Skip to main content
Log in

A strong electroweak phase transition in the 2HDM after LHC8

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The nature of the electroweak phase transition in two-Higgs-doublet models is revisited in light of the recent LHC results. A scan over an extensive region of their parameter space is performed, showing that a strongly first-order phase transition favours a light neutral scalar with SM-like properties, together with a heavy pseudo-scalar (\( {m_{{{A^0}}}} \) ≳ 400 GeV) and a mass hierarchy in the scalar sector, \( {m_{{{H^{\pm }}}}}\lesssim {m_{{{H^0}}}}<{m_{{{A^0}}}} \). We also investigate the h 0γγ decay channel and find that an enhancement in the branching ratio is allowed, and in some cases even preferred, when a strongly first-order phase transition is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

  2. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  3. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m H larger or equal to m W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.M. Cline, Baryogenesis, hep-ph/0609145 [INSPIRE].

  6. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Konstandin, Quantum transport and electroweak baryogenesis, arXiv:1302.6713 [INSPIRE].

  8. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  9. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  10. T. Lee, CP nonconservation and spontaneous symmetry breaking, Phys. Rept. 9 (1974) 143 [INSPIRE].

    Article  ADS  Google Scholar 

  11. L.D. McLerran, M.E. Shaposhnikov, N. Turok and M.B. Voloshin, Why the baryon asymmetry of the universe is approximately 10−10, Phys. Lett. B 256 (1991) 451 [INSPIRE].

    ADS  Google Scholar 

  12. N. Turok and J. Zadrozny, Electroweak baryogenesis in the two doublet model, Nucl. Phys. B 358 (1991) 471 [INSPIRE].

    Article  ADS  Google Scholar 

  13. A.G. Cohen, D. Kaplan and A. Nelson, Spontaneous baryogenesis at the weak phase transition, Phys. Lett. B 263 (1991) 86 [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].

    ADS  Google Scholar 

  15. L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Carena, G. Nardini, M. Quirós and C.E. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Fairbairn and R. Hogan, Singlet fermionic dark matter and the electroweak phase transition, JHEP 09 (2013) 022 [arXiv:1305.3452] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P.H. Damgaard, D. O’Connell, T.C. Petersen and A. Tranberg, Constraints on new physics from baryogenesis and Large Hadron Collider data, arXiv:1305.4362 [INSPIRE].

  20. G. Branco, W. Grimus and L. Lavoura, Relating the scalar flavor changing neutral couplings to the CKM matrix, Phys. Lett. B 380 (1996) 119 [hep-ph/9601383] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].

    ADS  Google Scholar 

  24. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  25. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  26. W. Grimus, L. Lavoura, O. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].

    Article  ADS  Google Scholar 

  27. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

    ADS  Google Scholar 

  28. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  29. I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

    ADS  Google Scholar 

  30. G. Funk, D. O’Neil and R.M. Winters, What the oblique parameters S, T and U and their extensions reveal about the 2HDM: a numerical analysis, Int. J. Mod. Phys. A 27 (2012) 1250021 [arXiv:1110.3812] [INSPIRE].

    Article  ADS  Google Scholar 

  31. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  32. M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Carrington, The effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].

    ADS  Google Scholar 

  34. L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    ADS  Google Scholar 

  35. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  36. B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [arXiv:1304.0028] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Wainwright, S. Profumo and M.J. Ramsey-Musolf, Gravity waves from a cosmological phase transition: gauge artifacts and daisy resummations, Phys. Rev. D 84 (2011) 023521 [arXiv:1104.5487] [INSPIRE].

    ADS  Google Scholar 

  39. M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 014503 [hep-ph/9805264] [INSPIRE].

    ADS  Google Scholar 

  41. F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  42. T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X_s}\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Krawczyk, D. Sokolowska and B. Swieżewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCthe story so far, arXiv:1304.5225 [INSPIRE].

  46. J. Shu and Y. Zhang, Impact of a CP-violating Higgs: from LHC to baryogenesis, Phys. Rev. Lett. 111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].

    ADS  Google Scholar 

  48. N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  49. O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, arXiv:1305.1649 [INSPIRE].

  50. S. Huber and M. Schmidt, Electroweak baryogenesis: concrete in a SUSY model with a gauge singlet, Nucl. Phys. B 606 (2001) 183 [hep-ph/0003122] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].

  52. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  53. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Posch, Enhancement of hγγ in the two Higgs doublet model type I, Phys. Lett. B 696 (2011) 447 [arXiv:1001.1759] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S.J. Huber and M. Sopena, An efficient approach to electroweak bubble velocities, arXiv:1302.1044 [INSPIRE].

  56. C. Caprini and J.M. No, Supersonic electroweak baryogenesis: achieving baryogenesis for fast bubble walls, JCAP 01 (2012) 031 [arXiv:1111.1726] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Dorsch.

Additional information

ArXiv ePrint: 1305.6610

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorsch, G.C., Huber, S.J. & No, J.M. A strong electroweak phase transition in the 2HDM after LHC8. J. High Energ. Phys. 2013, 29 (2013). https://doi.org/10.1007/JHEP10(2013)029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)029

Keywords

Navigation