Skip to main content

Reconciling Aquaculture's Influence on the Water Column and Benthos of an Estuarine Fjord – a Case Study from Bay d'Espoir, Newfoundland

  • Chapter
  • First Online:
Environmental Effects of Marine Finfish Aquaculture

Part of the book series: Handbook of Environmental Chemistry ((HEC5,volume 5M))

Abstract

One unifying principle proposed for the environmental influence of aquaculture is that when flushing is poor (>2 d.), the maximal biomass produced in an area will be constrained by accumulation of waste products in the water column. In the Bay d'Espoir estuarine fjord on the south coast of Newfoundland, under-ice salmonid culture in cages in protected bays with low flushing rates (5 to 20 d.) is a challenging component of the annual production cycle. However, in two years of environmental monitoring of such protected bays, no significant change to water quality was observed. A measurable influence on the benthos was more frequently detected, but localized. Thus the inconsistency of Bay d'Espoir; it has a low flushing rate, yet there was no observable change to the water column. Possible reasons for this are discussed, and include: the sheer amount of water (i.e., potential for within-basin mixing/dilution and biodegradation) in this estuarine fjord; increased surface transport of nutrients; the benefit of fallowing; and, diminished relative loadings to the water column and benthos in winter conditions for an industry in its early stages of development. Further refinement of assimilative capacity estimates for this and other similar suboptimal areas will have to resolve this apparent contradiction prior to espousing “unifying principles”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

H :

holding or assimilative capacity

ΔC :

allowable change in nutrient level (μmol N l−1)

R :

rate of nutrient release by fish (mol N d−1 kg−1)

T :

flushing rate (m3 d−1)

V :

volume (m3)

mt:

metric tons (1 mt = 1000 kg)

References

  1. Ervik A, Hansen PK, Aure J, Stigebrandt A, Johannessen P, Jahnsen T (1997) Aquaculture 158:85

    Article  Google Scholar 

  2. Tlusty MF, Pepper VA, Anderson MR (1999) Can Tech Rep Fish Aquat Sci 2273:1

    Google Scholar 

  3. Aure J, Stigebrandt A (1990) Aquaculture 90:135

    Article  Google Scholar 

  4. Håkanson L, Wallin M (1991) Envirometrics 2:49

    Google Scholar 

  5. Wallin M (1991) PhD Thesis, Uppsala University, Sweden

    Google Scholar 

  6. Silvert W (1994) Can Tech Rep Fish Aquat Sci 1949:1

    Google Scholar 

  7. Tlusty MF, Pepper VA, Anderson MR (2000) World Aquaculture 31:50

    Google Scholar 

  8. Beveridge M (1987) Cage aquaculture. Fishing News Books, Oxford

    Google Scholar 

  9. Gowen RJ, Bradbury NB (1987) Oceanogr Mar Biol Ann Rev 25:563

    Google Scholar 

  10. Gowen RJ (1990) An assessment of the impact of fish farming on the water column and sediment ecosystem of Irish coastal water including a review of current monitoring programmes. Department of the Marine, Leeson Lane, Dublin

    Google Scholar 

  11. Gowen RJ, Brown J, Bradbury NB, McLusky DS (1988) PhD Thesis, University of Stirling, Scotland

    Google Scholar 

  12. Cranston R (1994) Can Tech Rep Fish Aquat Sci 1949:92

    Google Scholar 

  13. Wu RSS (1995) Mar Poll Bull 31:159

    CAS  Google Scholar 

  14. Abdullah MI, Danielsen M (1992) Hydrobiologica 235/236:711

    Article  Google Scholar 

  15. Wu RSS, Lam KS, MacKay DW, Lau TC, Yam V (1994) Mar Env Res 38:115

    Article  Google Scholar 

  16. Silvert W, Sowles JW (1996) J Appl Ichthyology 12:75

    Google Scholar 

  17. Hall POJ, Anderson LG, Holby O, Kolberg S, Samuelson MO (1990) Mar Ecol Prog Ser 61:61

    CAS  Google Scholar 

  18. Hall POJ, Holby O, Kolberg S, Samuelson MO (1992) Mar Ecol Prog Ser 89:81

    Google Scholar 

  19. Holby O, Hall POJ (1991) Mar Ecol Prog Ser 70:263

    CAS  Google Scholar 

  20. Enell M, Ackefors H (1991) ICES CM 1991/F:56

    Google Scholar 

  21. O'Connor B, Hartnett M, Costelloe J (1991) J Europ Aquacult Soc Spec Pub 16:191

    Google Scholar 

  22. Muller-Haeckel A (1986) Vatten 42:205

    Google Scholar 

  23. Iwama GK (1991) Crit Rev Environ Contr 2:177

    Google Scholar 

  24. Persson G (1991) Proc First Int Symp Nutrit Strat Mgmt Aquacult Wastes. University of Guelph, Guelph, Ontario, 1990:163

    Google Scholar 

  25. Frid CLJ, Mercer TS (1989) Mar Pollut Bull 20:379

    CAS  Google Scholar 

  26. Black EA (1991) J Europ Aquacult Soc Spec Pub 16:441

    Google Scholar 

  27. Tlusty MF, Anderson MR, Pepper VA (1998) Bull Aquacult Assoc Can 98:35

    Google Scholar 

  28. Department of Fisheries and Oceans (2004) www.dfo-mpo.gc.ca/communic/statistics/aqua/aqua02_e.htm; last accessed 4/7/2004

    Google Scholar 

  29. Weston DP (1986) PhD Thesis, University of Washington, Seattle, WA

    Google Scholar 

  30. Levings CD (1994) J Applied Aquaculture 4:65

    Google Scholar 

  31. Gillibrand PA, Turrell WR (1997) Aquaculture 159:33

    Article  Google Scholar 

  32. Strain PM, Hargrave BT (2005) Salmon aquaculture, nutrient fluxes and ecosystem processes in southwestern New Brunswick (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  33. Sowles JW (2005) Assessing nitrogen carrying capacity for Blue Hill Bay, Maine – a management case history (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Windell JT, Foltz JW, Sarokon JA (1978) Trans Ma Fish Soc 107:613

    CAS  Google Scholar 

  35. Hudon B, de la Noue J (1985) J World Maricul Soc 16:101

    CAS  Google Scholar 

  36. Mäkinen T (1993) Aquacult Fish Mgmt 24:213

    Google Scholar 

  37. Brett JR (1979) In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology Volume 8: Bioenergetics and growth. Academic Press, New York, p 599

    Google Scholar 

  38. Newfoundland and Labrador Department of Fisheries and Aquaculture (1998) Roti Bay management plan. PO Box 8700, St John's, NF A1B 4J6

    Google Scholar 

  39. Stewart JE (1998) Can Tech Rep Fish Aquat Sci 2218:1

    Google Scholar 

  40. Powers VA, Finney-Crawley J, Tlusty MF (1999) Proc 38th Ann Mtg Can Soc Env Biol 1998:103

    Google Scholar 

  41. O'Connor B, Costelloe J, Dinneen P, Faull J (1993) ICES CM 1993/F:19:1

    Google Scholar 

  42. Johannessen PJ, Botnen HB, Tvedten ØF (1994) Aquacult Fish Mgmt 25:55

    Google Scholar 

  43. British Columbia Environmental Assessment Office (1997) Salmon Aquaculture Review http://www.eao.gov.bc.ca/ report 6 January 1998

  44. Hilborn R, Pikitch EK, Francis RC (1993) Can J Fish Aquat Sci 50:874

    Google Scholar 

  45. Bongers T, Alkemade R, Yeates GW (1991) Mar Ecol Prog Ser 79:135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Tlusty .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Tlusty, M.F., Pepper, V.A., Anderson, M.R. Reconciling Aquaculture's Influence on the Water Column and Benthos of an Estuarine Fjord – a Case Study from Bay d'Espoir, Newfoundland. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136007

Download citation

Publish with us

Policies and ethics