Skip to main content
Log in

Effect of long-term strength training on glucose metabolism. Implications for individual impact of high lean mass and high fat mass on relationship between BMI and insulin sensitivity

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the independent effect of high lean mass on glucose metabolism, as well as its consequences on the classic relationship between BMI and insulin sensitivity (SI) in 3 groups: 1) 8 strength-trained males with BMI >27 kg/m2 (athletes); 2) 10 sedentary males with BMI >27 kg/m2 (obese); and 3) 12 sedentary males with BMI 22–25 kg/m2 (control). Body composition was measured with impedance analysis. Iv glucose tolerance test was performed at 09:00 h after overnight fast. Estimation of insulin sensitivity and glucose effectiveness by Minimal Model Approach. Plasma glucose and insulin determination by glucose-oxidase and RIA respectively. BMI and lean mass (LM) were greater in athletes than in controls, but there were no differences in fat mass (FM), basal glucose (Gb), basal insulin (Ib), glucose tolerance (Kg), SI, glucose effectiveness (Sg), acute insulin response to glucose (AIRG) and leptin. Obese showed greater FM, leptin, Ib and AIRG than athletes, while SI was lower; BMI, LM, Gb, Kg and Sg were similar. BMI, FM, LM, Ib, AIRG and leptin were lower in controls than in obese, while SI index was greater; Gb, Sg and Kg were similar. We found that: 1) Resistance exercise does not modify glucose effectiveness, but can improve insulin sensitivity through FM reduction (LM augmentation alone has no effect on glucose metabolism); and 2) High BMI causes insulin resistance only if it depends on adipose tissue hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conard V., Franckson J. Influence de l’effort musculaire sur l’assimilation glucidique chez l’homme normal. C. R. Seances Soc. Biol. Fil. 1957, 51: 2228–2230.

    Google Scholar 

  2. DeFronzo R., Tobin J., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237: 214–223.

    Google Scholar 

  3. Bergman R., Ziya-Ider Y., Bowden C., Cobelli C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. 1979, 236: 667–677.

    Google Scholar 

  4. Kahn S., Larson V., Beard J., et al. Effect of exercise on insulin action, glucose tolerance and insulin secretion in aging. Am. J. Physiol. 1990, 258: 937–943.

    Google Scholar 

  5. Brun J., Guitrand-Hugret R., Boegner C., Bouix O., Orsetti A. Influence of short-term submaximal exercise on parameters of glucose assimilation analyzed with the minimal model. Metabolism 1995, 44: 833–840.

    Article  PubMed  CAS  Google Scholar 

  6. Higaki Y., Kagawa T., Fujitani J., et al. Effects of a single bout of exercise on glucose effectiveness. J. Appl. Physiol. 1996, 80: 754–759.

    PubMed  CAS  Google Scholar 

  7. Araujo-Vilar D., Osifo E., Kirk M., García-Estevez D., Cabezas-Cerrato J., Hockaday T. Influence of moderate physical exercise on insulin-mediated and non-insulin-mediated glucose uptake in healthy subjects. Metabolism 1997, 46: 203–209.

    Article  PubMed  CAS  Google Scholar 

  8. Heath G., Gavin J., Hinderliter J., Hagberg J., Bloomfield S., Holloszy O. Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J. Appl. Physiol. 1983, 55: 512–517.

    PubMed  CAS  Google Scholar 

  9. Mikines K., Sonne B., Tronier B., Galbo H. Effects of acute exercise and detraining on insulin action in trained men. J. Appl. Physiol. 1989, 66: 704–711.

    Article  PubMed  CAS  Google Scholar 

  10. Tokuyama K., Higaki Y., Fujitani J., et al. Intravenous glucose tolerance test-derived glucose effectiveness in physically trained humans. Am. J. Physiol. 1993, 265: 298–303.

    Google Scholar 

  11. Prigeon R., Kahn S., Porte D. Changes in insulin sensitivity, glucose effectiveness, and β-cell function in regularly exercising subjects. Metabolism 1995, 44: 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  12. Yarashesky K., Campbell J., Smith K., Rennie M., Holloszy J., Bier D. Effect of growth hormone and resistance exercise on muscle growth in young men. Am. J. Physiol. 1992, 262: 261–267.

    Google Scholar 

  13. Treuth M., Ryan A., Pratley R., et al. Effects of strength training on total and regional body composition in older men. J. Appl. Physiol. 1994, 77: 614–620.

    PubMed  CAS  Google Scholar 

  14. Campbell W., Crim M., Young V., Evans W. Increased energy requirements and changes in body composition in older adults. Am. J. Clin. Nutr. 1994, 60: 167–175.

    PubMed  CAS  Google Scholar 

  15. Yki-Järvinen H., Koivisto V. Effects of body composition on insulin sensitivity. Diabetes 1983, 32: 965–969.

    Article  PubMed  Google Scholar 

  16. Miller J., Pratley R., Goldberg A. et al. Strength training increases insulin action in healthy 50 to 65 year old men. J. Appl. Physiol. 1994, 77: 1122–1127.

    PubMed  CAS  Google Scholar 

  17. Zachwieja J., Toffolo G., Cobelli C., Bier D., Yarasheski K. Resistance exercise and growth hormone administration in older men: Effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test. Metabolism 1996, 45: 254–260.

    Article  PubMed  CAS  Google Scholar 

  18. Ishii T., Yamakita T., Sato T., Tanaka S., Fujii S. Resistance training improves insulin sensitivity in NIDDM subjects without altering maximal oxygen uptake. Diabetes Care 1998, 21: 1353–1355.

    Article  PubMed  CAS  Google Scholar 

  19. Fujitani J., Higaki Y., Kagawa T., et al. Intravenous glucose tolerance test-derived glucose effectiveness in strengthtrained humans. Metabolism 1998, 47: 874–877.

    Article  PubMed  CAS  Google Scholar 

  20. Felber J., Ferranini E., Golay A., et al. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 1987, 36: 1341–1350.

    Article  PubMed  CAS  Google Scholar 

  21. Campbell P., Gerich J. Impact of obesity on insulin action in volunteers with normal glucose tolerance. Demonstration of a threshold for the adverse effect of obesity. J. Clin. Endocrinol. Metab. 1990, 70: 1114–1118.

    Article  PubMed  CAS  Google Scholar 

  22. Pacini G., Bergman R. MINMOD: A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput. Methods Programs Biomed. 1986, 23: 113–122.

    Article  PubMed  CAS  Google Scholar 

  23. Fukushima M., Nakai Y., Taniguchi A., Imura H., Nagata I., Tokuyama K. Insulin sensitivity, insulin secretion, and glucose effectiveness in anorexia nervosa: a minimal model analysis. Metabolism 1993, 42: 1164–1168.

    Article  PubMed  CAS  Google Scholar 

  24. Marchesini G., Pacini G., Bianchi G., Patrono D., Cobelli C. Glucose disposal,β-cell secretion, and hepatic insulin extraction in cirrhosis: a minimal model assessment. Gastroenterology 1990, 99: 1715–1722.

    PubMed  CAS  Google Scholar 

  25. Maki K., Abraira C. Insulin sensitivity, insulin secretion, and glucose effectiveness in anorexia nervosa: a minimal model analysis. Metabolism 1994, 43: 529–530, (letter).

    Article  PubMed  CAS  Google Scholar 

  26. Sims E., Danfort E., Horton E., Bray G., Glennon J., Salans L. Endocrine and metabolic effects of experimental obesity in men. Recent Prog. Horm. Res. 1973, 29: 457–496.

    PubMed  CAS  Google Scholar 

  27. Felber J., Golay A., Jequier E., et al. The metabolic consequences of long-term human obesity. Int. J. Obes. 1988, 12: 377–389.

    PubMed  CAS  Google Scholar 

  28. Felber J. From obesity to diabetes; Pathophysiological considerations. Int. J. Obes. Relat. Metab. Disord. 1992, 16: 937–952.

    PubMed  CAS  Google Scholar 

  29. Felber J., Haesler E., Jequier E. Metabolic origin of insulin resistance in obesity with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993, 36: 1221–1229.

    Article  PubMed  CAS  Google Scholar 

  30. Hamilton B., Paglia D., Kwan A., Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nat. Med. 1995, 1: 953–956.

    Article  PubMed  CAS  Google Scholar 

  31. Lonnqvist F., Arner P., Nordfors L., Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat. Med. 1995, 1: 950–953.

    Article  PubMed  CAS  Google Scholar 

  32. Considine R., Sinha M., Heiman M., et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334: 292–295.

    Article  PubMed  CAS  Google Scholar 

  33. Gippini A., Mato A., Peino R., Lage M., Dieguez C., Casanueva F. Effect of resistance exercise (body building) training on serum leptin levels in young men. Implications for relationship between body mass index and serum leptin. J. Endocrinol. Invest. 1999, 22: 824–828.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Casanueva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gippini, A., Mato, A., Pazos, R. et al. Effect of long-term strength training on glucose metabolism. Implications for individual impact of high lean mass and high fat mass on relationship between BMI and insulin sensitivity. J Endocrinol Invest 25, 520–525 (2002). https://doi.org/10.1007/BF03345494

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345494

Key-words

Navigation