Skip to main content
Log in

Solutions from boundary condition changing operators in open superstring field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct analytic solutions of open superstring field theory in the Berkovits formulation using boundary condition changing operators under some regularity conditions, extending the previous construction in the bosonic string. We also consider the gauge-invariant observables corresponding to closed string one-point functions on the disk. We analytically calculate the gauge-invariant observables for the solutions both in the bosonic string and in the superstring and find the expected change of boundary conditions of the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  4. Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Fuchs and M. Kroyter, On the validity of the solution of string field theory, JHEP 05 (2006) 006 [hep-th/0603195] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Fuchs and M. Kroyter, Schnabl’s L 0 operator in the continuous basis, JHEP 10 (2006) 067 [hep-th/0605254] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Rastelli and B. Zwiebach, Solving open string field theory with special projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Fuji, S. Nakayama and H. Suzuki, Open string amplitudes in various gauges, JHEP 01 (2007) 011[hep-th/0609047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Fuchs and M. Kroyter, Universal regularization for string field theory, JHEP 02 (2007) 038 [hep-th/0610298] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [INSPIRE].

  12. T. Erler, Split string formalism and the closed string vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Erler, Split string formalism and the closed string vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Erler, Marginal solutions for the superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. I. Kishimoto and Y. Michishita, Comments on solutions for nonsingular currents in open string field theories, Prog. Theor. Phys. 118 (2007) 347 [arXiv:0706.0409] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: a general framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Erler, Tachyon vacuum in cubic superstring field theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Rastelli and B. Zwiebach, The off-shell Veneziano amplitude in Schnabl gauge, JHEP 01 (2008) 018 [arXiv:0708.2591] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. O.-K. Kwon, B.-H. Lee, C. Park and S.-J. Sin, Fluctuations around the tachyon vacuum in open string field theory, JHEP 12 (2007) 038 [arXiv:0709.2888] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Takahashi, Level truncation analysis of exact solutions in open string field theory, JHEP 01 (2008) 001 [arXiv:0710.5358] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Kiermaier, A. Sen and B. Zwiebach, Linear b-gauges for open string fields, JHEP 03 (2008) 050 [arXiv:0712.0627] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. O.-K. Kwon, Marginally deformed rolling tachyon around the tachyon vacuum in open string field theory, Nucl. Phys. B 804 (2008) 1 [arXiv:0801.0573] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Hellerman and M. Schnabl, Light-like tachyon condensation in open string field theory, arXiv:0803.1184 [INSPIRE].

  32. I. Ellwood, The closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Kawano, I. Kishimoto and T. Takahashi, Gauge invariant overlaps for classical solutions in open string field theory, Nucl. Phys. B 803 (2008) 135 [arXiv:0804.1541] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Tachyon solution in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 158 (2009) 320 [arXiv:0804.2017] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  35. A. Ishida, C. Kim, Y. Kim, O.-K. Kwon and D. Tolla, Tachyon vacuum solution in open string field theory with constant B field, J. Phys. A 42 (2009) 395402 [arXiv:0804.4380] [INSPIRE].

    MathSciNet  Google Scholar 

  36. T. Kawano, I. Kishimoto and T. Takahashi, Schnabl’s solution and boundary states in open string field theory, Phys. Lett. B 669 (2008) 357 [arXiv:0804.4414] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. M. Kiermaier and B. Zwiebach, One-Loop Riemann surfaces in Schnabl gauge, JHEP 07 (2008) 063 [arXiv:0805.3701] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Fuchs and M. Kroyter, On the classical equivalence of superstring field theories, JHEP 10 (2008) 054 [arXiv:0805.4386] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Fuchs and M. Kroyter, Analytical solutions of open string field theory, Phys. Rept. 502 (2011) 89 [arXiv:0807.4722] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Asano and M. Kato, General linear gauges and amplitudes in open string field theory, Nucl. Phys. B 807 (2009) 348 [arXiv:0807.5010] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. I. Kishimoto, Comments on gauge invariant overlaps for marginal solutions in open string field theory, Prog. Theor. Phys. 120 (2008) 875 [arXiv:0808.0355] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  42. M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].

  43. N. Barnaby, D.J. Mulryne, N.J. Nunes and P. Robinson, Dynamics and stability of light-like tachyon condensation, JHEP 03 (2009) 018 [arXiv:0811.0608] [INSPIRE].

    Article  ADS  Google Scholar 

  44. I. Aref’eva, R.V. Gorbachev, D.A. Grigoryev, P.N. Khromov, M.V. Maltsev and P.B. Medvedev, Pure gauge configurations and tachyon solutions to string field theories equations of motion, JHEP 05 (2009) 050 [arXiv:0901.4533] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. I. Kishimoto and T. Takahashi, Numerical evaluation of gauge invariants for a-gauge solutions in open string field theory, Prog. Theor. Phys. 121 (2009) 695 [arXiv:0902.0445] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  46. I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. I. Aref’eva, R. Gorbachev and P. Medvedev, Pure gauge configurations and solutions to fermionic superstring field theories equations of motion, J. Phys. A 42 (2009) 304001 [arXiv:0903.1273] [INSPIRE].

    MathSciNet  Google Scholar 

  48. E. Arroyo, Cubic interaction term for Schnabl’s solution using Padé approximants, J. Phys. A 42 (2009) 375402 [arXiv:0905.2014] [INSPIRE].

    MathSciNet  Google Scholar 

  49. M. Kroyter, Comments on superstring field theory and its vacuum solution, JHEP 08 (2009) 048 [arXiv:0905.3501] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. E. Aldo Arroyo, The tachyon potential in the sliver frame, JHEP 10 (2009) 056 [arXiv:0907.4939] [INSPIRE].

    Article  ADS  Google Scholar 

  52. F. Beaujean and N. Moeller, Delays in open string field theory, arXiv:0912.1232 [INSPIRE].

  53. E. Arroyo, Generating Erler-Schnabl-type solution for tachyon vacuum in cubic superstring field theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. S. Zeze, Tachyon potential in KBc subalgebra, Prog. Theor. Phys. 124 (2010) 567 [arXiv:1004.4351] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  55. M. Schnabl, Algebraic solutions in open string field theory - a lightning review, arXiv:1004.4858 [INSPIRE].

  56. I. Arefeva and R. Gorbachev, On gauge equivalence of tachyon solutions in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 165 (2010) 1512 [arXiv:1004.5064] [INSPIRE].

    Article  Google Scholar 

  57. S. Zeze, Regularization of identity based solution in string field theory, JHEP 10 (2010) 070 [arXiv:1008.1104] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. E. Arroyo, Comments on regularization of identity based solutions in string field theory, JHEP 11 (2010) 135 [arXiv:1009.0198] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. L. Bonora, C. Maccaferri and D. Tolla, Relevant deformations in open string field theory: a simple solution for lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. M. Murata and M. Schnabl, On multibrane solutions in open string field theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  63. E. Arroyo, Conservation laws and tachyon potentials in the sliver frame, JHEP 06 (2011) 033 [arXiv:1103.4830] [INSPIRE].

    Article  ADS  Google Scholar 

  64. L. Bonora, S. Giaccari and D. Tolla, The energy of the analytic lump solution in SFT, JHEP 08 (2011) 158 [arXiv:1105.5926] [INSPIRE].

    Article  ADS  Google Scholar 

  65. T. Erler and C. Maccaferri, Comments on lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].

    Article  ADS  Google Scholar 

  66. L. Bonora, S. Giaccari and D. Tolla, Analytic solutions for Dp-branes in SFT, arXiv:1106.3914 [INSPIRE].

  67. S. Inatomi, I. Kishimoto and T. Takahashi, Homotopy operators and one-loop vacuum energy at the tachyon vacuum, arXiv:1106.5314 [INSPIRE].

  68. L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439-451] [hep-th/9503099] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. A. Hashimoto and N. Itzhaki, Observables of string field theory, JHEP 01 (2002) 028 [hep-th/0111092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Ghost structure and closed strings in vacuum string field theory, Adv. Theor. Math. Phys. 6 (2003) 403 [hep-th/0111129] [INSPIRE].

    MathSciNet  Google Scholar 

  73. M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  76. C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. I. Arefeva, P. Medvedev and A. Zubarev, New representation for string field solves the consistency problem for open superstring field theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Noumi.

Additional information

ArXiv ePrint: 1108.5317

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noumi, T., Okawa, Y. Solutions from boundary condition changing operators in open superstring field theory. J. High Energ. Phys. 2011, 34 (2011). https://doi.org/10.1007/JHEP12(2011)034

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)034

Keywords

Navigation