Skip to main content
Log in

Mechanical properties of ultrafine grained 5052 Al alloy produced by accumulative roll-bonding and cryogenic rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Mechanical properties in conjunction with microstructural evolution during annealing of 5052 Al alloy deformed at cryogenic temperature were investigated and compared with those yielded by the ARB process. ARB was conducted up to 7 cycles under conditions where the reduction in thickness per cycle was 50% and the rolling temperature was 300°C. To investigate the effect of annealing temperature, cryo-rolled sheets with 85% reduction were annealed in a temperature range of 150≈300°C for one hour. Strengths of 5052 Al alloy ARB processed at 300°C increased with increasing number of cycles and decreased rapidly after 6 or 7 cycles. This indicated that, during the ARB process, work hardening proceeded at low strains and subdivision of grains and dynamic recovery occurred at high strains. Tensile strength and yield strength of cryo-rolled 5052 Al alloy decreased as the annealing temperature increased. The volume fraction of recrystallized and coarsened grains appeared to have the most significant influence on strength and ductility in sheets annealed at 250°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. K. Kim, S. M. Kim, K. S. Lee, J. J. Park, and D. H. Shin,Metals and Materials 7, 437 (2001).

    Article  ADS  Google Scholar 

  2. R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev,Mater. Sci. Eng. A 137, 35 (1991).

    Article  Google Scholar 

  3. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov,Mater. Sci. Eng. A 168, 141 (1993).

    Article  Google Scholar 

  4. R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov, and B. Baudelet,Acta metall. mater. 42, 2467 (1994).

    Article  CAS  Google Scholar 

  5. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon,Acta mater. 44, 4619 (1996).

    Article  CAS  Google Scholar 

  6. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon,Acta mater. 45, 4733 (1997).

    Article  CAS  Google Scholar 

  7. R. Z. Valiev,Mater. Sci. Eng. A 234–236, 59 (1997).

    Google Scholar 

  8. M. Furukawa, P. B. Berbon, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev, and T. G. Langdon,Mater. Sci. Forum 233–234, 177 (1997).

    Article  Google Scholar 

  9. K. Neishi, Z. Horita, and T. G. Langdon,Mater. Sci. Eng. A 325, 54 (2002).

    Article  Google Scholar 

  10. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T. G. Langdon,Acta mater. 49, 3829 (2001).

    Article  CAS  Google Scholar 

  11. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T. G. Langdon,Acta mater. 50, 553 (2002).

    Article  CAS  Google Scholar 

  12. R. Z. Abdulov, R. Z. Valiev, and N. A. Krasilnikov,J. Mater. Sci. Lett. 9, 1445 (1990).

    Article  CAS  Google Scholar 

  13. R. Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapwlski, and B. Baudelet,Scripta metall. mater. 27, 855 (1992).

    Article  CAS  Google Scholar 

  14. R. Z. Valiev, Yu. V. Ivanisenko, E. F. Rauch, and B. Baudelet,Acta mater. 44, 4705 (1996).

    Article  CAS  Google Scholar 

  15. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong,Scripta mater. 39, 1221 (1998).

    Article  CAS  Google Scholar 

  16. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa,Scripta materialia 40, 795 (1999).

    Article  CAS  Google Scholar 

  17. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino,Scripta materialia 47, 893 (2002).

    Article  CAS  Google Scholar 

  18. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai,Acta mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  19. Y. Wang, M. Chen, F. Zhou, and E. Ma,Nature 419, 912 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  20. D. G. Morris and M. A. Munoz-Morris,Acta materialia 50, 4047 (2002).

    Article  CAS  Google Scholar 

  21. K. T. Park and D. H. Shin,Matall. and Mater. Trans. A 33, 705 (2002).

    Article  MathSciNet  Google Scholar 

  22. J. S. Hayes, R. Keyte, and P. B. Prangnell,Mater. Sci. & Tech. 16, 1259 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H.R., Kim, Y.S. & Nam, W.J. Mechanical properties of ultrafine grained 5052 Al alloy produced by accumulative roll-bonding and cryogenic rolling. Met. Mater. Int. 12, 7–12 (2006). https://doi.org/10.1007/BF03027516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027516

Keywords

Navigation