where the shock speed is now dependent on the pressure as well. Note that
equations (16.12) and (16.13) are only approximations of D. Clearly, these
approximations will lead to nonphysical values of D in certain situations.
In fact, D could be infinite or even imaginary. A more robust, but still
approximate, value for D can be obtained by evaluating D = Vn + c with
the Roe average of 0(1) and 0(2) (see, for example, LeVeque [105]), since
this is the exact shock speed for an isolated shock wave and never becomes
ill-defined. Of course, the best definition of the shock speed can be derived
by solving the Riemann problem for the states 0(1) and 0(2), although this
generally requires an iterative procedure. The interested reader is referred
to the ongoing work of Aslam [9J for more details.

Figure 16.1 depicts a standard shock tube test case that was computed
using the level set method to track the location of the shock wave and the
ghost fluid method to accurately capture the boundary conditions across
that shock wave. Note the sharp (nonsmeared) representation of the shock
wave.

16.5 Detonation Waves

Strong detonations and Chapman-Jouguet detonations can be approxi
mated as reacting shocks under the assumption that the reaction zone
has negligible thickness. Again, assume that jij points from the reacted
material into the unreacted material.

Equations (16.7), (16.8) and (16.9) are still valid, while equation (16.10)
becomes

(16.14)

194 16. Shocks, Detonations, and Deflagrations

den vel

80

70

60

25 so

40

2

1.5I...l ______ -=--=-__ :--_----'
o 0.2 04 0.6 0.8

o - I
o 0.2 0.4 0.6 0.8

temp
X 105 press

330 t
32S [

32 1.8

1.6
310

305 1.4

300
1.2'

295

290

0 02 04 06 08 o 0.2 0.4 0.6 08

Figure 16.1. Standard shock-tube test case using the ghost fluid method to keep
the shock wave sharp. The computed solution is depicted by circles, while the
exact solution is drawn as a solid line.

where one can no longer set eo = 0 for both fluids. In detonations, the jump
in eo across the reaction front indicates the energy release in the chemical
reaction. Equation 16.11 becomes

(F: _ eG)
FR 0

p

(16.15)

16.6. Deflagration Waves 195

where the "±" sign is chosen to give the minimum value of 1V2 - D I for a
reacted ghost fluid and the maximum value of 1V2 - DI for an unreacted
ghost fluid. Equation (16.13) is used for the detonation speed D, although
one might want to use a Riemann solver; see, for example, Teng et al.
[163].

Figure 16.2 shows an overdriven detonation wave traveling from left to
right. A solid-wall boundary condition is enforced on the left, creating a rar
efaction wave that will eventually catch up with the overdriven detonation
and weaken it to a Chapman-Jouguet detonation. The circles depict the
pressure profile calculated with 200 grid cells, while the solid line depicts
the computed profile with 800 grid cells. Note that there is no numerical
smearing of the leading wave front, which is extremely important when one
attempts to eliminate spurious wave speeds for stiff source terms on coarse
grids; see, for example, Colella et al. [50].

16.6 Deflagration Waves

For a deflagration wave, equations (16.7), (16.8), (16.9) and (16.14) are used
with the jump in eo equal to the energy release in the chemical reaction.
Equation (16.15) is used as well. However, since a deflagration is subsonic,
the "±" sign is chosen to give the minimum value of IV~ - DI for both the
reacted and the unreacted ghost fluids.

For a deflagration, the Riemann problem is not well posed unless the
speed of the deflagration is given. Luckily, there is abundant literature on
the G-equation for flame discontinuities, and one can consult this literature
to obtain appropriate deflagration speeds. For example, using a deflagration
velocity from Mulpuru and Wilkin [116],

P .1(T)1.721
D = VN + 18.5 (101000pJ 298K mls (16.16)

evaluated with the velocity, pressure, and temperature of the unreacted gas,
we compute the shock deflagration interaction shown in Figure 16.3. Here a
left-going shock wave intersects a right-going deflagration wave (unreacted
gas to the right), resulting in four waves: a shock, contact, deflagration,
and rarefaction from left to right. All the waves are captured, except the
deflagration wave, which is tracked with the level set function and resolved
with the ghost fluid method. The circles depict the computed solution,
while the solid line depicts the exact solution. Note that the pressure drops
slightly across a deflagration wave, as opposed to the pressure rise across
shock and detonation waves.

196 16. Shocks, Detonations, and Defiagrations

J

3

2

o

o 2 3 5 6 7 8

Figure 16.2. Overdriven detonation wave traveling from left to right with a
solid-wall boundary condition on the left. The circles depict the pressure profile
calculated with 200 grid cells.

16.7 Multiple Spatial Dimensions

In multiple spatial dimensions we use equations (16.2), (16.5), and (16.14)
along with

(16.17)

16.7. Multiple Spatial Dimensions 197

den vet

2.2

2

1.8
150

1.6

1.4
100

1.2

50
0 .8

0 .6

O. -
o

o 0.2 0.4 0 .6 0 .8 o 0.2 0.4 0 .6 0 .8

temp x 10' press
2 000

3 .8 ..
3.6

600

400
3 .4

200 3.2

000 3

800 2.8

600

""' . 400
........ _.

o 0.2 0 .4 0 .6 0 .8 o 0 .2 0 .4 0.6 0.8

Figure 16.3. Interaction of a left-going shock wave with a right-going defiagration
wave, producing four waves: a shock, contact, defiagration, and rarefaction from
left to right. The circles depict the computed solution using 400 grid cells, while
the solid line depicts the exact solution.

which is valid when Vn f. D, i.e., except for the case of a contact discontinu
ity. The necessary continuity of this expression i:. .plies the well-known fact
that tangential velocities are continuous across shock, detonation, and de
fiagration waves. Note that tangential velocities are not continuous across
contact discontinuities unless viscosity is present.

198 16. Shocks, Detonations, and Deflagrations

Combining

IV - DNI2 = IVI2 - 2DVn + D2 = IVI2 - V; + (Vn - D)2 (16.18)

with

(16.19)

where VTl and VT2 are the velocities in the tangent directions Tl and T2 ,

yields

IV - DNI2 = vi1 + vi2 + (Vn - D)2, (16.20)

which can plugged into equation (15.6) to obtain

FE = (pe + p(Vi1 : ViJ + p(Vn ; D)2 + p) (Vn _ D) (16.21)

as a rewritten version of equation (15.6). We then write

FE = FE - Fp (Vi12+ ViJ = (pe + P(Vn ; D)2 + p) (Vn - D), (16.22)

which (not coincidently) has the same right-hand side as equation (16.6). In
fact, we eventually derive equation (16.15) again, except with F: replaced
by the identical F:.

The main difference between one spatial dimension and multiple spatial
dimensions occurs in the treatment of the velocity. The ghost cell veloc
ity VG is obtained by combining the normal velocity of the ghost fluid with
the tangential velocity of the real fluid using

V G = VnG N + V R - VnRN, (16.23)

where V R - VnRN is the tangential velocity of the real fluid.
Figure 16.4 shows two initially circular deflagration fronts that have

merged into a single front. The light colored region surrounding the de
flagration fronts is a precursor shock wave that causes the initially circular
deflagration waves to deform as they approach each other. Figure 16.5
shows the smooth level set representation of the deflagration wave.

16.7. Multiple Spatial Dimensions 199

density

1.4

1.2

10 20 30 40 50 60 70 80 90 100

Figure 16.4. Two initially circular defiagration fronts that have recently merged
into a single front. The light colored region surrounding the defiagration fronts
is a precursor shock wave that causes the initially circular defiagration waves to
deform as they approach each other.

200 16. Shocks, Detonations, and Deflagrations

interface location
100

90

80

70

60

50

40

30

20

10

20 40 60 80 100

Figure 16.5. Two initially circular deflagration fronts that have recently merged
into a single front. Note the smooth level set representation of the deflagration
wave.

17
Solid-Fluid Coupling

17.1 Introduction

Solid-fluid interaction problems are still rather difficult for modern compu
tational methods. In general, there are three classical approaches to such
problems: One can treat both the solid and the fluid with Eulerian numer
ical methods, the fluid with an Eulerian numerical method and the solid
with a Lagrangian numerical method, or both the solid and the fluid with
Lagrangian numerical methods.

Many fluid flows, e.g., high-speed gas flows with strong shocks and large
deformations, are difficult to simulate with Lagrangian numerical methods
that use artificial viscosity to smear out shock profiles over a number of
zones in order to reduce postshock oscillations or ringing. The artificial
viscosity can be both problem- and material-dependent. Flows with sig
nificant deformations can cause large mesh perturbations and subsequent
numerical errors that can be removed only with complicated remeshing
and/ or mesh generation procedures that tend to be low-order accurate.
In particular, vorticity can cause the mesh to tangle and sometimes in
vert, in which case the calculation needs to be stopped. Eulerian numerical
methods intrinsically avoid these mesh-associated difficulties by using a
stationary mesh. Furthermore, these schemes capture shocks in a straight
forward fashion using conservation and robust limiters, eliminating the need
for problem-dependent artificial viscosity formulations. This allows shocks
to be modeled with as few as one grid cell without oscillations, whereas La
grangian numerical methods usually suffer from some amount of postshock

202 17. Solid-Fluid Coupling

oscillations until the shock is spread out over about six grid cells; see, e.g.,
Benson [14, 15].

While Eulerian numerical methods are superior for high-speed gas flows,
they can perform poorly for solid mechanics calculations. The capturing
nature of Eulerian methods generally leads to algorithms that are not ac
curate or robust enough to track time-history variables or material response
to loading and damage. On the other hand, Lagrangian numerical methods
are extremely accurate and well tested in this area.

Many researchers agree that it is preferable to use Eulerian numerical
methods for fluids and Lagrangian numerical methods for solids. Then there
are two popular approaches for treating the soli~-fluid interface. First, one
can smear out the nature of the numerical approximations using a La
grangian method in the solid and an Eulerian method in the fluid with a
"mushy" region in between where the grid moves with an intermediate ve
locity. That is, the grid velocity is smoothly varying between the Lagrangian
mesh velocity and the zero-velocity Eulerian mesh. This is the fundamen
tal idea behind arbitrary Lagrangian-Eulerian (ALE) numerical algorithms;
see, e.g., [14]. The problem with this approach is that the variable velocity
mesh has not been well studied, and the numerical algorithms employed
on it tend to be low-order accurate and suspect. The second approach for
treating the solid-fluid interface is to keep the mesh representation sharp so
that the Eulerian and Lagrangian meshes are in direct contact. The problem
with this approach is that the Lagrangian mesh moves, causing Eulerian
mesh points to appear and disappear. In addition, the Eulerian cells tend
to have irregular shapes, referred to as cut cells. These cut cells can lead to
numerical errors and stiff time-step restrictions; see, e.g., [14] and the ref
erences therein, specifically Hancock [78], Noh [121], and McMaster [112],
which discuss the PISCES, CEL, and PELE programs, respectively.

In [62], the author took the second approach for the treatment of the
solid-fluid interface. However, problems with cut cells were avoided by us
ing ghost cells for the Eulerian mesh. These ghost cells are covered (or
partially covered) by the Lagrangian mesh, but are used in the Eulerian
finite difference scheme in order to circumvent small time-step restrictions.
The ghost cells are defined in a way consistent with a contact discontinuity
so that the interface boundary conditions or jump conditions are properly
captured. This method also avoids the blending problems associated with
covering and uncovering of grid points, since covered real grid nodes are
subsequently treated as ghost nodes, and uncovered ghost nodes are sub
sequently treated as real grid nodes. Moreover, the numerical treatment of
the solid-fluid interface does not compromise the solution techniques for
the solid or the fluid. That is, once the ghost cells' values are specified, a
standard Eulerian program can be used to advance the fluid (and its ghost
nodes) in time. A standard Lagrangian program can be used to advance the
solid in time as well as to acquire boundary conditions from the Eulerian
mesh using both the real grid nodes and the ghost nodes in a standard

17.2. Lagrange Equations 203

interpolation procedure. Aivazis et al. [3] successfully used this method
to couple an Eulerian hydroprogram to a highly sophisticated Lagrangian
materials program designed by Ortiz.

17.2 Lagrange Equations

While there are a number of sophisticated Lagrangian programs, we par
ticularly like the approach of Caramana et al. [24] which allows for
implementation of arbitrary forces in a straightforward fashion.

The Lagrange equations are written in nonconservative form with po
sition, velocity, and internal energy as the independent variables. In one
spatial dimension, both x and u are defined at the grid nodes, while e is
defined at the cell centers located midway between the nodes. To initialize
the calculation, the mass of each zone, M Z , is determined, and then the
subzonal masses m Z are defined as half the zonal mass. The nodal mass MP
is defined as the sum of the neighboring subzonal masses. The nodal, zonal,
and subzonal masses all remain fixed throughout the calculation. At each
time step, the location of each grid node is updated according to

(17.1)

where !::::.t is the size of the time step. The velocity at each node is updated
using

un+1 _ un pn

!::::.t = MP' (17.2)

where pn is the net force on the grid node. The internal energy in each
zone is updated with

en+1 _ en Hn

!::::.t = Mz' (17.3)

where Hn is the heating rate of the zone. One can apply either force or
velocity boundary conditions to the grid nodes on the boundary. Velocity
boundary conditions are enforced by setting the velocity of a boundary
node to the desired boundary velocity instead of solving equation (17.2).
Force boundary conditions are applied by adding the boundary force to the
net nodal force pn in equation (17.2).

In two spatial dimensions, both X = (x, y) and iT = (u, v) are defined
at the grid nodes, which are connected in the same fashion as an Eulerian
grid, producing quadrilateral zones. Each quadrilateral zone is split into
four subzones by connecting the midpoints of opposite edges of the zone.
The internal energy is defined at the zone center located at the intersec
tion of the four subzones. To initialize the calculation, the mass of each
zone, MZ, is determined, and then the subzonal masses m Z are defined as

204 17. Solid-Fluid Coupling

one-fourth the zonal mass. The nodal mass MP is defined as the sum of the
(at most four) neighboring subzonal masses. Once again, the nodal, zonal,
and subzonal masses all remain fixed throughout the calculation. The in
dependent variables are updated with equations (17.1), (17.2) and (17.3)
with x, u, and pn replaced with X, if, and F, respectively. Either force or
velocity boundary conditions are applied to the nodes on the boundary.

For three spatial dimensions we refer the reader to Caramana et al. [25].

17.3 Treating the Interface

Boundary conditions need to be imposed on both the Eulerian and La
grangian grids where the Lagrangian grid partially overlaps the Eulerian
grid. First the interface itself needs to be defined, and since the Lagrangian
grid nodes move at the local material velocity, these nodes can be used
to determine the position of the interface. This interface divides the Eule
rian mesh into separate regions, a region populated by real grid nodes and
a region populated by ghost nodes. Interface boundary conditions for the
Eulerian mesh are imposed by defining mass, momentum, and energy in
the ghost nodes. Interface boundary conditions for the Lagrangian mesh are
imposed by either specifying the velocity of the grid nodes on the boundary
or by specifying the force applied to that boundary.

Since the interface moves with the local material velocity, it can be
treated as a contact discontinuity. The pressure and the normal velocity are
continuous across the interface, while the entropy and tangential velocities
are uncoupled across the interface. The interface values of the uncoupled
variables are captured by extrapolating these variables across the interface
into the ghost cells. The continuous or coupled variables are determined
using the values from both the Eulerian and the Lagrangian meshes.

The interface normal velocity can be determined by applying any num
ber of interpolation techniques to the Eulerian and Lagrangian mesh values.
However, one should be careful to define the interface normal velocity in a
way that is consistent with the material in the Lagrangian mesh. Pertur
bations to the velocity of the Lagrangian grid nodes can provide enormous
stress due to resistive forces such as material strength. For this reason, in
order to determine an accurate (and Lagrangian mesh-consistent) value of
the normal velocity at the interface, only the Lagrangian mesh is used to
determine the interface velocity, as was done in [78], [112], and [121]. Both
calculations use this interface normal velocity, so that [VN] = 0 is enforced.
That is, the Lagrangian mesh uses the computed velocities of its boundary
nodes, while the Eulerian calculation captures this interface normal veloc
ity by assigning to each ghost node the interface normal velocity of the
nearest Lagrangian mesh point on the interface.

17.3. Treating the Interface 205

Since the interface normal velocity is defined as the velocity of the nodes
on the Lagrangian mesh boundary with no contribution from the Eulerian
mesh, velocity boundary conditions cannot be enforced on the Lagrangian
mesh at the interface. Instead, force boundary conditions are applied by
interpolating the Eulerian grid pressure to this Lagrangian interface. In this
fashion, the interface pressure is determined using only the Eulerian grid
values, ignoring contributions from the Lagrangian mesh, as in [78J, [112],
and [121). Both calculations use this interface pressure, so that [P) = 0 is
enforced. The interface pressure is captured by the Eulerian calculation by
extrapolating the pressure across the interface into the ghost cells which
is similar to the treatment of entropy and tangential velocity. Then the
interface pressure is interpolated from the Eulerian grid in order to apply
force boundary conditions to the Lagrangian mesh.

Noh [121) suggested that it might be better to use some average of the
Lagrangian and Eulerian grid values for determining the pressure at the
interface. For Lagrangian calculations with artificial viscosity and mate
rial strength, the jump condition implies that the net stress in the normal
direction is continuous, not just the pressure. Therefore, this advocated
averaging procedure would need to take place between the pressure in the
fluid and the normal component of the net stress in the normal direction
in the solid. However, this can be dangerous, for example, when the La
grangian material is in tension, since near-zero or negative stress might be
calculated at the interface. While Lagrangian methods can be quite robust
under tension, Eulerian methods can suffer a number of problems in treat
ing near-zero or negative pressures associated with rarefied or cavitated
fluids.

The one-dimensional interface is defined by the location of the La
grangian boundary nodes that are adjacent to grid nodes of the Eulerian
mesh. This interface location is used to construct a signed distance function
in order to apply level set methods near the interface. Before defining values
in the Eulerian ghost nodes, a check is performed to see whether enough
ghost nodes are present. That is, since the Lagrangian mesh is moving, one
needs to ensure that there is adequate overlap between the two meshes.
This is done by examining the values of ¢ on the computational bound
aries of the Eulerian mesh. If the computational boundary is an Eulerian
ghost node, then the value of ¢ gives the distance to the interface and
can be used to estimate the number of ghost nodes that exist between the
interface and the computational boundary. Then the size of the Eulerian
mesh can be increased if there are not enough ghost nodes.

The Eulerian ghost nodes are defined by first extrapolating Sand p.
Then u at each ghost node is assigned the value of u at the nearest La
grangian boundary node that lies on the interface between the Eulerian
and Lagrangian grids. Force boundary conditions are applied to the La
grangian interface using the pressure from the Eulerian grid. First, the
pressure at the interface is determined using linear interpolation from the

206 17. Solid-Fluid Coupling

Eulerian mesh. This linear interpolation requires valid pressure values in
both the real and the ghost nodes. Therefore, the pressure extrapolation
step needs to be carried out before this linear interpolation step. This Eu
lerian interface pressure makes a contribution of ±p to the net force on the
Lagrangian boundary node, depending on whether the Lagrangian mesh
lies to the right or to the left of the interface, respectively.

With boundary conditions specified on both the Eulerian and Lagrangian
meshes, both can be advanced one Euler step in time. Both the Eulerian
real grid nodes and a band of Eulerian ghost nodes are advanced in time.
These ghost nodes are advanced in time so that they have valid values in
case they are uncovered by the Lagrangian mesh.

The two-dimensional interface is defined by the line segments of the La
grangian mesh boundary that are adjacent to grid nodes of the Eulerian
mesh. This interface is used to construct a signed distance function defined
at every Eulerian grid node. Once again, ¢ is examined on the computa
tional boundaries of the Eulerian mesh to ensure that enough ghost nodes
are present, and the size of the Eulerian mesh is increased when necessary.

The Eulerian ghost nodes are defined by first extrapolating S, p, and V
across the interface into the ghost nodes. Then for each ghost node, the
closest point on the Lagrangian interface is determined. If the closest point
happens to be on the end of a linear segment, i.e., a Lagrangian grid node,
then that velocity can be designated the closest interface velocity. Other
wise, the closest point is on an edge connecting two Lagrangian grid nodes,
and the closest interface velocity is determined using linear interpolation
between those two nodes. The normal component of the interface velocity
is combined with the tangential component of the extrapolated velocity
to determine the velocity at each ghost node. Once the Eulerian ghost
nodes have valid values for the extrapolated pressure, force boundary con
ditions can be determined at the Lagrangian interface. The midpoint of
each linear interface segment is defined as a control point, and bilinear in
terpolation is used to determine the Eulerian mesh pressure at each of these
control points. Then this pressure is multiplied by both the length and the
inward-pointing normal of the line segment to determine the magnitude
and direction of the Eulerian pressure force on this segment. Finally, half
of this Eulerian pressure force is added to each of the two nodes that make
up the segment.

Figure 17.1 shows the velocity field obtained as a shock wave propagates
through an Eulerian gas sandwiched between two Lagrangian materials
with strength.

17.3. Treating the Interface 207

velocity Ileid

0 .9

Figure 17.1. A shock wave propagating through a gas bounded on top and bottom
by Lagrangian materials with strength. (See also color figure, Plate 10.)

18
Incompressible Flow

18.1 Equations

Starting from conservation of mass, momentum, and energy, the equations
for incompressible flow are derived using the divergence-free condition V .
if = 0, which implies that there is no compression or expansion in the flow
field, The equation for conservation of mass becomes

Pt+ if· '1p=o, (18.1)

indicating that the (possibly spatially varying) density is advected
along streamlines of the flow. The Navier-Stokes equations for viscous
incompressible flow are

- Px (2/-lux)x + (/-l(Uy + vX))y + (/-l(uz + wX»)z
Ut + V . '1u + - = , (18.2)

P P
- Py (/-l(Uy + vx»x + (2/-lvy)y + (/-l(vz + wy»)z

Vt + V . '1v + - = + g,
p p

(18.3)

- pz (/-l(uz + wx»x + (/-l(vz + wy»y + (2/-lwz)z
Wt + V . '1w + - = , (18.4)

P P
where /-l is the viscosity and 9 is the acceleration of gravity. These equations
are more conveniently written in condensed notation as a row vector

- (-) - '1p (V· rf lit + V· V V + P = p + g, (18.5)

210 18. Incompressible Flow

where "T' is the transpose operator, 9 = (0, g, 0), and T is the viscous
stress tensor

(
2ux u y + Vx Uz + Wx

T = J.t u y + Vx 2vy Vz + Wy

Uz + Wx Vz + Wy 2wz

(18.6)

which can be expressed in a more compact form as

(18.7)

The incompressible flow equations model low-speed fluid events, includ
ing many interesting liquid and gas flows observed in everyday life. A
number of classic texts have been written about both the analytical and nu
merical approaches to these equations, including Landau and Lifshitz [101]
and Batchelor [11]. A rather inspiring collection of photographs obtained
from various experiments was assembled by Van Dyke [169]. A standard in
troduction to numerical methods for the Navier-Stokes equations is Peyret
and Taylor [133], which discusses both the artificial compressibility method
of Chorin [46] and the projection method of Chorin [47]. Some of the most
popular modern-day numerical methods were introduced by Kim and Moin
[96], Bell, Colella, and Glaz [13], and E and Liu [56]. A rather intriguing
look at all three of these methods was recently presented by Brown, Cortez,
and Minion [19].

18.2 MAC Grid

Harlow and Welch [79] proposed the use of a special grid for incompressible
flow computations. This specially defined grid decomposes the computa
tional domain into cells with velocities defined on the cell faces and scalars
defined at cell centers. That is, Pi,j,k, Pi,j,k, and J.ti,j,k are defined at cell
centers, while ui±l 3' k' Vi 3'±1 k' and Wi J' k±.! are defined at the appropriate

2' , '2' "2
cell faces.

Equation (18.1) is solved by first defining the cell center velocities with
simple averaging:

(18.8)

(18.9)

(18.10)

Then the spatial derivatives are evaluated in a straightforward manner, for
example using third order accurate Hamilton-Jacobi ENO.

18.2. MAC Grid 211

In order to update, u, v, and w on the appropriate cell faces, equations
(18.2), (18.3) and (18.4) are written and evaluated on those appropriate
cell faces. For example, in order to discretize the convective V . Vu term at
Xi±l J" k we first use simple averaging to define V at Xi±l J' k; i.e.,

2' , 2' ,

V" 1 k + V'" 1 k + V'+l" 1 k + V'+l '+1 k 1.')-2' 1,J+2' 'l, ')-2' i ,) 2'
V'+l "k =

• 2,J, 4
(18.11)

and

W, 'k 1 +W, 'k+l +W'+l 'k 1 +W'+l 'k+l 1,,), -2' '1.,), '2 t ,l, -'2 t ,J, 2'
W"+l 'k =

• 2')' 4
(18.12)

define v and w, while u is already defined there. Then the V· Vu term on
the offset Xi ± 1 J' k grid is discretized in the same fashion as the V . V P

2' ,

term on the regular Xi,j,k grid, for example with third order accurate
Hamilton-Jacobi ENO. The convective terms in equations (18.3) and (18.4)
are discretized similarly.

The viscous terms are discretized using standard central differencing. For
example,

u"+ 1 'k - U' 1 'k
(u)., _ t 2')' 'l,-2'}'

x ',J,k - t:.x ' (18.13)

(18.14)

and

(18.15)

are used to compute the first derivatives of u. The functions p and IL are
defined only at the grid points, so simple averaging is used to define them
elsewhere, e.g.,

lLi,j,k + lLi+l,j,k
1Li+~,j,k = 2 (18.16)

and

lLi,),k + lLi+l,j,k + lLi,j+1,k + lLi+l,j+l,k
1L.+~,j+!,k = 4 (18.17)

Then the second-derivative terms are calculated with central differencing
a''l well. For example, (IL(Uy + vX))y in equation (18.2) is discretized as

lLi+!,j+!,k(Uy + VX)i+!,j+!,k -1Li+!,j-!,k(Uy + vX)i+!,j-!,k (18.18)
t:.y

212 18. Incompressible Flow

18.3 Projection Method

The projection method is applied by first computing an intermediate
velocity field V*, ignoring the pressure term

v*-vn (~) ~ ('1.r)T ~
-L:,-t-+ V·'1 V= p +g,

and then computing a divergence-free velocity field vn+l,
VnH - V* '1p

L:,t +-p =0,

(18.19)

(18.20)

using the pressure as a correction. Note that combining equations (18.19)
and (18.20) to eliminate V* results in equation (18.5) exactly.

Taking the divergence of equation (18.20) results in

'1. ('1P) = '1. V* (18.21)
P 6t

after we set '1. vnH to zero, i.e., after we assume that the new velocity
field is divergence free. Equation (18.21) defines the pressure in terms of the
value of L:,t used in equation (18.19). Defining a scaled pressure of p* = p6t
leads to

(18.22)

and

(18.23)

in place of equations (18.20) and (18.21), where p* does not depend on 6t.
When the density is spatially constant, we can define p = p6t/ p, leading
to

(18.24)

and

(18.25)

where p does not depend On 6t or p.
Boundary conditions can be applied to either the velocity or the pressure.

In order to apply boundary conditions to vn+l, we apply them to V* after
computing V* in equation (18.19) and before solving equation (18.21).
Then in equation (18.21), we set '1p. N = 0 on the boundary, where N
is the local unit normal to the boundary. Since the flow is incompressible,
the compatibility condition

£ V* . N = 0 (18.26)

18.4. Poisson Equation 213

needs to be satisfied when the boundary condition on y* is specified in
order to guarantee the existence of a solution. Here, r represents the
boundary of the computational domain and N is the unit normal to that
boundary. See, for example, [133J for more details.

18.4 Poisson Equation

In order to update the intermediate velocity y* obtained with equation
(18.19) to the divergence-free yn+1 using equation (18.20), we need to first
find the pressure by solving equation (18.21). This equation is elliptic, since
the incompressibility condition is equivalent to assuming an infinite speed
of propagation for the sound waves. This elliptic treatment of the acoustic
waves gives a CFL condition that depends only on the fluid velocity; i.e., the
sound waves do not playa role. Note that one should include the viscosity
and gravity terms in the time-step restriction as well, unless, of course, the
viscosity is treated implicity.

The right-hand side of equation (18.21) can be evaluated at each cell
center using central differencing; for example,

u* 1· - u* 1 .

(u*).. - t+"2,),k t-"2,J,k
x ,,],k - 6x (18.27)

is used to compute u~. The components of the 'Vp/ p term are computed
at cell faces, for example

() . 1. = Pi+l,j,k - Pi,j,k
Px t+"2 ,],k 6x (18.28)

is used to compute the pressure derivative at Xi+! J' k' This discretization of
2' ,

the pressure derivatives is used both in equation (18.20) to update the ve-
locity field and in equation (18.21) to find the pressure. In equation (18.21)
a second derivative is needed as well. Once again, central differencing is
used; for example,

((/)) .. = (Px/p)i+!,j,k - (Px/P)i-!,j,k
Px P x t] k " " L.:l.X

(18.29)

is used to compute the second derivative in the x-direction.
Discretization of equation (18.21) at each cell center leads to a coupled

linear system of equations for the unknown pressures (one equation at each
cell center). This system is symmetric and can be solved in a straightfor
ward manner using a preconditioned conjugate gradient (PCG) method
with an incomplete Choleski preconditioner. The interested reader is re
ferred to the comprehensive computational linear algebra text of Golub
and Van Loan [75J. After the iterative PCG method is used to compute
the pressure at each cell center, the derivatives can be computed at the cell
faces and used to update the velocity field in equation (18.20).

214 18. Incompressible Flow

18.5 Simulating Smoke for Computer Graphics

For computer graphics applications one is less concerned with overall accu
racy and more concerned with computational efficiency, as long as visually
believable results can be obtained. For this reason, computer graphics sim
ulations are usually undertaken on relatively coarse grids using methods
that allow for large time steps. A popular numerical method in the at
mospheric sciences community is the semi-Lagrangian method; see, e.g.,
Staniforth and Cote [155] for a review. Semi-Lagrangian methods consist
in backward tracing of characteristic information from grid points to arbi
trary points in space with subsequent interpolation of data from the grid
points to the backward-traced origins of the characteristics. This method
was first proposed by Courant et al. [51] and is guaranteed to be stable for
any time step as long as monotone interpolation is used.

In [70], Fedkiwet al. used a first-order accurate semi-Lagrangian method
to produce visually convincing simulations of smoke. Since this method is
highly dissipative, the viscous terms were ignored in order to artificially
increase the Reynolds number on a coarse grid. To further amplify the
numerical Reynolds number, a vorticity confinement term was added as
an artificial forcing function on the right-hand side of the equations. This
vorticity confinement method was invented by Steinhoff; see, e.g., [161] for
more details. Since the air was assumed to have constant density, equa
tion (18.1) was not needed to model the air. On the other hand, since
equation (18.1) can be used to model any passive scalar, it was used to
independently track the concentration of smoke within the air. Figure 18.1
shows a warm smoke plume injected from left to right rising under the
effects of buoyancy, while Figure 18.2 depicts the flow of smoke past a
sphere.

18.5. Simulating Smoke for Computer Graphics 215

Figure 18.1. A warm smoke plume injected from left to right rises under the
influence of buoyancy. (See also color figure, Plate 11.)

Figure 18.2. Small-scale eddies are generated as smoke flows past a sphere. (See
also color figure, Plate 12.)

19
Free Surfaces

19.1 Description of the Model

Consider a two-phase incompressible flow consisting of water and air. The
two phase interface separating these fluids has rather complicated dynamics
that we will discuss later (in Chapter 21). In many situations the behavior of
the heavier fluid significantly dominates the behavior of the lighter fluid. In
these situations, the model can be simplified by treating the air as a simple
constant-pressure fluid that exerts no other stress (i.e., except pressure
forces) on the interface. This removes any relevant dynamic effects from
the air, leaving only a simple uniform pressure force normal to the interface
independent of the interface topology or motion.

Harlow and Welch [79] used marker particles to identify which grid cells
contained water and which grid cells contained air. Later, Raad et al. [136]
improved the treatment of the pressure boundary conditions at the in
terface, introducing a sub cell treatment of the pressure. Chen et al. [39]
improved the velocity boundary conditions at the free surface to obtain a
more accurate flow field. Furthermore, Chen et al. [40] reduced the need
to resolve the three-dimensional volume with particles by introducing a
method that required particles only near the free surface itself.

Particle locations give only a rough indication of the location of the
free surface. We instead prefer to use the level set function ¢ to more
accurately model the free surface. Then the Navier-Stokes equations are
solved on the water side of the interface only. In order to discretize both
the level set equation and the Navier-Stokes equations, ghost cell values of

218 19. Free Surfaces

the velocity are needed on the air side of the interface. These are defined
by extrapolating the velocity field across the interface using equation (8.1).
Dirichlet pressure boundary conditions can be applied at the free surface by
setting the pressure to atmospheric pressure at every cell center located in
the air. This use of Dirichlet boundary conditions on the pressure reduces
the need to enforce the compatibility condition.

The atmospheric pressure boundary condition should be applied directly
on the free surface, not at cell centers that are a finite distance away
from the surface. Setting the pressure to atmospheric pressure at every
cell center in the air causes an overprediction of the pressure at the in
terface itself. Raad et al. [136] reduces this problem to some degree by
using micro cells near the interface, lowering the size of the error constant
in this first-order accurate approximation of the boundary condition. Re
cently, Cheng et al. [44) devised a fully second-order accurate method for
enforcing the atmospheric pressure boundary conditions on the free surface.
This is accomplished by setting the pressure at cells in the air to specially
calculated values that are lower than atmospheric pressure. This implicitly
enforces the atmospheric pressure boundary condition exactly on the free
surface to second-order accuracy. Notably, this method does not disturb
the symmetric nature of the coefficient matrix that needs to be inverted to
find the pressures.

19.2 Simulating Water for Computer Graphics

One of the difficulties associated with using level set methods to simulate
free surfaces (and fluids in general) is that level set methods tend to suffer
from mass loss in underresolved regions of the flow. Foster and Fedkiw [71]
addressed this problem in the context of splashing water by devising a new
numerical approach that hybridizes the particle method and the level set
method using the local interface curvature as a diagnostic. The curvature
was used to monitor the interface topology by classifying regions of high
curvature as underresolved. In these underresolved regions, the particles are
used to rebuild the level set function, reducing mass loss to a large degree.
On the other hand, in regions of relatively low curvature the high-order
accurate level set solution is preferred. A sample calculation of a splash
generated by a sphere is shown in Figure 19.1. In some regions of the flow
the grid is too coarse to capture the splashing behavior, even with the aid
of the particles, and some particles will inevitably escape from the water
side of the interface and appear on the air side. These escaped particles can
be used to generate an interesting spray effect, as shown in Figure 19.2,
where a slightly submerged ellipse slips through the water.

Although the local interface curvature is a good diagnostic of potential
mass loss in level set methods, the approach in [71] is still somewhat ad hoc

19.2. Simulating Water for Computer Graphics 219

Figure 19.1. A splash is generated as a sphere is thrown into the water. (See also
color figure, Plate 13.)

in nature. A more thorough approach to hybridizing particle methods and
level set methods (the particle level set method) was presented in Chap
ter 9. Figure 19.3 shows the highly realistic thin water sheet generated as
a sphere splashes into the water. This highlights the ability of the particle
level set method to accurately capture thin interfacial regions that may be
underresolved by the Cartesian grid. Figure 19.4 shows the impressive re
sults generated using this method to model water flowing into a cylindrical
glass. A close-up view of the bottom of the glass is shown in Figure 19.5.

220 19. Free Surfaces

Figure 19.2. An interesting spray effect is generated as a slightly submerged ellipse
slips through the water. (See also color figure, Plate 14.)

19.2. Simulating Water for Computer Graphics 221

Figure 19.3. A thin water sheet is generated by a sphere thrown into the water.
(See also color figure, Plate 15.)

Figure 19.4. Pouring water into a cylindrical glass using the particle level set
method. (See also color figure, Plate 16.)

222 19. Free Surfaces

Figure 19.5. Pouring water into a cylindrical glass using the particle level set
method. (See also color figure, Plate 17.)

20
Liquid-Gas Interactions

20.1 Modeling

Liquid-gas interactions, e.g., the vaporization and subsequent combustion
of liquid fuel droplets or the shock-induced mixing of liquids, are rather
difficult problems in computational fluid dynamics. These problems ad
dress the interaction of liquid droplets with a compressible gas medium.
There are three classical approaches to such problems: Both phases can be
treated as compressible fluids (as we did in Chapter 15), both phases can
be treated as incompressible fluids (as we did in Chapter 21), or the gas can
be treated as a compressible fluid while the liquid is treated as an incom
pressible fluid. A completely incompressible treatment can be ruled out any
time one is interested in shock waves or other compressible phenomena. A
completely compressible treatment is not desirable, since a relatively high
sound speed in the liquid phase can impose a restrictive (and inefficient)
CFL condition. Moreover, a completely compressible approach is limited to
liquids for which there are acceptable models for their compressible evolu
tion. To overcome these difficulties, Caiden et al. [23] modeled the gas as a
compressible fluid and the liquid as an incompressible fluid. They coupled
a high-resolution shock-capturing scheme for the compressible gas flow to
a standard incompressible flow solver for the liquid phase.

224 20. Liquid-Gas Interactions

20.2 Treating the Interface

Since the interface is a contact discontinuity moving with the local fluid ve
locity, the Rankine-Hugoniot jump conditions imply that both the pressure
and the normal velocity are continuous across the interface. An incompress
ible liquid can be thought of as the limiting case obtained by increasing
the sound speed of a compressible liquid to infinity. In this sense, an in
compressible fluid can be thought of as a very stiff compressible fluid, in
fact, the stiffest. The interface separating the compressible flow from the
incompressible flow is treated using the robust interpolation procedure out
lined in Section 15.9. That is, the compressible gas is used to determine
the interface pressure, while the incompressible liquid is used to determine
the interface normal velocity.

Advancing the solution forward in time consists of four steps. First, the
entire incompressible velocity field is extrapolated across the interface. The
ghost cell values are used to find the intermediate incompressible velocity
field V*. Second, the entire compressible state vector is extrapolated across
the interface, and the extrapolated tangential velocity is combined with the
incompressible normal velocity to obtain a ghost cell velocity for the com
pressible fluid. Then the compressible gas is updated in time. Third, the
level set function is advanced forward in time using the incompressible ve
locity field only, since the interface velocity is defined by the incompressible
flow. The extrapolated ghost cell values of the incompressible velocity field
are useful in this step. Fourth, the intermediate incompressible flow veloc
ity V* is projected into a divergence-free state using the updated level set
location and the updated values of the compressible pressure as Dirichlet
boundary conditions at the interface. This last step accounts for the in
terface forces imposed by the pressure of the compressible fluid. Surface
tension effects are easily included in this last step using Dirichlet pressure
boundary conditions of P = Pc + (TK" where Pc is the compressible pressure,
(T is a constant, and K, is the local interface curvature. This accounts for
the jump in pressure due to surface tension forces, i.e., [P] = (TK,.

Figure 20.1 shows an incompressible liquid droplet moving from left to
right in a compressible gas flow. Notice the lead shock in the compressible
gas. Figure 20.2 shows a shock wave impinging on an incompressible liquid
droplet. A reflected wave can be seen to the left, and a faint transmitted
wave can be seen to the right.

20.2. Treating the Interface 225

0.9

0.8

0.7

0.8

0.5

0.4

0.3

0.2

0.1

02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 20.1. An incompressible droplet traveling to the right in a compressible
gas flow. Note the lead shock wave. (See also color figure, Plate 18.)

226 20. Liquid-Gas Interactions

velocity field

0.9

0.8

0.7

0.6 .. :

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 20.2. A shock wave impinging on an incompressible droplet producing
a reflected wave and a (very) weak transmitted wave. (See also color figure,
Plate 19.)

21
Two-Phase Incompressible Flow

21.1 Introduction

The earliest real success in the coupling of the level set method to problems
involving external physics came in computing two-phase incompressible
flow, in particular see the work of Sussman et al. [160] and Chang et al.
[38]. In two-phase incompressible flow, the Navier-Stokes equations are used
to model the fluids on both sides of the interface. Generally, the fluids
have different densities and viscosities, so these quantities are discontinuous
across the interface. Both the discontinuous viscosity and surface tension
forces cause the pressure to be discontinuous across the interface as welL
In addition, a discontinuous viscosity leads to kinks in the velocity field
across the interface.

In [132], Peskin introduced the "immersed boundary" method for simu
lating an elastic membrane immersed in an incompressible fluid flow. This
method uses a <5-function formulation to smear out the numerical solution
in a thin region about the immersed interface. This concept has been used
by a variety of authors to solve a number of interface-related problems. For
example, [160] defined a numerically smeared-out density and viscosity as
functions of the level set function,

p(cp) = p- + (p+ - p-) H(1)),

p,(cp) = p,- + (p,+ - p,-) H(cp),

(21.1)

(21.2)

where H(1)) is the numerically smeared-out Heaviside function defined by
equation (1.22). This removes all discontinuities across the interface, except

228 21. Two-Phase Incompressible Flow

the jump in pressure due to surface tension, lP] = (7/';', where (j is a constant
coefficient and /'l, is the local curvature of the interface. Using the immersed
boundary method to smear out the pressure across the interface leads to
continuity of the pressure, lP] = 0, and loss of all surface-tension effects.
This was remedied by Brackbill et al. [18] in the context of volume of fluid
(VOF) methods and by Unverdi and Tryggvason [168] in the context of
front-tracking methods by adding a new forcing term to the right-hand
side of the momentum equations. In the context of level set methods (see
[160]) this new forcing term takes the form

b(¢)(jK,N
(21.3)

p

where b(¢) is the smeared-out delta function given by equation (1.23). In
the spirit of the immersed boundary method, [18] referred to this as the
continuum surface force (CSF) method.

In the interest of solving for the pressure jump directly, Liu et
al. [106] devised a new boundary-condition-capturing approach for the
variable-coefficient Poisson equation to solve problems of the form

v (~vp) = J, (21.4)

where the jump conditions lP] = 9 and [(1/ p)Vp· N] = h are given. Here,
p can be discontinuous across the interface as well. Figure 21.1 shows a
typical example of the discontinuous solutions obtained using this method.
Note that both the pressure and its derivatives are clearly discontinuous
across the interface. Kang et al. [91] applied this technique to multiphase
incompressible flow, illustrating the ability to solve these equations without
smearing out the density, the viscosity, or the pressure across the interface.
Moreover, the b(¢)(j/'l,N / p forcing term was not needed, since the pressure
jump was modeled directly. Figure 21.2 shows a water drop falling through
the air into the water. Here, surface tension forces cause the spherically
shaped region at the top of the resulting water jet in the last frame of the
figure.

LeVeque and Li [102] proposed a second-order accurate sharp interface
method to solve equation (21.4). In general, one needs to solve a linear sys
tem of equations of the form Ap = b, where p are the unknown pressures, A
is the coefficient matrix, and b is the right-hand side. Unfortunately, the dis
cretization in [102] leads to a complicated asymmetric coefficient matrix,
making this linear system difficult to solve. So far, this method has not
been applied to two-phase incompressible flow. In contrast, the discretiza
tion proposed in [106] leads to a symmetric coefficient matrix identical
to the standard one obtained when both the pressure and its derivatives
are continuous across the interface. Adding the jump conditions only re
quires modification of the right-hand side, b. This allows the use of standard

21.1. Introduction 229

o -1

Figure 21.1. Solution of \7 . (~\7p) = f(x,y), with [P] = g(x,y) and

[~\7p. N] = h(x, y). Note the sharp resolution of the discontinuity.

black-box linear system solvers even in the presence of complicated jump
conditions. Recently, Li and Lai [103] extended [106] by adding a second
order accurate correction term to the method. This correction term is valid
in the presence of an immersed interface, raising the order of accuracy from
one to two in that instance. Unfortunately, a correction term for two-phase
incompressible flow does not yet exist.

230 21. Two-Phase Incompressible Flow

Figure 21.2. A water drop falls through the air into the water. Surface tension
forces cause the spherically shaped region at the top of the water jet in the last
frame. (See also color figure, Plate 20.)

21.2 Jump Conditions

Applying conservation to the two-phase incompressible flow interface
results in the jump conditions

(21.5)

where nand n are orthogonal unit tangent vectors, I is the identity ma
trix, and T is the viscous stress tensor; see equation (18.6). Equation (21.5)
states that the net stress on the interface must be zero, since it has no
mass.

Since the flow is viscous, the velocities and their tangential derivatives
are continuous across the interface, i.e.,

[uJ = [vJ = [wJ = 0,

[V'u . T1J = [V'v . T1J = [V'w . T11 = 0,

[V'u . T2J = [V'v . T2J = [V'w . T2J = o.

(21.6)

(21.7)

(21.8)

21.2. Jump Conditions 231

This leads to the jump condition

[(Vu . iV, Vv . iV, Vw . iV) . iV] = 0, (21.9)

which states that the normal derivative of the normal component of the
velocity field is continuous across the interface. Using this, the jump
condition

[P)- 2 fIL) (Vu. iV, Vv· iV, Vw· iV) . iV = 0"K, (21.10)

can be written for the pressure. Notice that this reduces to [P) = 0"K, when
the viscosity is continuous across the interface. Further derivations lead to

+NTR 0:) RTR (21.11)

-(~ r (~)(~: r RTR).

which is useful for discretizing the viscous terms, especially since the right
hand side of this equation involves only derivatives that are continuous
across the interface. Notice that all the quantities on the left-hand side of
this equation become continuous across the interface when [IL) = 0 forces
the right-hand side to be identically zero. See [106) for details.

Since the velocity is continuous across the interface, the material
derivative, or Lagrangian, acceleration is continuous as well,

[~~] = [~:] = [~~] = o. (21.12)

Since the Navier-Stokes equations (18.2), (18.3), and (18.4) are valid on
both sides of the interface, these equations do not jump across the interface;
i.e.,

[
_ (_) _ Vp (V· r)T]

"tit + V· V V + P - p - 9 = o. (21.13)

232 21. Two-Phase Incompressible Flow

This can be combined with equation (21.12) to obtain

which is equivalent to

[p; 1 = [(2~Ux)X + (~(u, + V;)), + (~(ux + wX))x 1 '
[p; 1 = [(~(Uy + vx))x + (2~;'), + (~(vx + w'))x 1 '

[p; 1 = [(1'(Ux + '"x))x + (p(:x + w,)), + (2~wx)x 1 '
in expanded form.

(21.14)

(21.15)

(21.16)

(21.17)

The two-phase incompressible flow equations are discretized in the
same manner as the equations for one-phase incompressible flow. First,
an intermediate velocity field V* is computed using equation (18.19).
Then equation (18.21) is solved to find the pressure, which is used in
equation (18.20) to make the velocity field divergence free. Due to the dis
continuous nature of several quantities across the interface, special care
is needed in discretizing the viscous terms in equation (18.19) and in
discretizing the pressure and density in equations (18.21) and (18.20).

21.3 Viscous Terms

In the o-function approach the density and the viscosity are numerically
smeared out, so that they are continuous across the interface. The contin
uous viscosity simplifies the jump conditions, allowing the viscous terms
to be discretized just as they were for one-phase incompressible flow. The
only difference is that p and J-L are defined by equations (21.1) and (21.2)
respectively. Averaging of ¢ is preferred to averaging of other quantities.
For example, the viscosity at Xi+1 J" k is defined as

2' ,

(21.18)

as opposed to

(21.19)

as was done in equation (18.16).
If one prefers to keep the density and viscosity sharp across the interface,

the sign of the level set function can be used to determine J-L as J-L- or J-L+

21.3. Viscous Terms 233

and to determine p as p- or p+. Consider the case where f.l and p are both
independently spatially constant on either side of the interface, allowing
the simplification of the viscous terms to

f.l (uxx + Uyy + U ZZ)

p
(21.20)

(21.21)

(21.22)

with the aid of V' . if = O. Since the velocities are continuous, their first
derivatives can be computed directly. However, the jump conditions in
equation (21.11) are needed to compute the second derivatives.

The right-hand side of equation (21.11) needs to be computed in order to
evaluate the jumps across the interface. First, the continuous velocity field is
averaged from the MAC grid to the cell centers. Then central differencing
is used to compute the first derivatives at each cell center. These first
derivatives are multiplied by the appropriate components of the normal
and tangent vectors to obtain a numerical estimate for the right-hand side
of equation (21.11), which we denote by the matrix J. Since J is a spatially
continuous function, spatial averages can be used to define J elsewhere. For
example, Ji+!,j,k = (Ji,j,k + Ji+l,j,k) /2.

Once J has been computed, the second derivatives are computed using
techniques similar to those developed in [106]. For example, consider the
discretization of f.lUxx at Xi+ 1 J' k using UM = Ui+ 1 J' k and its neighbors

2' , 2' ,

UL = Ui_l J' k and UR = Ui+2 J' k' We need averaged values of ¢ and pI
2' , 2' ,

(the appropriate scalar entry of J) at the same three spatial locations as
the U terms. If ¢ L, ¢ M, and ¢ R are all greater than zero, we define

(21.23)

and

(21.24)

arriving at

(21.25)

in the standard fashion. A similar discretization holds when all three ¢
values are less than or equal to zero.

234 21. Two-Phase Incompressible Flow

Suppose that ¢>L ::; ° and ¢>M > 0, so that the interface lies between the
associated grid points. Then

(21.26)

can be used to estimate the interface location by splitting this cell into
two pieces of size Of::::.x on the left and (1 - O)f::::.x on the right. At the
interface, we denote the continuous velocity by U1 and calculate the jump
as h = OJM+(1-0)h. Then we discretize the jump condition [J-lUx] = J1
as

J-l+ (~~ ;)~x) - J-l- (U~~:L) = h, (21.27)

solving for U1 to obtain

J-l+UMO + J-l-uL(l - 0) - hO(l - O)f::::.x
U1 = J-l+O + J-l- (1 - 0) , (21.28)

so that we can write

() _ + (UM - U1) _ A (UM - UL) f-thO
J-lUx L - J-l (1- O)f::::.x - J-l b.x +~, (21.29)

where
A J-l+J-l-

J-l = J-l+O + J-l- (1 - 0)
(21.30)

defines an effective J-l. Similarly, if ¢>L > ° and ¢>M ::; 0, then

(J-lUx)L = J-l- (~~ ;)~x) = f-t (UM f::::.~ UL) - f-t:!O, (21.31)

where
A J-l-J-l+

J-l = J-l-O + J-l+(1 - 0)
(21.32)

defines an effective J-l.
In similar fashion, if ¢>R > ° and ¢>M ::; 0, then

0= I¢>RI
I¢>RI + I¢>MI

(21.33)

is used to estimate the interface location with (1 - O)b.x on the left and
Ob.x on the right. Then J1 = OJM + (1 - O)JR is used to discretize the
jump condition as

+ (UR - U1) _ (U1 - UM). _
J-l Ob.x - J-l (1 _ O)f::::.x - h, (21.34)

resulting in

J-l-UMO + J-l+UR(1- 0) - hO(l - O)b.x
U1 = J-l-O + J-l+(1- 0)

(21.35)

21.4. Poisson Equation 235

and

(21.36)

where

• J.L- J.L+
J.L = {L-O + J.L+(1 - 0)

(21.37)

defines an effective J.L. If ¢>R :::; ° and ¢>M > 0, then

+ (UI-UM) • (UR-UM) {thO
(J.LUx)R = J.L (1 _ O)6.x = J.L 6.x . + --;;::-' (21.38)

where

• J.L+ J.L-
J.L = {L+O + J.L- (1 - 0)

(21.39)

defines an effective {L.

21.4 Poisson Equation

Consider solving

\7. ((3''Vp) = I (21.40)

for the pressure P with specified jump conditions of [PJ = a and [{3PnJ = b
across the interface. In the context of equation (18.21), {3 = 1/ P and
I = (\7 . V*)/6.t. When the a-function method is used, this equation is
straightforward to solve, since a and b are set to 0, and equation (21.1)
is used to define a smeared-out continuous value for p. In this case, one
obtains a numerically smeared-out pressure profile that does not include
surface-tension forces. As discussed above, the forcing function defined
in equation (21.3) can be added to the momentum equations to recover
surface-tension effects. On the other hand, if one wants to model the
surface-tension effects directly, the jump conditions for the pressure cannot
be ignored.

First, consider the one-dimensional problem where a standard second-
order accurate discretization of

(3. 1 (Pit1-Pi) - {3. 1 (Pi -Pi-l)
'+2" 6.x '-2" 6.x

6.x = Ii (21.41)

can be written for each unknown Pi. Suppose that the interface is lo
cated between Xk and Xk+I. As in the treatment of the viscosity term,
we discretize the jump condition [{3PxJ = b, obtaining, for example,

{3+ (Pk+1 - PI) _ {3- (PI - Pk) = b (21.42)
(1 - O)6.x 06.x'

236 21. Two-Phase Incompressible Flow

and solve for PI as

(3+Pk+10 + (3-Pk(l - 0) - bO(l - O)6.x
PI = (3+0 + (3-(1- 0) , (21.43)

so that approximations to the derivatives on the left and right sides of the
interface can be written as

(3- (PI - Pk) = ~ (PHI - Pk) _ ~b(l- 0)
06.x 6x (3+

(21.44)

and

(3+ (PHI - PI) = ~ (Pk+I - Pk) + ~bO
(1 - 0)6x 6.x (3- ,

(21.45)

where
, (3+(3-

(3 = (3+0 + (3-(1- 0)
(21.46)

defines an effective (3.
The new equations for the unknowns Pk and Pk+1 are then

(3' ((Pk±l-a)-Pk - b(1-9)) - (3 1 (Pk-Pk-l)
.6.x f3± k - 'i .6.x

6x = ik (21.47)

and

(21.48)

where we add the a term to correct for the fact the pressure is discontinuous
across the interface as well. Note that this correction was not necessary
in treating the viscosity, since the velocity field is continuous across the
interface. These new equations for Pk and PHI can be rewritten in standard
form as

~ (Pk±~~Pk) - (3k-! (Pk7:- 1) ~a ~b(l- 0)
6x =fk+(6x)2+ (3+6x (21.49)

and

(3k+~ (Pk±2;~k±1) - ~ (Pk±~~Pk) ~a ~bO
6.x = fk+I - (6x)2 + (3-6x (21.50)

emphasizing that this discretization yields the standard symmetric linear
system with (3HI/2 = ~.

More generally, at each grid point i, we write a linear equation of the
form

(21.51)

21.4. Poisson Equation 237

and assemble the system of linear equations into matrix form. Each f3k+l/2
is evaluated based on the side of the interface that Xk and Xk+l lie on, and
a special J is used when Xk and Xk+1 lie on opposite sides of the interface.
Then if the left arm of the stencil (the line segment connecting Xi and
xi-d crosses the interface, a nonzero FL is defined with correction terms
for [P) = a and [f3Pn) = b. Likewise, if the right arm of the stencil (the
line segment connecting Xi and xi+d crosses the interface, a nonzero FR
is defined with correction terms for [P) = a and [f3Pn) = b.

The multidimensional approach is treated in a dimension-by-dimension
fashion. While the [P) = a jump condition is trivial to apply, some assump
tions are made in order to obtain a dimension-by-dimension approach for
[f3Pn) = b. For example, in two spatial dimensions we assume that

(21.52)

and

(21.53)

where nl and n2 are the components of the local unit normal. Although
these equations are not generally true, adding nl times the first equation to
n2 times the second equation leads to the correct [f3Pn) = b jump condition
and numerically demonstrated convergence to the correct solution. The
errors in this approach can be characterized by adding tl times the first
equation to t2 times the second equation to obtain [f3Pt) = 0, implying that
the tangential derivative is incorrectly smeared out. The two-dimensional
application of the method consists in writing a linear equation of the form

f3i+1/2,j (Pi+li~Pi,j) - f3i-l/2,j (Pi'i 7~-l,j)
c::,x

f3i,j+1/2 (Pi'J+~~Pi,j) - f3i,j-l/2 (Pi,j7;,;-1)
+ c::,y

= Aj +Fx +FY (21.54)

at each grid point, where FX = FL + FR and FY = FB + FT are obtained
by considering each spatial dimension independently using either [f3px) =
[f3Pn)nl = bnl or [f3py) = [f3Pn)n2 = bn2, respectively.

Before using the above-described numerical method to solve equa
tion (18.21), the jump condition given in equation (21.10) needs to be
computed. This can be done with standard central differencing of the av
eraged cell-centered velocities, analogous to the way that J was computed
in discretizing the viscous terms. Note that we can set [Px/ p) = [py/ p) =
[Pz/ p) = 0 in spite of the nonzero jumps in these quantities. Since the full
equations are continuous across the interface, one can take the divergence
of the full equations to derive equation (18.21) without the need for correc
tion terms. The jumps in the derivatives of the pressure in equation (18.21)

238 21. Two-Phase Incompressible Flow

are already balanced out on the right-hand side by the appropriate jumps
included in the V* term.

The resulting linear system of equations can still be solved using a PCG
gradient with an incomplete Choleski preconditioner, just as in the case
of one-phase incompressible flow. However, one needs to use caution when
plugging the resulting pressure into equation (18.20), since the pressure
is discontinuous across the interface. The pressure derivatives in equa
tion (18.20) should be computed in exactly the same fashion as they were
computed in solving equation (18.21); Le., the correction terms are still
needed.

22
Low-Speed Flames

22.1 Reacting Interfaces

In Chapter 21 the interface moved with the local fluid velocity only,
and individual fluid particles did not cross the interface. In this chap
ter we consider interfaces across which a chemical reaction is converting
one incompressible fluid into another. The interface moves with the lo
cal velocity of the unreacted fluid plus a reaction term that accounts for
the conversion of one fluid into the other as material moves across the
interface. Consider an interface separating liquid and gas regions where
the liquid is actively vaporizing into the gaseous state. Juric and Ttyg
gvason [90] developed a front-tracking approach to this problem using a
o-function formulation to treat the interface boundary conditions. Son and
Dir [153] and Welch and Wilson [171] developed level-set-based and volume
of-fluid-based (respectively) approaches to this same problem also using a
o-function formulation.

Another example of reacting interfaces occurs in premixed flames. As
suming an infinitely thin flame front allows us to treat the flame front as a
discontinuity separating two incompressible flows. The unreacted material
undergoes reaction as it crosses the interface, producing a lower-density
(higher-volume) reacted material. Qian et al. [135] devised a front-tracking
approach to this problem using a o-function formulation.

Typically, the density is discontinuous across the interface. Thus, mate
rial must instantaneously expand as it crosses the interface, implying that
the normal velocity is discontinuous across the interface as well (in addition

240 22. Low-Speed Flames

to the discontinuity of the density, viscosity, and pressure). Delta-function
formulations smear out this velocity jump, forcing a continuous velocity
field across the interface. This can be problematic, since this numerical
smearing adds a compressible character to the flow field near the inter
face. The divergence-free condition is not exactly satisfied in the separate
subdomains. In addition, difficulties arise in computing the interface veloc
ity, which depends on the local velocity of the unreacted material. Near the
interface, the velocity of the unreacted material contains large 0(1) numer
ical errors where it has been nonphysically forced to be continuous with the
velocity of the reacted material. Partial solutions to these problems were
proposed by Helenbrook et al. [84], where the authors were able to remove
the numerical smearing of the normal velocity, obtaining a sharp interface
profile. This method works well as long as flame fronts remain well sepa
rated with moderate curvature; see Helenbrook and Law [83]. This method
cannot treat merging flame fronts or individual fronts with relatively high
curvature. These drawbacks were recently overcome by Nguyen et al. [119]
who extended the work of Kang et al. [91] to treat this problem.

22.2 Governing Equations

We ignore viscous effects and consider the equations for inviscid incom
pressible flow

~ + (iT. V7) iT + V7: = 0 (22.1)

independently for each fluid. The interface velocity is TV = DN, where D is
the normal component of the interface velocity defined by D = (VN)u + S.
The "u" subscript indicates that the normal velocity is calculated using
the velocity of the unreacted material only. This is important to note,
since VN is discontinuous across the interface. The flame speed is defined
as S = So + (J"K, where, So and (j are constants and K, is the local curvature
of the interface.

Conservation of mass and momentum imply the standard Rankine
Hugoniot jump conditions across the interface

[P(VN - D)] = 0

[p(VN - D)2 + p] 0

(22.2)

(22.3)

as well as continuity of the tangential velocities, [VTJ = [VT2] = 0, as long
as S =1= O. Note that S = 0 only in the case of a contact discontinuity (not
a flame). Denoting the mass flux in the moving reference frame (speed D)
by

(22.4)

22.3. Treating the Jump Conditions 241

allows us to rewrite equation (22.2) as [M) = 0. Here the "r" subscript
denotes a reacted material quantity. Substitution of D = (VN)u + S into
equation (22.4) yields

M = -PuS, (22.5)

which is a rather simple quantity for computations.
Starting with [D] = 0, we derive

[PVN - P~VN - D)] = 0, (22.6)

[PVNp- M] 0, (22.7)

and

(22.8)

where the last equation follows from [M] = 0. It is more convenient to write

(22.9)

as a summary of equation (22.8) and [VT1] = [VT2] = 0. The dot product of
equation (22.9) and IV results in equation (22.8), while the dot product of
equation (22.9) and T1 or T2 results in [VT1) = ° or [VT2) = 0, respectively.
Equation (22.3) can be rewritten as

[~2 +p] = ° (22.10)

or

(22.11)

again using [M) = 0.

22.3 Treating the Jump Conditions

Since the normal velocity is discontinuous across the interface, caution is
needed in applying numerical discretizations near the interface. For exam
ple, when discretizing the unreacted fluid velocity near the interface, one
should avoid using values of the reacted fluid velocity. Following the ghost
fluid methodology, a band of ghost cells on the reacted side of the interface
is populated with unreacted ghost velocities that can be used in the dis
cretization of the unreacted fluid velocity. This is done using equation (22.9)

242 22. Low-Speed Flames

to obtain

uG U r - M (~- ~) nl, (22.12) u
Pr Pu

vG Vr - M (~ - ~) n2, (22.13) u
Pr Pu

wG u Wr - M (~ - ~) n3,
Pr Pu

(22.14)

where N = (nl' n2, n3) is the local unit normal. Similarly, reacted ghost
velocities are defined on a band of ghost cells on the unreacted side of the
interface and used in the discretization of the reacted fluid velocity.

When solving equation (18.23),

\7. (\7P*) - \7. V* P - , (22.15)

for the scaled pressure p*, the jump in pressure given by equation 22.11 as

(P*] = -6tM2 (~-~)
Pr Pu

(22.16)

is accounted for using the techniques developed in Liu et al. [106] and Kang
et al. [91].

Figure 22.1 shows the time evolution of two initially circular flame fronts
as they grow to merge together. Figure 22.2 shows a snapshot of the velocity
field, illustrating its discontinuous nature across the interface. Figure 22.3
shows the time evolution of two initially spherical flame fronts as they grow
to merge together.

Recently, Nguyen et al. [118] extended this approach to model fire for
computer graphics. In Figure 22.4, the ¢ = 0 isocontour is used to render
a typical blue flame core. S is smaller for the larger blue core on the right.
Figure 22.5 illustrates the effect of increased expansion as the density jump
is increased from left to right. The yellow flame color is calculated using a
blackbody radiation model based on the temperature profile of the hot gas
emitted at the flame front. Figures 22.6 shows a ball catching on fire, and
Figure 22.7 shows a campfire.

22.3. 'freating the Jump Conditions 243

level set contou r

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1.5

Figure 22.1. Time evolution of two initially circular flame fronts as they grow to
merge together.

velocity field (1=.035)

1 ",,,\\\\\\\'j
•• •• • I , \ \ ~ , \ \ \ \ \ \ \ ,

:::~ ::~~~~~~~~~~~~~
0.9 • • • ••• , , , , , , , \ \ \ \ II \

:: :: :~ ~~~~~~~~~~~" \
.. - --""""\,\~~~~ ~8 ____ ._,.",,'\"\\
-::::~~~~~~~~~~~, ,:
- ~~"""""" . , . , 0.7 _ ... _ "" _ __ , ~ ' J,

------,.,."...,.."...,...
------~,,,..,.,.,,,,,.

..... " "
· , ~ , , , . · ~ ~ , , ,
.. , I"

· -
. , " , , ,,, , " \ " , ' \. " \ ----.. ~ ... ,.,.".,;", , .

-----~-,',.,//// . , , , .
-::::::~~~~~~~~~~/ ' ,:,:_---

~2:::::::::::::::~~~1f
:::::::::::~~~~Hn!

0.1 : : : : : : ~ ~ ~ ~ ~ ~ ~: ~ ~ ~ ~ ~
" """IIIIIIIIII~
••••• , I j j 1 1 I 1111II

o "" ", 11111

o 0.5

\ , , ,
'I \ ,

...... ~ ,
\ ... \ ~ ~ ~ , , ~ ~ , ,

, , , ~
, .I , ~ • • , •

, I I

, f , , • •

Figure 22.2. Discontinuous velocity field depicted shortly after the two flame
fronts merge.

244 22. Low-Speed Flames

60

50

40

30

20

10

60

50

40

30

20

10

20

20

level set (1=0)

40 60 80

level set (1=.035)

• II
• I

40 60 80

level set (1=.02)

60

50

40

30
60 20 60
40 40
20 10 20

20 40 60 80

level set (1= .05)

60

50

40

30

60 20 60
40 40
20 10 20

20 40 60 80

Figure 22.3. Time evolution of two initially spherical flame fronts as they grow
to merge together.

22.3. Treating the Jump Conditions 245

Figure 22.4. Typical blue cores rendered using the zero isocontour of the level set
function. (See also color figure, Plate 21.)

Figure 22.5. The density ratio of the unburnt to burnt gas is increased from
left to right, illustrating the effect of increased expansion. (See also color figure,
Plate 22.)

246 22. Low-Speed Flames

Figure 22.6. A flammable ball catches on fire as it passes through a flame. (See
also color figure, Plate 23.)

22.3. Treating the Jump Conditions 247

Figure 22.7. Campfire with realistic lighting of the surrounding rocks. (See also
color figure, Plate 24.)

23
Heat Flow

23.1 Heat Equation

Starting from conservation of mass, momentum, and energy one can derive

pet + pV . \7e + p\7 . V = \7 . (k\7T), (23.1)

where k is the thermal conductivity and T is the temperature. Assuming
that e depends on at most temperature, and that the specific heat at con
stant volume,cv is constant leads to e = eo + CV (T - To), where eo is the
internal energy per unit mass at some reference temperature To (see, for
example, Atkins [10)). This and the incompressibility assumption \7. V = 0
simplify equation (23.1) to

pCvTt + pCv V . \7T = \7 . (k\7T) , (23.2)

which can be further simplified to the standard heat equation

(23.3)

by ignoring the effects of convection, i.e., setting V = O.
Applying explicit Euler time discretization to equation (23.3) results in

Tn+l - Tn = _1_\7 . (k\7Tn) ,
l:,t pCv

(23.4)

where either Dirichlet or Neumann boundary conditions can be applied on
the boundaries of the computational domain. Assuming that p and Cv are

250 23. Heat Flow

constants allows us to rewrite this equation as

Tn+~~ Tn = ~. (k~Tn) (23.5)

with k = k / (pcv). Standard central differencing can be used for the spatial
derivatives and a time step restriction of

.6.tk (.6.:)2 + (.6.~)2 + (.6.2z)2) :::; 1

is needed for stability.
Implicit Euler time discretization

_--,-__ = ~. k~Tn+l Tn+1_ Tn ()
.6.t

(23.6)

(23.7)

avoids this time step stability restriction. This equation can be rewritten
as

(23.8)

where the ~ . (k~Tn+1) term is discretized using central differencing.

For each unknown Tin +1, equation (23.8) is used to fill in one row of a
matrix, creating a linear system of equations. Since the resulting matrix is
symmetric, a number offast linear solvers can be used (e.g., a PCG method
with an incomplete Choleski preconditioner; see Golub and Van Loan [75]).
Equation (23.7) is first-order accurate in time and second-order accurate in
space, and !:::.t needs to be chosen proportional to !:::.x2 , in order to obtain
an overall asymptotic accuracy of O(.6.x2). However, the stability of the
implicit Euler method allows one to chose .6.t proportional to !:::'x saving
dramatically on CPU time. The Crank-Nicolson scheme

Tn+~~ Tn = ~~. (k~Tn+1) + ~~. (k~Tn) (23.9)

can be used to achieve second-order accuracy in both space and time with
!:::'t proportional to .6.x. For the Crank-Nicolson scheme,

Tn+1 _ ~t~ . (k~Tn+l) = Tn + ~t~ . (k~Tn) (23.lO)

is used to create a symmetric linear system of equations for the unknowns
T['+1. Again, all spatial derivatives are computed using standard central
differencing.

23.2 Irregular Domains

Instead of a uniform Cartesian domain, suppose we wish to solve equa
tion (23.3) on an irregularly shaped domain, for example in the interior

23.3. Poisson Equation 251

of the two-dimensional outline depicted in Figure (23.1). If one takes the
rather simple approach of embedding this complicated domain in a uniform
Cartesian grid, then a level set function can be used to define the boundary
of the irregular region. The heat equation 23.3 can then be solved with, for
example, Dirichlet T = g(1, t) boundary conditions applied to the bound
ary where ¢ = O. More complicated boundary conditions can be used as
well.

The spatial derivatives are computed with the aid of the given values of
T = g(1, t) on the interface. When using explicit Euler time discretization,
the time-step restriction needed for stability becomes

(23.11)

where (h, O2 , and 03 are the cell fractions in each spatial dimension for cells
cut by the interface with 0 < 0i :S 1. Since the O/s can be arbitrarily small,
leading to arbitrarily small time steps, implicit methods need to be used,
e.g., backward Euler or Crank-Nicolson. Then a linear system of equations
can be solved for the unknowns Tr+l. Since the coefficient matrix depends
on the details of the spatial discretization, a robust method for treating
the cut cells is crucial. Below, we outline how to do this for the simpler
variable-coefficient Poisson equation, which has spatial derivatives identical
to those of the heat equation.

23.3 Poisson Equation

Consider the variable-coefficient Poisson equation

V'. (!3(1)V'u(x)) = f(x), (23.12)

where 13(1) is positive and bounded below by some to > o. As above, consider
an irregularly shaped domain (as in Figure 23.1) defined by a level set
function on a Cartesian grid with Dirichlet u = g(1, t) boundary conditions
on the ¢ = 0 isocontour.

For simplicity consider the one-dimensional case (!3ux)x = f. Since
j3 and ¢ are known only at the grid nodes, their values between grid
nodes are defined by the linear average of the nodal values, e.g., j3i+~ =
(!3i + !3i+l) /2. In the absence of cut cells, the standard discretization

(23.13)

can be used to solve this problem. For each unknown Ui, equation (23.13)
is used to fill in one row of a matrix, creating a linear system of equations.
The resulting matrix is symmetric and can be solved with a number of fast
linear solvers.

252 23. Heat Flow

12

10

8

6

4

2

o
3

Figure 23.1. Solution of the two-dimensional Poisson equation \7 . ({3\7U) = f
with Dirichlet boundary conditions. The circles are the computed solution, and
the solid line contour outlines the irregularly shaped computational domain.

Suppose that an interface point x I is located between two grid points Xi

and Xi+! with a Dirichlet U = UI boundary condition applied at XI. Con
sider computing the numerical solution in the domain to the left of X I.

Equation (23.13) is valid for all the unknowns to the left and including
Ui-b but can no longer be applied at Xi to solve for Ui, since the sub do
main to the left of XI does not contain a valid value of Ui+l. This can be
remedied by defining a ghost value of UY+l at Xi+! and rewriting equation
(23.13) as

a, 1 (UP+l-Ui) _ a, 1 (Ui-Ui_l)
1-',+- !:::"x 1-',-- !:::"x

2 2 - r
!::'x - ,

in order to solve for Ui. Possible candidates for uY+! include

(23.14)

(23.15)

(23.16)

23.3. Poisson Equation 253

and

(23.17)

with constant, linear, and quadratic extrapolation respectively. Here (J E

[0,1] is defined by (J = (XI - Xi) 16.x, and it can be calculated as (J =
14>I/6.x, since 4> is a signed distance function vanishing at XI. Since equa
tions (23.16) and (23.17) are poorly behaved for small (J, they are not used
when (J :::; 6.x. Instead, Ui is set equal to UI, which effectively moves the
interface location from XI to Xi. This second-order accurate perturbation
of the interface location does not degrade the overall second-order accuracy
of the solution obtained using equation (23.13) to solve for the remaining
unknowns. Furthermore, Ui = UI is second-order accurate as long as the
solution has bounded first derivatives.

Plugging equation (23.17) into equation (23.13) gives an asymmetric
discretization of

(~)-(~) =fi
.5 ((J6.x + 6.x)

(23.18)

(when f3 = 1). Equation (23.18) is the asymmetric discretization used by
Chen et al. [43] to obtain second-order accurate numerical methods in the
context of solving Stefan problems. Alternatively, Gibou et al. [44] pointed
out that plugging equation (23.16) into equation (23.13) gives a symmetric
discretization of

(23.19)

based on linear extrapolation in the cut cell. It turns out that this sym
metric discretization is second-order accurate as well. Moreover, since the
discretization is symmetric, the linear system of equations can be solved
with a number of fast methods such as PCG with an incomplete Choleski
precondi tioner.

To see this, assume that the standard second-order accurate discretiza
tion in equation (23.13) is used to obtain the standard linear system of
equations for U at every grid node except Xi, and equation (23.14) is used
to write a linear equation for Ui, introducing a new unknown U~l' The sys
tem is closed with equation (23.16) for U~l' In practice, equations (23.16)
and (23.14) are combined to obtain equation (23.19) and a symmetric lin
ear system. Solving this linear system of equations leads to well-determined
values of U at each grid node in the subdomain as well as a well-determined
value of U~l (from equation (23.16)). Designate i1 as the solution vector
containing all these values of u.

Next, consider a modified problem where a Dirichlet boundary condi
tion of Ui+l = uf+1 is specified at Xi+l with Uf+l chosen to be the value

254 23. Heat Flow

of U~l from i1 (defined above). This modified problem can be discretized
to second-order accuracy everywhere using the standard discretization in
equation (23.13) at every node except at Xi, where equation (23.14) is used.
Note that equation (23.14) is the standard second-order accurate discretiza
tion when a Dirichlet boundary condition of Ui+l = Uf+l is applied at Xi+!.

Thus, this new linear system of equations can be solved in standard fashion
to obtain a second-order accurate solution at every grid node. The realiza
tion that i1 (defined above) is an exact solution to this new linear system
implies that i1 is a valid second-order accurate solution to this modified
problem.

Since i1 is a second-order accurate solution to the modified problem, i1
can be used to obtain the interface location for the modified problem to
second-order accuracy. The linear interpolant that uses Ui at Xi and uf+! at
Xi+! predicts an interface location of exactly x I. Since higher-order accurate
interpolants (higher than linear) can contribute at most an O(.lx2) pertur
bation of the predicted interface location the interface location dictated by
the modified problem is at most an O(.lx2) perturbation of the true inter
face location, x I. Thus, i1 is a second-order accurate solution to a modified
problem where the interface location has been perturbed by O(.lx2). This
makes i1 a second-order accurate solution to the original problem as well.

Note that plugging equation (23.15) into equation (23.13) effectively per
turbs the interface location by an O(6x) amount, resulting in a first-order
accurate algorithm.

When (3 is spatially varying, f3i+l/2 in equation (23.19) can be determined
from a ghost value (3a-l and the usual averaging (3i+l/2 = ((3i + f3a-l) /2,
where the ghost value is defined using linear extrapolation

(23.20)

according to equation (23.16).
In multiple spatial dimensions, the equations are discretized in a

dimension-by-dimension manner using the one-dimensional discretization
outlined above independently on ((3ux)x, ((3uy)y, and ((3uz)z' Figure 23.1
shows a typical solution obtained in two spatial dimensions with a spatially
varying (3.

The same techniques can be used to discretize the spatial terms in equa
tion (23.8) or (23.10) to obtain symmetric linear systems of equations for
the unknown temperatures Tr+l. Again, the symmetry allows us to exploit
a number of fast solvers such as peG.

23.4 Stefan Problems

Stefan problems model interfaces across which an unreacted incompressible
material is converted into a reacted incompressible material. The interface

23.4. Stefan Problems 255

velocity is W = DR, where D = (VN)u + S for some reaction speed S.
Here the "u" subscript denotes an unreacted material quantity. Including
the effects of thermal conductivity, the Rankine-Hugoniot jump condition
for conservation of energy is

[(pe + P(VN; D)2 + p) (VN - D)] = [k'VT. R] , (23.21)

where we have assumed that D #- VN (Le., S #- 0), so that the tangen
tial velocities are continuous across the interface. This equation can be
rewritten as

(23.22)

using the Rankine-Hugoniot jump condition for conservation of mass,
[P(VN - D)] = O. Assuming that the enthalpy per unit mass h = e + (pip)
depends on at most temperature, and that the specific heat at constant
pressure cp is constant leads to h = ho + cp (T - To), where ho is the en
thalpy per unit mass at some reference temperature To; see [10]. This allows
us to rewrite equation (23.22) as

-PuS ([ho] + [cp] (TJ - To) + P~2S2 [;2]) = [k'VT. R] , (23.23)

where we have used the fact that the temperature is continuous across the
interface, [T] = 0, and labeled the interface temperature TJ. It is convenient
to choose the reference temperature To equal to the standard temperature
at which the reaction takes place; e.g., in the case of freezing water To =
273 K.

For the Stefan problem we assume that there is no expansion across
the front (i.e., [p] = 0), reducing the Rankine-Hugoniot jump conditions
for mass and momentum to [VN] = 0 and [P] = 0, respectively. Then
equation (23.23) reduces to

(23.24)

where P = Pu = Pro Finally, the standard interface boundary condition of
TJ = To reduces this last equation to

-pS rho] = [k'VT. R] , (23.25)

where rho] is calculated at the reaction temperature of TJ = To.
The Stefan problem is generally solved in three steps. First, the interface

velocity is determined using equation (23.25). This is done by first com
puting TN = 'VT· R in a band about the interface, and then extrapolating
these values across the interface (see equation (8.1)) so that both (TN)u
and (TN)r are defined at every grid point in a band about the interface,
allowing the reaction speed S to be computed in a node-by-node fashion.

256 23. Heat Flow

Next, the level set method is used to evolve the interface to its new location.
Finally, the temperature is calculated in each subdomain using a Dirich
let boundary condition on the temperature at the interface. This Dirichlet
boundary condition decouples the problem into two disjoint subproblems
that can each be solved separately using the techniques described earlier
in this chapter for the heat equation. For more details, see [44].

Figure 23.2 shows a sample calculation of an outwardly growing inter
face in three spatial dimensions. Figure 23.3 shows two-dimensional results
obtained using anisotropic surface tension. The interface condition is the
fourfold anisotropy boundary condition

T = -0.001 (~) sin4 (2(0 - (0)) K,

with (left) 00 = 0 and (right) 00 = 7r / 4. The shape of the crystal in the right
figure is that of the crystal in the left figure rotated by 7r / 4, demonstrating
that the artificial grid anisotropy is negligible.

23.4. Stefan Problems 257

100
SO
60

40
20

Figure 23.2. Stefan problem in three spatial dimensions. A supercooled material
in the exterior region promotes unstable growth.

258 23. Heat Flow

'r .

. ! '!!-, --~-:: .. ::-•, .. ~.---::: ... ::----:-. -;: ... ~~ •• -;:.:-. -:: .. ---:

Figure 23.3. Grid orientation effects with anisotropic surface tension.
The interface condition is the fourfold anisotropy boundary condition
T = -0.001 (~)sin4(2(0-00))K; with (left) 00 = 0 and (right) 00 = 7r/4. The
shape of the crystal in the right figure is that of the crystal in the left figure
rotated by 7r /4, demonstrating that the artificial grid anisotropy is negligible.

References

[lJ Adalsteinsson, D. and Sethian, J., The Fast Construction of Extension
Velocities in Level Set Methods, J. Comput. Phys. 148, 2-22 (1999).

[2J Adalsteinsson, D. and Sethian, J., A Fast Level Set Method for Propagating
Interfaces, J. Comput. Phys. 118, 269-277 (1995).

[3J Aivazis, M., Goddard, W., Meiron, D., Ortiz, M., Pool, J., and Shepherd, J.,
A Virtual Test Facility for Simulating the Dynamic Response of Materials,
Comput. in Sci. and Eng. 2, 42-53 (2000).

[4J Alouges, F., A New Algorithm for Computing Liquid Crystal Stable Con
figurations: The Harmonic Map Case, SIAM J. Num. Anal. 34, 1708-1726
(1997).

[5J Alvarez, L., Guichard, F., Lions, P.-L., and Morel, J.-M., Axioms and Fun
damental Equations of Image Processing, Arch. Rat. Mech. and Analys. 16,
200-257 (1993).

[6J Amenta, N. and Bern, M., Surface Reconstruction by Voronoi Filtering,
Discrete and Comput. Geometry 22, 481-504 (1999).

[7J Anderson, J., Computational Fluid Dynamics, McGraw Hill Inc. 1995.

[8J Anderson, D., Tannehill, J., and Pletcher, R., Computational Fluid
Mechanics and Heat Transfer, Hemisphere Publishing Corporation (1984).

[9J Aslam, T., A Level-Set Algorithm for Tracking Discontinuities in Hyperbolic
Conservation Laws, /. Scalar Equations, J. Comput. Phys. 167, 413-438
(2001).

[lOJ Atkins, P., Physical Chemistry, 5th edition, Freeman, (1994).

[l1J Batchelor, G., An Introduction to Fluid Dynamics, Cambridge University
Press (1967).

260 References

[12] Bardi, M. and Osher, S., The Nonconvex Multidimensional Riemann Prob
lem for Hamilton-Jacobi Equations, SIAM J. Math. Anal. 22, 344-351
(1991).

[13] Bell, J., Colella, P., and Glaz, H., A Second Order Projection Method for
the Incompressible Navier-Stokes Equations, J. Comput. Phys. 85, 257-283
(1989).

[14] Benson, D., Computational Methods in Lagrangian and Eulerian Hy
drocodes, Computer Methods in App. Mech. and Eng. 99, 235-394
(1992).

[15] Benson, D., A New Two-Dimensional Flux-Limited Shock Viscosity for Im
pact Calculations, Computer Methods in App. Mech. and Eng. 93, 39-95
(1991).

[16] Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascuel, M.-P., Rockwood,
A., Wyvill, B., and Wyvill, G., Introduction to Implicit Surfaces, Morgan
Kaufmann Publishers Inc., San Francisco (1997).

[17] Boissonat, J. and Cazals, F., Smooth Shape Reconstruction via Natu
ral Neighbor Interpolation of Distance Functions, ACM Symposium on
Comput. Geometry (2000).

[18] Brackbill, J., Kothe, D., and Zemach, C., A Continuum Method for
Modeling Surface Tension, J. Comput. Phys. 100, 335-354 (1992).

[19] Brown, D., Cortez, R., and Minion, M., Accurate Projection Methods for the
Incompressible Navier-Stokes Equations, J. Comput. Phys. 168, 464-499
(2001).

[20] Bruckstein, A., On Shape from Shading, Comput. Vision Graphics Image
Process. 44, 139-154 (1988).

[21] Burchard, P., Chen, S., Osher, S., and Zhao, H.-K., Level Set Systems
Report, 11/8/2000.

[22] Burchard, P., Cheng, L.-T., Merriman, B., and Osher, S., Motion of Curves
in Three Spatial Dimensions Using a Level Set Approach, J. Comput. Phys.
170,720-741 (2001).

[23] Caiden, R., Fedkiw, R., and Anderson, C., A Numerical Method for
Two-Phase Flow Consisting of Separate Compressible and Incompressible
Regions, J. Comput. Phys. 166, 1-27 (2001).

[24] Caramana, E., Burton, D., Shashkov, M., and Whalen, P., The Construc
tion of Compatible Hydrodynamics Algorithms Utilizing Conservation of
Total Energy, J. Comput. Phys. 146, 227-262 (1998).

[25] Caramana, E., Rousculp, C., and Burton, D., A Compatible, Energy
and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three
Dimensional Cartesian Geometry, J. Comput. Phys. 157, 89-119 (2000).

[26] Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum,
B., and Evans, T., Reconstruction and Representation of 3D Objects with
Radial Basis Functions, SIGGRAPH '01, 67-76 (2001).

[27] Caselles, V., Catte, F., Coli, T., and Dibos, F., A Geometric Model for
Active Contours in Image Processing, Numerische Mathematik 66, 1-31
(1993).

References 261

[28] Caselles, V., Kimmel, R., and Sapiro, G., Geodesic Active Contours, Int. J.
Comput. Vision 22, 61-79 (1997).

[29J Caselles, V., Morel, J.-M., Sapiro, G., and Tannenbaum, A., eds., Special
Issue on Partial Differential Equations and Geometry-Driven Diffusion in
Image Processing and Analysis, IEEE Transactions on Image Processing 7,
269-473 (1998).

[30J Chan, T., Golub, G., and Mulet, P., A Nonlinear Primal-Dual Method
for Total Variation Based Image Restoration, SIAM J. Sci. Comput. 15,
892-915 (1994).

[31J Chan, T., Osher, S., and Shen, J., The Digital TV Filter and Nonlinear
Denoising, IEEE Trans. on Image Processing 10, 231-241 (2001).

[32J Chan, T., Sandberg, B., and Vese, L., Active Contours without Edges for
Vector- Valued Images, J. Visual Commun. and Image Rep. 11, 130-141
(2000).

[33J Chan, T. and Vese, L., Active Contour and Segmentation Models using
Geometric PDE's for Medical Imaging, in "Geometric Methods in Bio
Medical", R. Malladi (editor), Mathematics and Visualization, Springer
(March 2002).

[34J Chan, T. and Vese, L., Active Contours without Edges, IEEE Trans. on
Image Processing 10, 266-277 (2001).

[35J Chan, T. and Vese, L., An Active Contour Model without Edges, "Scale
Space Theories in Computer Vision," Lect. Notes in Comput. Sci. 1682,
141-151 (1999).

[36J Chan, T. and Vese, L., Image Segmentation using Level Sets and the
Piecewise-Constant Mumford-Shah Model, UCLA CAM Report 00-14
(2000).

[37J Chan, T. and Vese, L., A Level Set Algorithm for Minimizing the Mumford
Shah Functional in Image Processing, in IEEE/Comput. Soc. Proc. of the
1st IEEE Workshop on "Variational and Level Set Methods in Computer
Vision", 161-168 (2001).

[38] Chang, Y., Hou, T., Merriman, B., and Osher, S., A Level Set Formulation
of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, J.
Comput. Phys. 124, 449-464 (1996).

[39] Chen, S., Johnson, D., and Raad, P., Velocity Boundary Conditions for
the Simulation of Free Surface Fluid Flow, J. Comput. Phys. 116, 262-276
(1995).

[40J Chen, S., Johnson, D., Raad, P., and Fadda, D., The Surface Marker and
Micro Cell Method, Int. J. for Num. Meth. in Fluids 25, 749-778 (1997).

[41J Catte, F., Lions, P.-L., Morel, J.-M., and CoIl, T., Image Selective Smooth
ing and Edge Detection by Nonlinear Diffusion, SIAM J. Num. Anal. 29,
182-193 (1992).

[42J ChamboIle, A. and Lions, P.-L., Image Recovery via Total Variation
Minimization and Related Problems, Numer. Math. 76, 167-188 (1997).

[43] Chen, S., Merriman, B., Osher, S., and Smereka, P., A simple level set
method for solving Stefan problems, J. Comput. Phys. 135, 8-29 (1997).

262 References

[44J Gibou, F., Fedkiw, R, Cheng, L.-T., and Kang, M., A Second Order
Accurate Symmetric Discretization of the Poisson Equation on Irregular
Domains, J. Comput. Phys. V. 176, pp 1-23 (2002).

[45J Chern, I.-L. and Colella, P. A Conservative Front Tracking Method for
Hyperbolic Conservation Laws, UCRL JC-97200 LLNL (1987).

[46J Chorin, A., A Numerical Method for Solving Incompressible Viscous Flow
Problems, J. Comput. Phys. 2, 12-26 (1967).

[47J Chorin, A., Numerical Solution of the Navier-Stokes Equations, Math.
Compo 22, 745-762 (1968).

[48J Chopp, D., Computing Minimal Surfaces via Level Set Curvature Flow, J.
Comput. Phys. 106, 77-91 (1993).

[49J Chopp, D., Some Improvements of the Fast Marching Method, SIAM J. Sci.
Comput. 223, pp. 230-244 (2001).

[50J Colella, P., Majda, A., and Roytburd, V., Theoretical and Numerical Struc
ture for Reacting Shock Waves, SIAM J. Sci. Stat. Comput. 7, 1059-1080
(1986).

[51J Courant, R, Issacson, E., and Rees, M., On the Solution of Nonlinear
Hyperbolic Differential Equations by Finite Differences, Comm. Pure and
Applied Math 5, 243-255 (1952).

[52J Crandall, M. and Lions, P.-L., Viscosity Solutions of Hamilton-Jacobi
Equations, Trans. Amer. Math. Soc. 277, 1-42 (1983).

[53] Crandall, M. and Lions, P.-L., Two Approximations of Solutions of
Hamilton-Jacobi Equations, Math. Comput. 43, 1-19 (1984).

[54] Davis, W., Equation of state for detonation products, Proceedings Eighth
Symposium on Detonation, 785-795 (1985).

[55J Donat, R, and Marquina, A., Capturing Shock Reflections: An Improved
Flux Formula, J. Comput. Phys. 25, 42-58 (1996).

[56J E, W. and Liu, J.-G., Finite Difference Schemes for Incompressible Flows
in the Velocity-Impulse Density Formulation, J. Comput. Phys. 130, 67-76
(1997).

[57J E, W. and Wang, X.-P., Numerical Methods for the Landau-Lifshitz
Equation, SIAM J. Num. Anal. 381,1647-1665 (2000).

[58] Edelsbrunner, H., Shape Reconstruction with Delaunay Complex, Proc.
of Latin '98, Theoretical Informatics 1380, Lect. Notes in CS, 119-132,
Springer-Verlag (1998).

[59J Engquist, B., Fatemi, E., and Osher, S., Numerical Solution of the High
Frequency Asymptotic Expansion of the Scalar Wave Equation, J. Comput.
Phys. 120, 145-155 (1995).

[60] Engquist, B., Runborg, 0., and Tornberg, A.-K., High Frequency Wave
Propagation by the Segment Projection Method, J. Comput. Phys (in press).

[61J Enright, D., Fedkiw, R, Ferziger, J., and Mitchell, I., A Hybrid Particle
Level Set Method for Improved Interface Capturing, J. Comput. Phys. (in
press).

References 263

[62] Fedkiw, R., Coupling an Eulerian Fluid Calculation to a Lagrangian Solid
Calculation with the Ghost Fluid Method, J. Comput. Phys. 175, 200-224
(2002).

[63] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S., A Non-Oscillatory
Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid
Method), J. Comput. Phys. 152, 457-492 (1999).

[64] Fedkiw, R., Aslam, T., and Xu, S., The Ghost Fluid Method for Deflagration
and Detonation Discontinuities, J. Comput. Phys. 154, 393-427 (1999).

[65] Fedkiw, R., Merriman, B., Donat, R. and Osher, S., The Penultimate
Scheme for Systems of Conservation Laws: Finite Difference ENO with
Marquina's Flux Splitting, Progress in Numerical Solutions of Partial
Differential Equations, Arcachon, France, edited by M. Hafez (July 1998).

[66] Fedkiw, R., Marquina, A., and Merriman, B., An Isobaric Fix for the Over
heating Problem in Multimaterial Compressible Flows, J. Comput. Phys.
148, 545-578 (1999).

[67] Fedkiw, R., Merriman, B., and Osher, S., Efficient Characteristic Pro
jection in Upwind Difference Schemes for Hyperbolic Systems (The
Complementary Projection Method), J. Comput. Phys. 141, 22-36 (1998).

[68] Fedkiw, R., Merriman, B., and Osher, S., Numerical Methods for a Mix
ture of Thermally Perfect and/or Calorically Perfect Gaseous Species with
Chemical Reactions, J. Comput. Phys. 132, 175-190 (1997).

[69] Fedkiw, R., Merriman, B., and Osher, S., Simplified Upwind Discretiza
tion of Systems of Hyperbolic Conservation Laws Containing Advection
Equations, J. Comput. Phys. 157, 302-326 (2000).

[70] Fedkiw, R., Starn, J., and Jensen, H., Visual Simulation of Smoke, Siggraph
2001 Annual Conference, 23-30 (2001).

[71] Foster, N. and Fedkiw, R., Practical Animation of Liquids, Siggraph 2001
Annual Conference, 15-22 (2001).

[72] Glimm, J., Grove, J., Li, X., and Zhao, N., Simple front tracking,
Contemporary Math. 238, 133-149 (1999).

[73] Glimm, J., Marchesin, D., and McBryan, 0., Subgrid resolution of fluid
discontinuities, II., J. Comput. Phys. 37, 336-354 (1980).

[74] Godunov, S.K., A Finite Difference Method for the Computation of Discon
tinuous Solutions of the Equations of Fluid Dynamics, Mat. Sb. 47, 357-393
(1959).

[75J Golub, G. and Van Loan, C., Matrix Computations, The Johns Hopkins
University Press, Baltimore (1989).

[76] Greengard, 1. and Rokhlin, V. A Fast Algorithm for Particle Simulations,
J. Comput. Phys. 73, 325-348 (1987).

[77] Guichard, F. and Morel, J.-M., Image Iterative Smoothing and P.D.E's,
Notes de Cours du Centre Emile Borel, Institut Henri Poincare (1998).

[78] Hancock, S., PISCES 2DELK Theoretical Manual, Physics International
(1985).

264 References

[79J Harlow, F. and Welch, J., Numerical Calculation of Time-Dependent Vis
cous Incompressible Flow of Fluid with a Free Surface, The Physics of Fluids
8, 2182-2189 (1965).

[80J Harten, A., High Resolution Schemes for Hypersonic Conservation Laws,
J Comput. Phys. 49, 357-393 (1983).

[81J ~arten, A., Engquist, B., Osher, S., and Chakravarthy, S., Uniformly High
Order Accurate Essentially Non-Oscillatory Schemes III, J. Comput. Phys.
71, 231-303 (1987).

[82J Heath, M., Scientific Computing, The McGraw-Hill Companies Inc. (1997).

[83J Helenbrook, B. and Law, C., The Role of Landau-Darrieus Instability in
Large Scale Flows, Combustion and Flame 117, 155-169 (1999).

[84J Helenbrook, B., Martinelli, L., and Law, C., A Numerical Method for
Solving Incompressible Flow Problems with a Surface of Discontinuity, J.
Comput. Phys. 148, 366-396 (1999).

[85J Helmsen, J., Puckett, E., Colella, P., and Dorr, M., Two New Methods for
Simulating Photolithography Development in 3D, Proc. SPIE 2726, 253-261
(1996).

[86J Hirsch, C., Numerical Computation of Internal and External Flows, Volume
1: Fundamentals of Numerical Discretization, John Wiley and Sons Ltd.
(1988).

[87J Hirsch, C., Numerical Computation of Internal and External Flows, Volume
2: Computational Methods for Inviscid and Viscous Flows, John Wiley and
Sons Ltd. (1990).

[88J Jiang, G.-S. and Peng, D., Weighted END Schemes for Hamilton Jacobi
Equations, SIAM J. Sci. Comput. 21, 2126-2143 (2000).

[89J Jiang, G.-S. and Shu, C.-W., Efficient Implementation of Weighted END
Schemes, J. Comput. Phys. 126, 202-228 (1996).

[90J Juric, D. and Tryggvason, G., Computations of Boiling Flows, Int. J.
Multiphase Flow 24, 387-410 (1998).

[91J Kang, M., Fedkiw, R., and Liu, X.-D., A Boundary Condition Capturing
Method for Multiphase Incompressible Flow, J. Sci. Comput. 15, 323-360
(2000).

[92J Karni, S., Hybrid multi fluid algorithms, SIAM J. Sci. Comput. 17, 1019-
1039 (1996).

[93J Karni, S., Multicomponent Flow Calculations by a Consistent Primitive
Algorithm, J. Comput. Phys. 112, 31-43 (1994).

[94J Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active Contour Models,
Int. J. of Compo Vision 1, 321-331 (1988).

[95J Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A., Con
formal Curvature Flows: From Phase Transitions to Active Vision, Archive
for Rational Mech. and Anal. 134, 275-301 (1996).

[96J Kim, J. and Moin, P., Application of a Fractional-Step Method to In
compressible Navier-Stokes Equations, J. Comput. Phys. 59, 308-323
(1985).

References 265

[97] Kimmel, Rand Bruckstein, A., Shape from Shading via Level Sets,
Technion (Israel) Computer Science Dept. Report, CIS #9209 (1992).

[98] Kobbelt, L., Botsch, M., Schwanecke, V., and Seidal, H.-P., Feature Sen
sitive Surface Extraction from Volume Data, SIGGRAPH 2001, 57-66
(2001).

[99] Koepfier, G., Lopez, C., and Morel, J.-M., A Multiscale Algorithm for Image
Segmentation by Variational Method, SIAM J. Num. Anal. 31, 282-299
(1994).

[100] Kimmel, Rand Bruckstein, A., Shape Offsets via Level Sets, Computer
Aided Design 25, 154-162 (1993).

[101] Landau, L. and Lifshitz, E., Fluid Mechanics, Butterworth Heinemann
(1959).

[102] LeVeque, Rand Li, Z., The Immersed Interface Method for Elliptic
Equations with Discontinuous Coefficients and Singular Sources, SIAM J.
Numer. Anal. 31, 1019-1044 (1994).

[103] Li, Z. and Lai, M.-C., The Immersed Interface Method for the Navier-Stokes
Equations with Singular Forces, J. Comput. Phys. 171, 822-842 (2001).

[104] Lax, P. and Wendroff, B., Systems of Conservation Laws, Comm. Pure
Appl. Math. 13, 217-237 (1960).

[105] LeVeque, R, Numerical Methods for Conservation Laws, Birhiiuser Verlag,
Boston, 1992.

[106] Liu, X.-D., Fedkiw, R, and Kang, M., A Boundary Condition Capturing
Method for Poisson's Equation on Irregular Domains, J. Comput. Phys.
160,151-178 (2000).

[107] Liu, X.-D., Osher, S., and Chan, T., Weighted Essentially Non-Oscillatory
Schemes, J. Comput. Phys. 126, 202-212 (1996).

[108] Lorenson, W. and Cline, H., Marching Cubes: A High Resolution 3D Surface
Construction Algorithm, Computer Graphics 21, 163-169 (1987).

[109] Malladi, R., Sethian, J., and Vemuri, B., A Topology Independent Shape
Modeling Scheme, in Proc. SPIE Conf. Geom. Methods Comput. Vision II
2031, 246-258 (1993).

[110] Markstein, G., Nonsteady Flame Propagation, Pergamon Press, Oxford
(1964).

[111] Marquina, A. and Osher, S., Explicit Algorithms for a New Time Depen
dent Model Based on Level Set Motion for Nonlinear Deblurring and Noise
Removal, SIAM J. Sci. Comput. 22, 387-405 (2000).

[112] McMaster, W., Computer Codes for Fluid-Structure Interactions, Proc.
1984 Pressure Vessel and Piping Conference, San Antonio, TX, LLNL
VCRL-89724 (1984).

[113] Menikoff, R, Errors When Shock Waves Interact Due to Numerical Shock
Width, SIAM J. Sci. Comput. 15, 1227-1242 (1994).

[114] Merriman, B., Bence, J., and Osher, S., Motion of Multiple Junctions: A
Level Set Approach, J. Comput. Phys. 112, 334-363 (1994).

[115] Mulder, W., Osher, S., and Sethian, J., Computing Interface Motion in
Compressible Gas Dynamics, J. Comput. Phys. 100, 209-228 (1992).

266 References

[116] Mulpuru, S. and Wilkin, G., Finite Difference Calculations of Unsteady
Premixed Flame-Flow Interactions, AIAA Journal 23, 103-109 (1985).

[117] Mumford, D. and Shah, J., Optimal Approximation by Piecewise Smooth
Functions and Associated Variational Problems, Comm. Pure Appl. Math.
42, 577-685 (1989).

[118] Nguyen, D., Fedkiw, R, and Jensen, H., Physically Based Modelling and
Animation of Fire SIGGRAPH (2002).

[119J Nguyen, D., Fedkiw, R, and Kang, M., A Boundary Condition Capturing
Method for Incompressible Flame Discontinuities, J. Comput. Phys. 172,
71-98 (2001).

[120] Nielsen, M., Johansen, P., Olsen, 0., and Weickert, J., eds., Scale Space
Theories in Computer Vision, in Lecture Notes in Computer Science 1682,
Springer-Verlag, Berlin (1999).

[121] Noh, W., CEL: A Time-Dependent, Two Space Dimensional, Coupled
Eulerian-Lagrange Code, Methods in Comput. Phys. 3, Fundamental
Methods in Hydrodynamics, 117-179, Academic Press, New York (1964).

[122] Noh, W., Errors for Calculations of Strong Shocks Using an Artificial
Viscosity and an Artificial Heat Flux, J. Comput. Phys. 72, 78-120 (1978).

[123] Osher, S., A Level Set Formulation for the Solution of the Dirichlet Problem
for Hamilton-Jacobi Equations, SIAM J. Math. Anal. 24, 1145-1152 (1993).

[124] Osher, S., Cheng, L.-T., Kang, M., Shim, H., and Tsai, Y.-H., Geometric
Optics in a Phase Space and Eulerian Framework, LSS Inc. #LS-01-01
(2001), J. Comput. Phys. (in press).

[125] Osher, S. and Rudin, L., Feature-Oriented Image Processing Using Shock
Filters, SIAM J. Num. Anal. 27, 919-940 (1990).

[126] Osher, S. and Sethian, J., Fronts Propagating with Curvature Dependent
Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput.
Phys. 79, 12-49 (1988).

[127] Osher, S. and Shu, C.-W., High Order Essentially Non-Oscillatory Schemes
for Hamilton-Jacobi Equations, SIAM J. Numer. Anal. 28, 902-921 (1991).

[128] Peigl, L. and Tiller, W., The NURBS book, Berlin, Springer-Verlag, 2nd ed.
(1996).

[129] Pember, R., Bell, J., Colella, P., Crutchfield, W., and Welcome, M.,
An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in
Irregular Regions, J. Comput. Phys. 120, 278-304 (1995).

[130] Peng, D., Merriman, B., Osher, S., Zhao, H.-K., and Kang, M., A PDE
Based Fast Local Level Set Method, J. Comput. Phys. 155,410-438 (1999).

[131] Perona, P. and Malik, R, Scale Space and Edge Detection Using Anisotropic
Diffusion, IEEE 'Trans. on Pattern Anal. Mach. Intell. 12, 629-639 (1990).

[132] Peskin, C., Numerical Analysis of Blood Flow in the Heart, J. Comput.
Phys. 25, 220-252 (1977).

[133] Peyret, R and Taylor, T., Computational Methods for Fluid Flow, Springer
Verlag, NY (1983).

References 267

[134] Puckett, E., Almgren, A., Bell, J., Marcus, D., and Rider, W., A High
Order Projection Method for Tracking Fluid Interfaces in Variable density
Incompressible flows, J. Comput. Phys. 130, 269-282 (1997).

[135] Qian, J., Tryggvason, G., and Law, C., A Front Method for the Motion of
Premixed Flames, J. Comput. Phys. 144, 52-69 (1998).

[136] Raad, P., Chen, S., and Johnson, D., The Introduction of Micro Cells to
Treat Pressure in Free Surface Fluid Flow Problems, J. Fluids Eng. 117,
683-690 (1995).

[137] Rogers, D., An Introduction to NURBS, Morgan Kaufmann (2000).

[138] Rosen, J., The Gradient Projection Method for Nonlinear Programming,
Part II. Nonlinear Constraints, J. SIAM 9, 514-532 (1961).

[139] Rouy, E. and Tourin, A., A Viscosity Solutions Approach to Shape-From
Shading, SIAM J. Num. Anal. 29, 867-884 (1992).

[140] Rudin, 1., Images, Numerical Analysis of Singularities, and Shock Filters,
Ph.D. thesis, Compo Sci. Dept., Caltech #5250:TR:87 (1987).

[141] Rudin, L. and Osher, S., Total Variational Based Image Restoration with
Free Local Constraints, in Proc. IEEE Int. Conf. Image Proc., Austin, TX,
IEEE Press, Piscataway, NJ, 31-35 (1994).

[142] Rudin, L., Osher, S., and Fatemi, E., Nonlinear Total Variation Based
Noise Removal Algorithms, Physica D 60, 259-268 (1992).

[143] Russo, G. and Smereka, P., A Remark on Computing Distance Functions,
J. Comput. Phys. 163, 51-67 (2000).

[144] Ruuth, S., Merriman, B., and Osher, S., A Fixed Grid Method for Capturing
the Motion of Self-Intersecting Interfaces and Related PDEs J. Comput.
Phys. 163, 1-21 (2000).

[145] Sapiro, G., Geometric Partial Differential Equations and Image Analysis,
Cambridge U. Press (2001).

[146] Sethian, J., An Analysis of Flame Propagation, Ph.D. Thesis, University of
California at Berkeley (1982).

[147] Sethian, J., Curvature and the Evolution of Fronts, Comm. in Math. Phys.
101, 487-499 (1985).

[148] Sethian, J., A Fast Marching Level Set Method for Monotonically Advancing
Fronts, Proc. Nat. Acad. Sci. 93, 1591-1595 (1996).

[149] Sethian, J., Fast Marching Methods, SIAM Review 41, 199-235 (1999).

[150] Shu, C.W. and Osher, S., Efficient Implementation of Essentially Non
Oscillatory Shock Capturing Schemes, J. Comput. Phys. 77, 439-471
(1988).

[151] Shu, C.W. and Osher, S., Efficient Implementation of Essentially Non
Oscillatory Shock Capturing Schemes II (two), J. Comput. Phys. 83, 32-78
(1989).

[152] Smereka, P., Spiral Crystal Growth, Physcia D 138, 282-301 (2000).

[153] Son, G. and Dir, V.K. Numerical Simulation of Film Boiling near Critical
Pressures with a Level Set Method, J. Heat Transfer 120, 183-192 (1998).

268 References

[154] Spiteri, R. and Ruuth, S., A New Class of Optimal High-Order Strong
Stability-Preserving Time Discretization Methods, SIAM J. Numer. Anal.
(in press).

[155] Staniforth, A. and Cote, J., Semi-Lagrangian Integration Schemes for At
mospheric Models-A Review, Monthly Weather Review 119, 2206-2223
(1991).

[156] Steinhoff, J., Fang, M., and Wang, L., A New Eulerian Method for the
Computation of Propagating Short Acoustic and Electromagnetic Pulses, J.
Comput. Phys. 157, 683-706 (2000).

[157] Strikwerda, J., Finite Difference Schemes and Partial Differential Equa
tions, Wadsworth & Brooks/Cole Advanced Books and Software, Pacific
Grove, California (1989).

[158] Sussman, M. and Fatemi, E., An Efficient Interface-Preserving Level Set
Redistancing Algorithm and Its Application to Interfacial Incompressible
Fluid Flow, SIAM J. Sci. Comput. 20, 1165-1191 (1999).

[159] Sussman, M., Fatemi, E., Smereka, P., and Osher, S., An Improved Level
Set Method for Incompressible Two-Phase Flows, Computers and Fluids
27, 663-680 (1998).

[160] Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Com
puting Solutions to Incompressible Two-Phase Flow, J. Comput. Phys. 114,
146-159 (1994).

[161] Steinhoff, J. and Underhill, D., Modification of the Euler Equations for
"Vorticity Confinement": Application to the Computation of Interacting
Vortex Rings, Physics of Fluids 6, 2738-2744 (1994).

[162] Tang, B., Sapiro, G., and Caselles, V., Color Image Enhancement via Chro
maticity Diffusion, IEEE Transactions on Image Processing 10, 701-707
(2001).

[163] Teng, Z.-H., Chorin, A., and Liu, T.-P., Riemann Problems for Reacting
Gas with Applications to Transition, SIAM J. Appl. Math 42, 964-981
(1982).

[164] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics,
Springer-Verlag (1997).

[165] Tryggvason, G, Bunner, B., Juric, D., Tauber, W., Nas, S., Han, J., AI
Rawahi, N., and Jan, Y.-J., A Front Tracking Method for the Computations
of Multiphase Flow, J. Comput. Phys. V. 169, 708-759 (2001).

[166] Tsitsiklis, J., Efficient Algorithms for Globally Optimal Trajectories, Pro
ceedings of the 33rd Conference on Decision and Control, Lake Buena Vista,
LF, 1368-1373 (December 1994).

[167] Tsitsiklis, J., Efficient Algorithms for Globally Optimal Trajectories, IEEE
Transactions on Automatic Control 40, 1528-1538 (1995).

[168] Unverdi, S.O. and Tryggvason, G., A Front-Tracking Method for Viscous,
Incompressible, Multi-Fluid Flows, J. Comput. Phys. 100, 25-37 (1992).

[169] Van Dyke, M., An Album of Fluid Motion, The Parabolic Press, Stanford
(1982).

References 269

[170J Vese, L. and Osher, S., Numerical Methods for p-Harmonic Flows and Ap
plications to Image Processing, UCLA CAM Report 01-22, SIAM J. Num
Anal. (in press).

[171J Welch, S. and Wilson, J., A Volume of Fluid Based Method for Fluid Flows
with Phase Change, J. Comput. Phys. 160, 662-682 (2000).

[172J Whitaker, R., A Level Set Approach to 3D Reconstruction from Range Data,
Int. J. of Comput. Vision (1997).

[173J Williams, F.A., The Mathematics of Combustion, (J.D. Buckmaster, ed.),
SIAM, Philadelphia, PA, 97-131 (1985).

[174J Zhang, Y.L., Yeo, KS., Khoo, B.C., and Wang, C., 3D Jet Impact of
Toroidal Bubbles, J. Comput. Phys. 166, 336-360 (2001).

[175J Zhao, H.-K, Chan, T., Merriman, B., and Osher, S., A Variational Level
Set Approach to Multiphase Motion, J. Comput. Phys. 127, 179-195 (1996).

[176J Zhao, H.-K, Osher, S., and Fedkiw, R., Fast Surface Reconstruction Using
the Level Set Method, 1st IEEE Workshop on Variational and Level Set
Methods, 8th ICCV, Vancouver, 194-202 (2001).

[177J Zhao, H.-K, Osher, S., Merriman B., and Kang, M., Implicit and Nonpara
metric Shape Reconstruction from Unorganized Data Using a Variational
Level Set Method, Comput. Vision and Image Understanding 80, 295-314
(2000).

Index

active contours, 95, 127
arbitrary Lagrangian-Eulerian, 202
artificial viscosity, 31, 46, 53, 58, 174,

201,205

backward Euler, 45, 251
Boolean operations, 9
bounding box, 142
Burgers' equation, 48, 152, 153

cell averages, 154, 155
CFL condition, 30, 31, 44, 50, 59,

213,223
Chapman-Jouguet detonation, 195
characteristic function, 13
chemical reactions, 150, 163, 164, 191
codimension-two, 87, 90
compressible, 48, 149, 163, 167, 169,

171, 173,223-225,240
computational fluid dynamics (CFD),

46, 48, 223, 271
computational physics, 147
computer graphics, 147, 214, 242
computer-aided design (CAD), 9
conservation form, 152, 154, 170, 171
conservation laws, 31, 48, 49, 54, 98,

99, 149, 150, 155, 160, 165

consistent finite difference
approximation, 30

constrained minimization, 101
constructive solid geometry (CSG), 9
contact discontinuities, 48, 150, 155,

171, 197
convection, 23, 26, 45, 51, 104, 120,

142, 150-153, 156, 160, 163, 249
convection-diffusion equations, 45
convergent, 30
crossing times, 65
curvature, 12, 28, 41-44, 47, 59, 79,

88-90, 103-105, 120, 124, 142, 218,
224, 228, 240

deflagration, 147, 189-191, 195,
197-200

Delaunay triangulations, 139
delta function, 14, 49, 68, 123, 228
detonation, 147, 195-197
diffusion, 104, 150, 151, 163
Dijkstra's method, 71
dimension by dimension, 49, 156
discrete conservation form, 154
distance function, 17, 28, 36, 43-46,

51,55,56,60,61,63,64,66,69,70,
77, 123, 140, 142, 205, 206, 253

272 Index

domain of dependence, 44, 66
dynamic implicit surfaces, 7
dynamic surface extension, 93

edge detector, 119, 120, 124
eigensystem, 161, 162, 164, 165
elliptic differential equations, 147
ENO (essentially nonoscillatory),

31-39, 49, 53, 54, 68, 69, 104,
155-160, 162, 166, 210, 211

entropy condition, 46, 48, 104, 191
entropy fix, 105, 153, 159
equation of state, 147, 167, 169, 174,

175, 181, 183, 184, 192
Euler equations, 48, 163-165, 174,

176, 189
Eulerian formulation, 23
expansion shocks, 48, 52, 159
extrapolation, 75, 76, 174, 189, 206,

253, 254

fast marching method, 69, 73, 76
finite difference, 11, 30, 100, 103, 142,

154-156,175,202
flame front, 26, 59, 190, 239, 242
flames, 59, 239
flux, 31, 48, 149, 152-155, 157-159,

161-163, 170-172, 174, 240
forward Euler method, 29, 37
free surface flows, 147
front tracking methods, 26

gamma law gas, 167
Gaussian, 97, 106, 113, 120
geometric optics, 90
G-equation, 26, 59, 190, 191, 195
ghost fluid method, 76, 126, 172,

178-182,190,191,193-195
Godunov's scheme, 54
gradient descent, 69, 101, 102, 125,

127, 144
gradient projection method, 69

Hamilton-Jacobi equations, 23, 31,
47, 49, 52, 65

harmonic map, 144
heat equation, 43, 44, 97-99, 104,

106, 249, 251, 256

Heaviside function, 14, 64, 68, 141,
227

ideal gas, 164
image deblurring, 98
image denoising, 98
image processing, 95
image restoration, 97
image segmentation, 95
immersed boundary method, 227, 228
implicit surfaces, 1, 25, 64, 140-142
incomplete Choleski preconditioner,

213, 238, 250, 253
incompressible flow, 67, 79, 147, 209,

210, 217, 223, 224, 227-230, 232,
238,240

interpolation, 11, 31-34, 65, 69, 73,
74,93, 151, 155-158, 183, 184, 186,
203-206, 214, 224

isobaric fix, 173-175, 177-179

Jacobian matrix, 161, 165

kink,49

Lagrange multiplier, 71, 101
Lagrangian formulation, 23, 26, 28
Lax-Friedrichs schemes, 50
Lax-Wendroff theorem, 171
level set equation, 23, 26, 42, 43, 47,

55,59, 89, 167, 174,217
level set methods, 23, 26, 37, 46, 64,

79,82,87, 172,205,218,219,228
limiters, 201
Liouville equation, 90
liquid-gas interactions, 223
local Lax-Friedrichs scheme, 52
local level set, 64, 90, 92

MAC grid, 210, 233
marching cubes algorithm, 16
mass conservation, 82
mean curvature, 23
minimization procedure, 101, 125
monotone numerical methods, 49
monotone schemes, 49, 50
morphological, 104, 105, 141
motion by mean curvature, 23
multicomponent flow, 147

multiphase flow, 76
multiple junctions, 125, 127
Mumford-Shah segmentation, 120

Navier-Stokes equations, 28, 48, 173,
178,209,210,217,227,231

normal to a surface, 9
numerical flux, 154
NURBS, 139

open curves and surfaces, 90
overheating effect, 173, 175

particle level set method, 79, 82, 84,
219, 221, 222

phase-space-based level set
framework, 90

Poisson equation, 213, 228, 251, 252
preconditioned conjugate gradients,

213
projection method, 210, 212

radial basis functions, 140
Rankine-Hugoniot jump conditions,

169, 170, 172, 174, 175, 178, 183,
189, 192, 224, 240, 255

rarefaction waves, 48, 52
ray tracing, 90, 92
reconstruction of surfaces, 139
reinitialization, 64, 66, 67, 73, 82,

102, 123
reinitialization equation, 66
Riemann problem, 54, 172, 178, 190,

193, 195
Roe-fix scheme, 52
Runge-Kutta method, 31, 67, 160

scale space, 98
semi-Lagrangian method, 214
shape offsets, 65
shock waves, 48, 150, 167, 173, 174,

185, 189, 190, 223
signed distance, 1, 28, 36, 43-46, 51,

55, 56, 60, 61, 63-67, 69, 70, 73,
75-77, 205, 206, 253

smoke, 214, 215
snakes, 95, 119, 120, 124
solid/fluid problems, 147
sonic point, 53, 57, 159

Index 273

stable, 30, 38, 51, 124, 142, 214
Stefan problems, 147, 253, 254
surface tension, 141, 142, 224, 227,

228, 256, 258
systems of conservation laws, 160

Tait equation of state, 169
textures, 100
total variation-based image

restoration, 99
transformation to characteristic

variables, 160
trapezoidal rule, 45
TVD (total variation diminishing),

37, 38, 50, 100, 154, 160
TVD RK (total variation diminishing

Runge-Kutta), 37-39, 46

unorganized data points, 139
upwind differencing, 29, 30, 32, 54,

57, 75, 151

vanishing viscosity solutions, 46
variational level set formulation, 120,

121
velocity extension, 27
velocity extrapolation, 76
viscosity solutions, 19, 46, 79, 82
volume conservation, 82
volume of fluid methods, 147
Voronoi diagrams, 139, 140
vorticity confinement, 214

waves, 30, 48, 93, 150, 151, 160,
162, 167, 173, 174, 185, 189, 195,
197-199, 213, 223

weak solution, 46, 172
weighted minimal surface model, 140
WENO (weighted essentially

nonoscillatory), 33-35, 37-39, 50,
52-54, 66, 68, 69, 104

Applied Mathematical Sciences
(continued from page Ii)

60. GhiVChildress: Topics in Geophysical Dynamics:
Abnospheric Dynamics, DynaIOO Theory and
Climate Dynamics.

61. SatdngerlWeover: Lie Groups and Algebras with
Applications to Physics, Geometry, and
Mechanics.

62. laSalle: The Stability and Control of Discrete
Processes.

63. Grasman: As~totic Methods of Relaxation
Oscillations and Applications.

64. Hsu: Cell-to-Cell Mapping: A Method of Global
Analysis for Nonlinear Systems.

65. Rand/Armbruster: Perturbation Methods,
Bifurcation Theory and Computer Algebra.

66. Hlo.vaeek/Haslinger/NecasVLovisek: Solution of
Variational Inequalities in Mechanics.

67. Cereignani: The Boltzmann Equation and Its
Applications.

68. Temam: Infinite-Dimensional Dynamical Systems
in Mechanics and Physics, 2nd ed.

69. GolubitslcylStewartlSehaeffer: Singularities and
Groups in Bifurcation Theory, Vol. II.

70. Constllntin/Foios/NicolaenkolIemam: Integral
Manifolds and Inertial Manifolds for Dissipative
Partial Differential Equations.

71. Catlin: Estimation, Control, and the Discrete
Kalman Filter.

72. LochalclMeunier: Multiphase Averaging for
Classical Systems.

73. Wiggins: Global Bifurcations and Chaos.
74. MawhinlWillem: Critical Point Theory and

Hamiltonian Systems.
75. Abraham/Marsden/Ratiu: Manifolds, Tensor

Analysis, and Applications, 2nd ed.
76. Lagerstrom: Matched As~totic Expansions:

Ideas and Techniques.
77. Aldous: Probability Approximations via the

Poisson ClUIqling Heuristic.
78. Dacorogna: Direct Methods in the Calculus of

Variations.
79. Hernandez-Lerma: Adaptive Markov Processes.
80. Lawden: Elliptic Functions and Applications.
81. Bluman/Kumei: Synnnetries and Differential

Equations.
82. Kress: Linear Integral Equations, 2nd ed.
83. BeberneslEberly: Mathematical Problems from

Combustion Theory.
84. Joseph: Fluid Dynamics of Viscoelastic Fluids.
85. Yang: Wave Packets and Their Bifurcations in

Geophysical Fluid Dynamics.
86. DendrilloslSollis: Chaos and Socia-Spatial

Dynamics.
87. Weder: Spectral and Scattering Theory for Wave

Propagation in PertuIbed Stratified Media.

88. BogaevsWPovzner: Algebraic Methods in
Nonlinear Perturbation Theory.

89. O'Malley: Singular Pertulbation Methods for
Ordinary Differential Equations.

90. Meyer/Hall: Intrnduction to Hamiltonian
Dynamical Systems and the N-body Problem

91. Straughan: The Energy Method, Stability, and
Nonlinear Convection.

92. Naber: The Geometry ofMinkowski Spacetime.
93. ColtonlKress: Inverse Acoustic and

Electromagnetic Scattering Theory, 2nd ed.
94. Hoppensteadt: Analysis and Simu1ation of Chaotic

Systems, 2nd ed.
95. Haekbusch: Iterative Solution of Large Sparse

Systems of Equations.
96. MarchiorolPulvirenti: Mathematical Theory of

Incompressible Nonviscous Fluids.
97. LasotalMackey: Chaos, Fractals, and Noise:

Stochastic Aspects ofDynamics, 2nd ed.
98. de Boor/HlilligIRiemenschlleider: Box Splines.
99. Hale/Lullel: Intrnduction to Functional Differential

Equations.
100. Sirovieh (ed): Treods and Perspectives in

Applied Mathematics.
101. NusseIYorke: Dynamics: Numerical Explorations,

2nded.
102. Chossatllooss: The Couette-Taylor Problem
103. Chorin: Vorticity and TurlJuience.
104. Farkas: Periodic Motions.
105. Wiggins: Normally Hyperbolic Invariant

Manifolds in Dynamical Systems.
106. CereignaniIRlner/Pulvirenti: The Mathematical

Theory of Dilute Gases.
107. Antman: Nonlinear Problems of Elasticity.
108. Zeidler: Applied Functional Analysis:

Applications to Mathematical Physics.
109. Zeidler: Applied Functional Analysis: Main

Principles and Their Applications.
110. Dlekmannlvan Gi/s/Verduyn LuneVWalther:

Delay Equations: Functional-, Complex-, and
Nonlinear Analysis.

Ill. Visintin: Differential Models of Hysteresis.
112. Kuznetsov: Elements of Applied Bifurcation

Theory, 2nd ed.
113. Hislop/Sigal: Introduction to Spectral Theory:

With Applications to SchrOdinger Operators.
114. Kevorkian/Cole: Multiple Scale and Singular

Pertulbation Methods.
liS. Taylor: Partial Differential Equations I, Basic

Theory.
116. Taylor: Partial Differeutial Equations II,

Qualitative Studies of Linear Equations.

(continued on next page)

Applied Mathematical Sciences
(COlltinUed frOIll previous page)

117. Taylor: Partial Differential Equations Ill,
NonJiDear Equations.

118. Godlewski/RJrvlort: Nmnerical Approximation of
HypeIbolic Systems of Conservation Laws.

119. Wu: Theory and Applications of Partial Functional
Dift'erential Equations.

120. Kirsch: An Inttoduction to the Mathematical
Theory of Inverse Problems.

121. BroluztelSprekels: Hysteresis and Phase
Transitions.

122. Gliklikh: Global Analysis in Mathematical
Physics: Geometric and Stochastic Methods.

123. LelSchlllitt: Global Bifilrcation in Variational
Inequalities: Applications to Obstacle and
Unilateral Problems.

124. Polak: Optimization: Algorithms and Consistent
Approximations.

125. Arnold/Khesill: Topological Methods in
Hydrodynamics.

126. Hoppenstendtllzhi1cevich: Weakly Connected
NelDal Networks.

127. lsalcov: Inverse Problems for Partial Dift'erential
Equations.

128. LVWiggi1ls: Invariant Manifolds and Fibrations
for Perturbed Nonlinear SchrOdinger Equations.

129. Milller: Analysis of Spherical Symmetries in
Euclidean Spaces.

130. Feilltueh: Robust Control Theory in Hilbert
Space.

131. Erielcsell: Inttoduction to the Thel'llJJdynamics of
Solids. Revised ed.

132. Ihlellburg: Finite Element Analysis of Acoustic
Scattering.

133. Vorovich: NonJiDear Theory of Shallow Shells.
134. Vein/Dole: Determinants and Their Applications in

Mathematical Physics.
135. Drew/PassIIIIJII: Theory of Multi component

Fluids.
136. CiorallesculSoint Jean Paulill: Hotmgenization of

Reticulated Structures.
137. Gurtill: Configurational Forces as Basic Concepts

of Continumn Physics.

138. Haller: Chaos Near Resonance.
139. SulemlSulelll: The Nonlinear SchrOdinger

Equation: Self-Focusing and Wave Collapse.
140. Cherluzev: Variational Methods for Structmal

Optimization.
141. Naber: Topology. Geometry. and Gauge Fields:

Interactions.
142. SehlllidlHellllilllPon: Stability and Transition in

Shear Flows.
143. SelVYou: Dynamics of Evolutionary Equations.
144. Nedelec: Acoustic and Electromagnetic Equations:

Integral Representations for
Hannonic Problems.

145. Newton: The N-Vortex Problem:
Analytical Techniques.

146. Allaire: Shape Optimization by the
Homogenization Method.

147. AubertlKornprobst: Mathematical Problems in
Image Processing: Partial Differential Equations
and the Calculus of Variations.

148. Peyret: Specttal Methods for Incompressible
Viscous Flow.

149.lkedaIMurota: Imperfect Bifilrcation in Structures
and Materials: Engineering Use of Group
Theoretic Bifucation Theory.

ISO. SluzrokhodlHoppensteadtlSolehi: Random
Perturbation Methods with Applications in Science
and Engineering.

151. Bellsoussan/Frehse: Regularity Results for
Nonlinear Elliptic Systems and Applications.

152. HoldenIRisebro: Front Tracking for HypeIbolic
Conservation Laws.

153. Osher/Fedldw: Level Set Methods and Dynamic
Implicit Surfaces.

154. Bllllllan/Alleo: Symmetry and Integration Methods
for Dift'erentiaI Equations.

155. Challllond: Modeling and Inverse Problems in
Image Analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

