Skip to main content

Plane flow of an ice sheet exhibiting strain-induced anisotropy

  • Ice Physics
  • Conference paper
  • First Online:
Advances in Cold-Region Thermal Engineering and Sciences

Part of the book series: Lecture Notes in Physics ((LNP,volume 533))

Abstract

A model for the anisotropic behaviour of polar ice and the evolution of its strain-induced anisotropy is presented. At the scale of the ice polycrystal, the ice fabric is described by a continuous Orientation Distribution Function (ODF), and the stress in each grain is assumed to be the same as the bulk stress (static model). Assuming a linear transversely isotropic behaviour of the ice single crystal, the constitutive law for an orthotropic polycrystal is obtained, as well as the analytical expression for the ODF which depends on three independent parameters only. Applications to the large-scale flow of an ideal ice-sheet are presented. Assuming a fixed geometry of the ice-sheet, the velocities and the fabrics corresponding to stationary plane-strain flow are obtained by solving a coupled problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Duval, M.F. Ashby, and I. Anderman. (1983) Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87, 4066–4074.

    Article  Google Scholar 

  2. O. Castelnau, Th. Thorsteinsson, J. Kipfstuhl, P. Duval, and G.R. Canova. (1996) Modelling fabric development along the GRIP ice core, central Greenland. Ann. Glaciol., 23, 194–201.

    ADS  Google Scholar 

  3. A. Mangeney, F. Califano, and K. Hutter. (1997) A numerical study of anisotropic, low Reynolds number, free surface flow of ice-sheet modeling. J. Geophys. Res., 102(B10), 22,749–22,764.

    Article  ADS  Google Scholar 

  4. O. Gagliardini and J. Meyssonnier. (1999) Analytical derivations for the behaviour and fabric evolution of a linear orthotropic ice polycrystal. J. Geophys. Res. In Press.

    Google Scholar 

  5. R. Staroszczyk and O. Gagliardini (1999) Two orthotropic models for strain-induced anisotropy of polar ice. J. Glaciol. In press.

    Google Scholar 

  6. J. Meyssonnier and A. Philip. (1996) A model for the tangent viscous behaviour of anisotropic polar ice. Ann. Glaciol., 23, 253–261.

    ADS  Google Scholar 

  7. L. Lliboutry. (1993) Anisotropic, transversely isotropic non linear viscosity of rock ice and rheological parameters inferred by homogenization. Int. J. Plast., 9, 619–632.

    Article  MATH  Google Scholar 

  8. C. J. Van der Veen and I. M. Whillans. (1994) Development of fabric in ice. Cold Reg. Sci. Technol., 22(2), 171–195.

    Article  Google Scholar 

  9. G. Gödert and K. Hutter. (1998) Induced anisotropy in large ice shields: Theory and its homogenization. Continuum Mech. Thermodyn., 10, 293–318

    Article  ADS  MATH  Google Scholar 

  10. P. Pimienta, P. Duval, and V.Y. Lipenkov. (1987) Mechanical behaviour of anisotropic polar ice. In International Association of Hydrological Sciences, Publication 170 (Symposium on The Physical Basis of Ice Sheet Modelling, Vancouvert), pages 57–66.

    Google Scholar 

  11. J. Meyssonnier. (1989) Ice flow over a bump: experiment and numerical simulations. J. Glaciol., 35(119), 85–88.

    Article  ADS  Google Scholar 

  12. O. Gagliardini. (1999) Simulation numérique d’un écoulement bidimensionnel de glace polaire présentant une anisotropie induite évolutive. Thèse de Doctorat de l’Université Joseph Fourier-Grenoble I.

    Google Scholar 

  13. O. Gagliardini and J. Meyssonnier. (1997) Flow simulation of a firn-covered cold glacier. Ann. Glaciol., 24, 242–247.

    ADS  Google Scholar 

  14. S. S. Vialov. (1958) Regularities of glacial shields movements and the theory of plastic viscous flow. Physics of the movements of ice IAHS, 47, 266–275.

    Google Scholar 

  15. N. S. Gundestrup, D. Dahl-Jensen, S. J. Johnsen, and A. Rossi. (1993) Borehole survey at dome GRIP 1991. Cold Reg. Sci. Technol., 21, 399–402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kolumban Hutter Yongqi Wang Hans Beer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Gagliardini, O., Meyssonnier, J. (1999). Plane flow of an ice sheet exhibiting strain-induced anisotropy. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-Region Thermal Engineering and Sciences. Lecture Notes in Physics, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104181

Download citation

  • DOI: https://doi.org/10.1007/BFb0104181

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66333-1

  • Online ISBN: 978-3-540-48410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics