Skip to main content
Log in

Non-standard antineutrino interactions at Daya Bay

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the prospects of pinning down the effects of non-standard antineutrino interactions in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the non-standard interactions in the detection process are of the same type as those in the production, their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing angle θ 13. Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MINOS collaboration, P. Adamson et al., First direct observation of muon antineutrino disappearance, Phys. Rev. Lett. 107 (2011) 021801 [arXiv:1104.0344] [INSPIRE].

    Article  ADS  Google Scholar 

  2. The MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for \( {\overline \nu_\mu } \to {\overline \nu_e} \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].

    Article  ADS  Google Scholar 

  3. LSND collaboration, A. Aguilar et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

    ADS  Google Scholar 

  4. T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Foot, H. Lew, X. He and G.C. Joshi, See-saw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  6. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D. Freedman eds., Stony Brook, New York U.S.A. (1979), pg. 315.

    Google Scholar 

  7. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  9. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  10. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  11. J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  12. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proc. Workshop on the Baryon Number of the Universe and Unified Theories, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.

    Google Scholar 

  13. T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].

    Article  ADS  Google Scholar 

  15. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].

    ADS  Google Scholar 

  16. T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  17. MINOS collaboration, P. Adamson et al., Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Daya-Bay collaboration, X. Guo et al., A Precision measurement of the neutrino mixing angle θ 13 using reactor antineutrinos at Daya-Bay, hep-ex/0701029 [INSPIRE].

  19. Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: A Search for the neutrino mixing angle θ 13, hep-ex/0606025 [INSPIRE].

  20. RENO collaboration, S.-B. Kim, RENO for neutrino mixing angle θ 13, Prog. Part. Nucl. Phys. 64 (2010) 346 [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].

    ADS  Google Scholar 

  22. T. Ohlsson and H. Zhang, Non-Standard Interaction Effects at Reactor Neutrino Experiments, Phys. Lett. B 671 (2009) 99 [arXiv:0809.4835] [INSPIRE].

    ADS  Google Scholar 

  23. P. Huber, T. Schwetz and J. Valle, Confusing nonstandard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [INSPIRE].

    ADS  Google Scholar 

  24. C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Antusch and E. Fernandez-Martinez, Signals of CPT Violation and Non-Locality in Future Neutrino Oscillation Experiments, Phys. Lett. B 665 (2008) 190 [arXiv:0804.2820] [INSPIRE].

    ADS  Google Scholar 

  26. OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].

  27. S. Stoica, V. Paun and A. Negoita, Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung, Phys. Rev. C 69 (2004) 068801 [INSPIRE].

    ADS  Google Scholar 

  28. Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

  29. P. Vogel and J. Engel, Neutrino Electromagnetic Form-Factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].

    ADS  Google Scholar 

  30. P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( \overline \nu e + p \to {e^{+} } + n \) Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].

    ADS  Google Scholar 

  31. I. Nemchenok, Liquid scintillator on the base of the linear alkybenzene, Daya Bay internal report.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Malinský.

Additional information

ArXiv ePrint: 1105.5580

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitner, R., Malinský, M., Roskovec, B. et al. Non-standard antineutrino interactions at Daya Bay. J. High Energ. Phys. 2011, 1 (2011). https://doi.org/10.1007/JHEP12(2011)001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)001

Keywords

Navigation