Skip to main content
Log in

Dark radiation and decaying matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recent cosmological measurements favour additional relativistic energy density beyond the one provided by the three active neutrinos and photons of the Standard Model (SM). This is often referred to as “dark radiation”, suggesting the need of new light states in the theory beyond those of the SM. In this paper, we study and numerically explore the alternative possibility that this increase comes from the decay of some new form of heavy matter into the SM neutrinos. We study the constraints on the decaying matter density and its lifetime, using data from the Wilkinson Microwave Anisotropy Probe, the South Pole Telescope, measurements of the Hubble constant at present time, the results from high-redshift Type-I supernovae and the information on the Baryon Acoustic Oscillation scale. We, moreover, include in our analysis the information on the presence of additional contributions to the expansion rate of the Universe at the time of Big Bang Nucleosynthesis. We compare the results obtained in this decaying matter scenario with those obtained withthe standard analysis in terms of a constant N eff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hu and S. Dodelson, Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys. 40 (2002) 171 [astro-ph/0110414] [INSPIRE].

    Article  ADS  Google Scholar 

  2. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust cosmological bounds on neutrinos and their combination with oscillation results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K.M. Nollett and G.P. Holder, An analysis of constraints on relativistic species from primordial nucleosynthesis and the cosmic microwave background, arXiv:1112.2683 [INSPIRE].

  6. A.X. Gonzalez-Morales, R. Poltis, B.D. Sherwin and L. Verde, Are priors responsible for cosmology favoring additional neutrino species?, arXiv:1106.5052 [INSPIRE].

  7. S. Joudaki, Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces, arXiv:1202.0005 [INSPIRE].

  8. M. Archidiacono, E. Giusarma, A. Melchiorri and O. Mena, Dark radiation in extended cosmological scenarios, Phys. Rev. D 86 (2012) 043509 [arXiv:1206.0109] [INSPIRE].

    ADS  Google Scholar 

  9. G. Mangano et al., Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Das et al., The Atacama Cosmology Telescope: a measurement of the cosmic microwave background power spectrum at 148 and 218 GHz from the 2008 southern survey, Astrophys. J. 729 (2011) 62 [arXiv:1009.0847] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Keisler et al., A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope, Astrophys. J. 743 (2011) 28 [arXiv:1105.3182] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].

  13. A.G. Riess et al., A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder, Astrophys. J. 699 (2009) 539 [arXiv:0905.0695] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Hicken et al., CfA3: 185 type Ia supernova light curves from the CfA, Astrophys. J. 700 (2009) 331 [arXiv:0901.4787] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B.A. Reid et al., Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies, Mon. Not. Roy. Astron. Soc. 404 (2010) 60 [arXiv:0907.1659] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.-M. Yang, D.N. Schramm, G. Steigman and R.T. Rood, Constraints on cosmology and neutrino physics from Big Bang nucleosynthesis, Astrophys. J. 227 (1979) 697 [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Simha and G. Steigman, Constraining the early-universe baryon density and expansion rate, JCAP 06 (2008) 016 [arXiv:0803.3465] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Y. Izotov and T. Thuan, The primordial abundance of 4He: evidence for non-standard Big Bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Aver, K.A. Olive and E.D. Skillman, A new approach to systematic uncertainties and self-consistency in Helium abundance determinations, JCAP 05 (2010) 003 [arXiv:1001.5218] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Mangano and P.D. Serpico, A robust upper limit on N eff from BBN, circa 2011, Phys. Lett. B 701 (2011) 296 [arXiv:1103.1261] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Steigman, Neutrinos and Big Bang nucleosynthesis, Adv. High Energy Phys. 2012 (2012) 268321 [arXiv:1208.0032] [INSPIRE].

    Google Scholar 

  22. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  23. M.A. Acero and J. Lesgourgues, Cosmological constraints on a light non-thermal sterile neutrino, Phys. Rev. D 79 (2009) 045026 [arXiv:0812.2249] [INSPIRE].

    ADS  Google Scholar 

  24. E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, Phys. Rev. D 85 (2012) 083522 [arXiv:1112.4661] [INSPIRE].

    ADS  Google Scholar 

  25. M. Archidiacono, E. Calabrese and A. Melchiorri, The case for dark radiation, Phys. Rev. D 84 (2011) 123008 [arXiv:1109.2767] [INSPIRE].

    ADS  Google Scholar 

  26. M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].

    ADS  Google Scholar 

  27. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].

    Article  ADS  Google Scholar 

  28. C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].

    ADS  Google Scholar 

  29. C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].

    ADS  Google Scholar 

  30. C. Giunti and M. Laveder, Implications of 3 + 1 short-baseline neutrino oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Karagiorgi, M. Shaevitz and J. Conrad, Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, arXiv:1202.1024 [INSPIRE].

  32. A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Fischler and J. Meyers, Dark radiation emerging after Big Bang nucleosynthesis?, Phys. Rev. D 83 (2011) 063520 [arXiv:1011.3501] [INSPIRE].

    ADS  Google Scholar 

  34. J.L. Menestrina and R.J. Scherrer, Dark radiation from particle decays during Big Bang nucleosynthesis, Phys. Rev. D 85 (2012) 047301 [arXiv:1111.0605] [INSPIRE].

    ADS  Google Scholar 

  35. K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [INSPIRE].

    Article  ADS  Google Scholar 

  36. K. Choi, K.-Y. Choi and C.S. Shin, Dark radiation and small-scale structure problems with decaying particles, Phys. Rev. D 86 (2012) 083529 [arXiv:1208.2496] [INSPIRE].

    ADS  Google Scholar 

  37. D. Hooper, F.S. Queiroz and N.Y. Gnedin, Non-thermal dark matter mimicking an additional neutrino species in the early universe, Phys. Rev. D 85 (2012) 063513 [arXiv:1111.6599] [INSPIRE].

    ADS  Google Scholar 

  38. C. Boehm, M.J. Dolan and C. McCabe, Increasing N eff with particles in thermal equilibrium with neutrinos, JCAP 12 (2012) 027 [arXiv:1207.0497] [INSPIRE].

    Google Scholar 

  39. M. Lattanzi and J. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Y. Gong and X. Chen, Cosmological constraints on invisible decay of dark matter, Phys. Rev. D 77 (2008) 103511 [arXiv:0802.2296] [INSPIRE].

    ADS  Google Scholar 

  41. K. Ichikawa, T. Sekiguchi and T. Takahashi, Probing the effective number of neutrino species with cosmic microwave background, Phys. Rev. D 78 (2008) 083526 [arXiv:0803.0889] [INSPIRE].

    ADS  Google Scholar 

  42. K. Ichikawa, M. Kawasaki and F. Takahashi, Constraint on the effective number of neutrino species from the WMAP and SDSS LRG power spectra, JCAP 05 (2007) 007 [astro-ph/0611784] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Aoyama, K. Ichiki, D. Nitta and N. Sugiyama, Formulation and constraints on decaying dark matter with finite mass daughter particles, JCAP 09 (2011) 025 [arXiv:1106.1984] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M.-Y. Wang and A.R. Zentner, Effects of unstable dark matter on large-scale structure and constraints from future surveys, Phys. Rev. D 85 (2012) 043514 [arXiv:1201.2426] [INSPIRE].

    ADS  Google Scholar 

  45. S. De Lope Amigo, W. M.-Y. Cheung, Z. Huang and S.-P. Ng, Cosmological constraints on decaying dark matter, JCAP 06 (2009) 005 [arXiv:0812.4016] [INSPIRE].

    Article  Google Scholar 

  46. Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [INSPIRE].

  47. S. Palomares-Ruiz, Model-independent bound on the dark matter lifetime, Phys. Lett. B 665 (2008) 50 [arXiv:0712.1937] [INSPIRE].

    Article  ADS  Google Scholar 

  48. L. Covi, M. Grefe, A. Ibarra and D. Tran, Neutrino signals from dark matter decay, JCAP 04 (2010) 017 [arXiv:0912.3521] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Esmaili, A. Ibarra and O.L. Peres, Probing the stability of superheavy dark matter particles with high-energy neutrinos, JCAP 11 (2012) 034 [arXiv:1205.5281] [INSPIRE].

    Article  ADS  Google Scholar 

  50. O.E. Bjaelde, S. Das and A. Moss, Origin of ΔN eff as a result of an interaction between dark radiation and dark matter, JCAP 10 (2012) 017 [arXiv:1205.0553] [INSPIRE].

    Article  Google Scholar 

  51. C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [INSPIRE].

    Article  ADS  Google Scholar 

  52. R.J. Scherrer and M.S. Turner, Decaying particles do not heat up the universe, Phys. Rev. D 31 (1985) 681 [INSPIRE].

    ADS  Google Scholar 

  53. R.J. Scherrer and M.S. Turner, Primordial nucleosynthesis with decaying particles. 1. Entropy producing decays. 2. Inert decays, Astrophys. J. 331 (1988) 19 [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Kaplinghat, R.E. Lopez, S. Dodelson and R.J. Scherrer, Improved treatment of cosmic microwave background fluctuations induced by a late decaying massive neutrino, Phys. Rev. D 60 (1999) 123508 [astro-ph/9907388] [INSPIRE].

    ADS  Google Scholar 

  55. K. Ichiki, M. Oguri and K. Takahashi, WMAP constraints on decaying cold dark matter, Phys. Rev. Lett. 93 (2004) 071302 [astro-ph/0403164] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Lattanzi, Decaying majoron dark matter and neutrino masses, AIP Conf. Proc. 966 (2007) 163 [arXiv:0802.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  57. D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Dunkley et al., The Atacama Cosmology Telescope: cosmological parameters from the 2008 power spectra, Astrophys. J. 739 (2011) 52 [arXiv:1009.0866] [INSPIRE].

    Article  ADS  Google Scholar 

  59. E. Shirokoff et al., Improved constraints on cosmic microwave background secondary anisotropies from the complete 2008 South Pole Telescope data, Astrophys. J. 736 (2011) 61 [arXiv:1012.4788] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730 (2011) 119 [Erratum ibid. 732 (2011) 129] [arXiv:1103.2976] [INSPIRE].

  61. Supernova Cosmology Project collaboration, M. Kowalski et al., Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J. 686 (2008) 749 [arXiv:0804.4142] [INSPIRE].

    Article  ADS  Google Scholar 

  62. SDSS collaboration, W.J. Percival et al., Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc. 401 (2010) 2148 [arXiv:0907.1660] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf and Y.Y. Wong, Cosmological parameters from large scale structureGeometric versus shape information, JCAP 07 (2010) 022 [arXiv:1003.3999] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Direct determination of the solar neutrino fluxes from solar neutrino data, JHEP 05 (2010) 072 [arXiv:0910.4584] [INSPIRE].

    Article  ADS  Google Scholar 

  65. G.M. Fuller, C.T. Kishimoto and A. Kusenko, Heavy sterile neutrinos, entropy and relativistic energy production and the relic neutrino background, arXiv:1110.6479 [INSPIRE].

  66. M. Nemevšek, G. Senjanović and Y. Zhang, Warm dark matter in low scale left-right theory, JCAP 07 (2012) 006 [arXiv:1205.0844] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Niro.

Additional information

ArXiv ePrint: 1212.1472

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Garcia, M., Niro, V. & Salvado, J. Dark radiation and decaying matter. J. High Energ. Phys. 2013, 52 (2013). https://doi.org/10.1007/JHEP04(2013)052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)052

Keywords

Navigation