Skip to main content
Log in

Biochemical markers for cardiovascular risk following treatment in endogenous Cushing’s syndrome

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: Cardiovascular disease has been reported to be more common in patients with endogenous Cushing’s syndrome (CS) compared to the normal population. In addition to altered lipid profile, inflammation seems to play an important pathogenic role in atherogenesis, but the role of inflammation in CS-associated cardiovascular disease is still not clear. To further elucidate these issues we measured several markers of inflammation in CS patients at baseline and following operative treatment and potential cure. Subjects: Twenty-eight CS patients (22 women, 6 men) were included in the study and 21 of these patients (15 women, 6 men) were also followed longitudinally for a mean 33 months (range 5–69 months) after operative treatment. For comparison, blood samples were also collected from 24 healthy controls (21 women, 3 men). Results: We show a distinct cytokine profile in CS patients before and after operative treatment. Thus, while inter-leukin (IL)-8 and osteoprotegerin (OPG) were significantly increased in CS patients before operation and fell during follow-up, levels of C-reactive protein (CRP) and soluble intracellular adhesion molecule 1 (sICAM) were significantly decreased at baseline, reaching normal levels after operation. While soluble CD40 ligand was within normal limit at baseline, this marker of platelet-mediated inflammation was markedly elevated during follow-up. Conclusions: Our findings suggest a complex interaction between CS and inflammation. In particular, the raised levels of IL-8 and OPG in CS patients, despite glucocorticoid excess, may represent an inflammatory and pro-atherogenic phenotype. However, the clinical relevance of these findings will have to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol (Oxf) 1994, 40: 479–84.

    Article  CAS  Google Scholar 

  2. Lindholm J, Juul S, Jorgensen JO, et al. Incidence and late prognosis of cushing’s syndrome: a population-based study. J Clin Endocrinol Metab 2001, 86: 117–23.

    PubMed  CAS  Google Scholar 

  3. Arnaldi G, Mancini T, Polenta B, Boscaro M. Cardiovascular risk in Cushing’s syndrome. Pituitary 2004, 7: 253–6.

    Article  PubMed  Google Scholar 

  4. Faggiano A, Pivonello R, Spiezia S, et al. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 2003, 88: 2527–33.

    Article  PubMed  CAS  Google Scholar 

  5. Colao A, Pivonello R, Auriemma RS, et al. New perspectives in the medical treatment of acromegaly. J Endocrinol Invest 2005, 28(11 Suppl): 58–66.

    PubMed  CAS  Google Scholar 

  6. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005, 111: 3481–8.

    Article  PubMed  Google Scholar 

  7. Hansson GK, Libby P, Schönbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002, 91: 281–91.

    Article  PubMed  CAS  Google Scholar 

  8. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005, 352: 1685–95.

    Article  PubMed  CAS  Google Scholar 

  9. Villa AE, Guzman LA, Chen W, Golomb G, Levy RJ, Topol EJ. Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty. J Clin Invest 1994, 93: 1243–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E. Reduction of experimental myocardial infarct size by corticosteroid administration. J Clin Invest 1973, 52: 599–607.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Kristo C, Godang K, Ueland T, et al. Raised serum levels of interleukin-8 and interleukin-18 in relation to bone metabolism in endogenous Cushing’s syndrome. Eur J Endocrinol 2002, 146: 389–95.

    Article  PubMed  CAS  Google Scholar 

  12. Kristo C, Jemtland R, Ueland T, Godang K, Bollerslev J. Restoration of the coupling process and normalization of bone mass following successful treatment of endogenous Cushing’s syndrome: a prospective, long-term study. Eur J Endocrinol 2006, 154: 109–18.

    Article  PubMed  CAS  Google Scholar 

  13. Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003, 88: 5593–602.

    Article  PubMed  CAS  Google Scholar 

  14. Bollerslev J, Ueland T, Jorgensen AP, et al. Positive effects of a physiological dose of GH on markers of atherogenesis: a placebo-controlled study in patients with adult-onset GH deficiency. Eur J Endocrinol 2006, 154: 537–43.

    Article  PubMed  CAS  Google Scholar 

  15. Ueland T, Bollerslev J, Godang K, Müller F, Frøland SS, Aukrust P. Increased serum osteoprotegerin in disorders characterized by persistent immune activation or glucocorticoid excess—possible role in bone homeostasis. Eur J Endocrinol 2001, 145: 685–90.

    Article  PubMed  CAS  Google Scholar 

  16. Wu TL, Tsao KC, Chang CP, Li CN, Sun CF, Wu JT. Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clin Chim Acta 2002, 322: 163–8.

    Article  PubMed  CAS  Google Scholar 

  17. Aukrust P, Damas JK, Solum NO. Soluble CD40 ligand and platelets: self-perpetuating pathogenic loop in thrombosis and inflammation? J Am Coll Cardiol 2004, 43: 2326–8.

    Article  PubMed  CAS  Google Scholar 

  18. Fukakusa M, Bergeron C, Tulic MK, et al. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-gamma-inducible protein 10 expression in asthmatic airway mucosa. J Allergy Clin Immunol 2005, 115: 280–6.

    Article  PubMed  CAS  Google Scholar 

  19. Homma T, Kato A, Hashimoto N, et al. Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells. Am J Respir Cell Mol Biol 2004, 31: 463–9.

    Article  PubMed  CAS  Google Scholar 

  20. Sheikine Y, Hansson GK. Chemokines and atherosclerosis. Ann Med 2004, 36: 98–118.

    Article  PubMed  CAS  Google Scholar 

  21. Boisvert WA, Curtiss LK, Terkeltaub RA. Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol Res 2000, 21: 129–37.

    Article  PubMed  CAS  Google Scholar 

  22. Jono S, Ikari Y, Shioi A, et al. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 2002, 106: 1192–4.

    Article  PubMed  CAS  Google Scholar 

  23. Golledge J, McCann M, Mangan S, Lam A, Karan M. Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis. Stroke 2004, 35: 1636–41.

    Article  PubMed  CAS  Google Scholar 

  24. Ueland T, Jemtland R, Godang K, et al. Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol 2004, 44: 1970–6.

    Article  PubMed  CAS  Google Scholar 

  25. Sandberg WJ, Yndestad A, Øie E, et al. Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler Thromb Vasc Biol 2006, 26: 857–63.

    Article  PubMed  CAS  Google Scholar 

  26. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta 2006, 368: 33–47.

    Article  PubMed  CAS  Google Scholar 

  27. Ambrosi B, Sartorio A, Pizzocaro A, Passini E, Bottasso B, Federici A. Evaluation of haemostatic and fibrinolytic markers in patients with Cushing’s syndrome and in patients with adrenal incidentaloma. Exp Clin Endocrinol Diabetes 2000, 108: 294–8.

    Article  PubMed  CAS  Google Scholar 

  28. Voisin C, Christofilos D, Del Fatti N, et al. Size-dependent electron-electron interactions in metal nanoparticles. Phys Rev Lett 2000, 85: 2200–3.

    Article  PubMed  CAS  Google Scholar 

  29. Casonato A, Pontara E, Boscaro M, et al. Abnormalities of von Willebrand factor are also part of the prothrombotic state of Cushing’s syndrome. Blood Coagul Fibrinolysis 1999, 10: 145–51.

    Article  PubMed  CAS  Google Scholar 

  30. Boscaro M, Sonino N, Scarda A, et al. Anticoagulant prophylaxis markedly reduces thromboembolic complications in Cushing’s syndrome. J Clin Endocrinol Metab 2002, 87: 3662–6.

    PubMed  CAS  Google Scholar 

  31. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 2004, 116(Suppl 6A): 9S–16S.

    Article  PubMed  Google Scholar 

  32. Kiechl S, Schett G, Wenning G, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 2004, 109: 2175–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kristo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristo, C., Ueland, T., Godang, K. et al. Biochemical markers for cardiovascular risk following treatment in endogenous Cushing’s syndrome. J Endocrinol Invest 31, 400–405 (2008). https://doi.org/10.1007/BF03346383

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346383

Key-words

Navigation