Skip to main content
Log in

Degenerate rotating black holes, chiral CFTs and Fermi surfaces I — Analytic results for quasinormal modes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work we discuss charged rotating black holes in AdS 5 × S 5 that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface operators in a subsector of \( \mathcal{N} = 4 \) SYM. We add a massless uncharged scalar to the five dimensional supergravity theory, such that it still forms a consistent truncation of the type IIB ten dimensional supergravity and analyze its quasinormal modes. Separating the equation of motion to a radial and angular part, we proceed to solve the radial equation using a matched asymptotic expansion method applied to Heun’s equation with two nearby singularities. We use the continued fraction method for the angular Heun equation and obtain numerical results for the quasinormal modes. In the case of the near-supersymmetric black hole we present some analytic results for the decay rates of the scalar perturbations. The spectrum of quasinormal modes obtained is similar to that of a chiral 1 + 1 CFT, which is consistent with the conjectured field-theoretic dual. In addition, some of the modes can be found analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. J. Mei and C. Pope, New rotating non-extremal black holes in D = 5 maximal gauged supergravity, Phys. Lett. B 658 (2007) 64 [arXiv:0709.0559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in five dimensional U(1)3 gauged N = 2 supergravity, Phys. Rev. D 70 (2004) 081502 [hep-th/0407058][INSPIRE].

    ADS  Google Scholar 

  4. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Z. Chong, M. Cvetič, H. Lü and C. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].

    ADS  Google Scholar 

  6. Z. Chong, M. Cvetič, H. Lü and C. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Adams, J. Polchinski and E. Silverstein, Dont panic! Closed string tachyons in ALE space-times, JHEP 10 (2001) 029 [hep-th/0108075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. V. Cardoso and O.J. Dias, Small Kerr-Anti-de Sitter black holes are unstable, Phys. Rev. D 70 (2004) 084011 [hep-th/0405006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. N. Uchikata, S. Yoshida and T. Futamase, Scalar perturbations of Kerr-AdS black holes, Phys. Rev. D 80 (2009) 084020 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Berkooz, D. Reichmann and J. Simon, A Fermi surface model for large supersymmetric AdS 5 black holes, JHEP 01 (2007) 048 [hep-th/0604023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Berkooz and D. Reichmann, Weakly Renormalized Near 1/16 SUSY Fermi Liquid Operators in N = 4 SYM, JHEP 10 (2008) 084 [arXiv:0807.0559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Cvetič, G. Gibbons, H. Lü and C. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].

  16. M. Cvetič, H. Lü, C. Pope, A. Sadrzadeh and T.A. Tran, Consistent SO(6) reduction of type IIB supergravity on S 5, Nucl. Phys. B 586 (2000) 275 [hep-th/0003103] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  18. S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  21. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemissionexperimentson holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].

    Article  ADS  Google Scholar 

  23. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  24. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].

    Article  ADS  Google Scholar 

  26. O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in maximal gauged supergravity, Phys. Rev. Lett. 108 (2012) 251601 [arXiv:1112.3036] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi liquid fixed points, arXiv:1101.0597 [INSPIRE].

  28. D.D. Chow, M. Cvetič, H. Lü and C. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].

    ADS  Google Scholar 

  29. O.J. Dias, R. Emparan and A. Maccarrone, Microscopic theory of black hole superradiance, Phys. Rev. D 77 (2008) 064018 [arXiv:0712.0791] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. R. Fareghbal, C. Gowdigere, A. Mosaffa and M. Sheikh-Jabbari, Nearing extremal intersecting giants and new decoupled sectors in N = 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Sheikh-Jabbari and H. Yavartanoo, EVH black holes, AdS 3 throats and EVH/CFT proposal, JHEP 10 (2011) 013 [arXiv:1107.5705] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J. de Boer, M. Johnstone, M. Sheikh-Jabbari and J. Simon, Emergent IR dual 2D CFTs in charged AdS 5 black holes, Phys. Rev. D 85 (2012) 084039 [arXiv:1112.4664] [INSPIRE].

    ADS  Google Scholar 

  33. I. Garcia-Etxebarria, F. Saad and A.M. Uranga, Quiver gauge theories at resolved and deformed singularities using dimers, JHEP 06 (2006) 055 [hep-th/0603108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. N. Beisert and B.I. Zwiebel, On symmetry enhancement in the PSU(1, 1|2) sector of N = 4 SYM, JHEP 10 (2007) 031 [arXiv:0707.1031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. B.I. Zwiebel, Iterative structure of the N = 4 SYM spin chain, JHEP 07 (2008) 114 [arXiv:0806.1786] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Davis, H.K. Kunduri and J. Lucietti, Special symmetries of the charged Kerr-AdS black hole of D = 5 minimal gauged supergravity, Phys. Lett. B 628 (2005) 275 [hep-th/0508169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S.-Q. Wu, Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general non-extremal rotating charged black holes in minimal five-dimensional gauged supergravity, Phys. Rev. D 80 (2009) 084009 [arXiv:0906.2049] [INSPIRE].

    ADS  Google Scholar 

  39. T. Birkandan and M. Cvetič, Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D 84 (2011) 044018 [arXiv:1106.4329] [INSPIRE].

    ADS  Google Scholar 

  40. A.N. Aliev and O. Delice, Superradiant instability of five-dimensional rotating charged AdS black holes, Phys. Rev. D 79 (2009) 024013 [arXiv:0808.0280] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Berkooz, A. Frishman and A. Zait, Stability of rapidly rotating charged black holes in AdS 5 × S 5, in progress.

  43. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Kim, L. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

    ADS  Google Scholar 

  45. M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].

    Article  MATH  Google Scholar 

  46. M. Günaydin, L. Romans and N. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].

    Article  ADS  Google Scholar 

  47. W. Lay and S.Y. Slavyanov, Heuns equation with nearby singularities, Proc. Math. Phys. Eng. Sci. 455 (1999) 4347.

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Compère, The Kerr/CFT correspondence and its extensions: a comprehensive review, arXiv:1203.3561 [INSPIRE].

  49. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. S. Hod, Slow relaxation of rapidly rotating black holes, Phys. Rev. D 78 (2008) 084035 [arXiv:0811.3806] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. S. Hod, Quasinormal resonances of near-extremal Kerr-Newman black holes, Phys. Lett. B 666 (2008) 483 [arXiv:0810.5419] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Hod, Black-hole quasinormal resonances: wave analysis versus a geometric-optics approximation, Phys. Rev. D 80 (2009) 064004 [arXiv:0909.0314] [INSPIRE].

    ADS  Google Scholar 

  53. S. Hod, Relaxation dynamics of charged gravitational collapse, Phys. Lett. A 374 (2010) 2901 [arXiv:1006.4439] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Hod, Quasinormal resonances of a massive scalar field in a near-extremal Kerr black hole spacetime, Phys. Rev. D 84 (2011) 044046 [arXiv:1109.4080] [INSPIRE].

    ADS  Google Scholar 

  55. E.W. Leaver, An analytic representation for the quasi-normal modes of Kerr black holes, Proc. Roy. Soc. London A 402 (1985) 285.

    Article  MathSciNet  ADS  Google Scholar 

  56. E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34 (1986) 384 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967) 24.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. H. Lü, J. Mei and C. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [INSPIRE].

    Article  Google Scholar 

  61. H. Lü, J.-w. Mei, C. Pope and J.F. Vázquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  63. C. Krishnan, Hidden conformal symmetries of five-dimensional black holes, JHEP 07 (2010) 039 [arXiv:1004.3537] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Zait.

Additional information

ArXiv ePrint: 1206.3735v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkooz, M., Frishman, A. & Zait, A. Degenerate rotating black holes, chiral CFTs and Fermi surfaces I — Analytic results for quasinormal modes. J. High Energ. Phys. 2012, 109 (2012). https://doi.org/10.1007/JHEP08(2012)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)109

Keywords

Navigation