Skip to main content
Log in

Optimum operational conditions for chiral separation of tryptophan enatiomers using ligand exchange liquid chromatography

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A simple and precise method for chiral separation of tryptophan enantiomers using high performance liquid chromatography with aligand exchange mobile phase was developed. Chiral separation was performed on a conventional C18 column, using a mobile phase that consisted of a water-methanol solution (88∶12, v/v) containing 10 mmol/Ll-leucine and 5 mmol/L copper sulfate as a chiral ligand additive at a flow rate of 1.0 mL/min. This method allowed baseline separation of two enantiomers with a resolution of 1.84 in less than 30 min. The effect of various conditions, including concentration, type of ligand, organic modifier, pH, flow rate, and temperature, on enantioseparation were evaluated and chiral recognition mechanisms were investigated. Thermodynamic data (ΔΔH and ΔΔS) obtained by van't Hoff plots revealed that enantioseparation is an enthalpy-controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, B. K., J. H. Seo, J. Kim, C. S. Lee, and B. G. Kim (2006) Asymmetric synthesis of unnatural L-amino acids using thermophilic aromatic L-amino acid transaminase.Biotechnol. Bioprocess Eng. 11: 299–305.

    Article  CAS  Google Scholar 

  2. Peter, A., G. Torok, D. W. Armstrong, G. Toth, and D. Tourwe (2000) High-performance liquid chromatographic separation of enantiomers of synthetic amino acids on a ristocetin A chiral stationary phase.J. Chromatogr. A 904: 1–15.

    Article  CAS  Google Scholar 

  3. Taylor, D. R. and K. Maher (1992) Chiral separations by high-performance liquid chromatography.J. Chromatogr. Sci. 30: 67–85.

    CAS  Google Scholar 

  4. Young, S. N. (1996) Behavioral effects of dietary neurotransmitter precursors: basic and clinical aspects.Neurosci. Biobehav. Rev. 20: 313–323.

    Article  CAS  Google Scholar 

  5. Capuron, L., A. Ravaud, P. J. Neveu, A. H. Miller, M. Maes, and R. Dantzer (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy.Mol. Psychiatry 7: 468–473.

    Article  CAS  Google Scholar 

  6. Riemann, D., B. Feige, M. Hornyak, S. Koch, F. Hohagen, and U. Voderholzer (2002) The tryptophan depletion test: impact on sleep in primary insomnia—a pilot study.Psychiatry Res. 109: 129–135.

    Article  CAS  Google Scholar 

  7. Hughes, J. H., P. Gallagher, and A. H. Young (2002) Effects of acute tryptophan depletion on cognitive function in euthymic bipolar patients.Eur. Neuropsychopharmacol. 12: 123–128.

    Article  CAS  Google Scholar 

  8. Chen, Z., K. Okamura, M. Hanaki, and T. Nagaoka (2002) Selective determination of tryptophan by using a carbon paste electrode modified with an overoxidized polypyrrole film.Anal. Sci. 18: 417–421.

    Article  Google Scholar 

  9. Fiorucci, A. R. and E. T. G. Cavalheiro (2002) The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations.J. Pharm Biomed. Anal. 28: 909–915.

    Article  CAS  Google Scholar 

  10. Liao, Y., W. Wang, and B. Wang (1999) Building fluorescent sensors by template polymerization: The preparation of a fluorescent sensor for L-tryptophan.Bioorg. Chem. 27: 463–476.

    Article  CAS  Google Scholar 

  11. Liu, F., X. Liu, S. C. Ng, and H. S. O. Chan (2006) Enantioselective molecular imprinting polymer coated QCM for the recognition of L-tryptophan.Sens. Actuators B 113: 234–240.

    Article  CAS  Google Scholar 

  12. Oshite, S., M. Furukawa, and S. Igarashi (2001) Homogeneous liquid-liquid extraction method for the selective spectrofluorimetric determination of trace amounts of tryptophan.Analyst 126: 703–706.

    Article  CAS  Google Scholar 

  13. Reynolds, D. M. (2003) Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy.Water Res. 37: 3055–3060.

    Article  CAS  Google Scholar 

  14. Tcherkas, Y. V., L. A. Kartsova, and I. N. Krasnova (2001) Analysis of amino acids in human serum by isocratic reversed-phase high-performance liquid chromatography with electrochemical detection.J. Chromatogr. A 913: 303–308.

    Article  CAS  Google Scholar 

  15. Alegria, A., R. Barbera, R. Farre, M. Ferreres, M. J. Lagarda, and J. C. Lopez (1996), Isocratic highperformance liquid chromatographic determination of tryptophan in infant formulas.J. Chromatogr. A 721: 83–88.

    Article  CAS  Google Scholar 

  16. Hanko, V. P. and J. S. Rohrer (2002) Direct determination of tryptophan using high-performance anionexchange chromatography with integrated pulsed amperometric detection.Anal. Biochem. 308:204–209.

    Article  CAS  Google Scholar 

  17. Lee, J. W., C. H. Lee, and Y. M. Koo (2006) Sensitivity analysis of amino acids in simulated moving bed chromatography.Biotechnol. Bioprocess Eng. 11: 110–115.

    Article  CAS  Google Scholar 

  18. Yan, H. and K. H. Row (2006) Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of tryptophan andN-CBZ-phenylalanine enantiomers.Biotechnol. Bioprocess Eng. 11: 357–363.

    Article  CAS  Google Scholar 

  19. Altria, K. D., P. Harkin, and M. G. Hindson (1996) Quantitative determination of tryptophan enantiomers by capillary electrophoresis.J. Chromatogr. B 686: 103–110.

    Article  CAS  Google Scholar 

  20. Kim, K. and K. Lee (2000) Chiral separation of tryptophan enantiomers by liquid chromatography with BSA-silica stationary phase.Biotechnol. Bioprocess Eng. 5: 17–22.

    Article  CAS  Google Scholar 

  21. Ryu, J. W., H. S. Chang, Y. K. Ko, J. C. Woo, D. W. Koo, and D. W. Kim (1999) Direct chiral separation of tryptophan analogues using heptakis(3-O-methyl)-β-cyclodextrin-bonded stationary phase in reversed-phase liquid chromatography.Microchem. J. 63: 168–171.

    Article  CAS  Google Scholar 

  22. Garnier, F., J. Randon, and J. L. Rocca (2000) Comparison of tryptophan interactions to free and grafted BSA protein.Talanta 51: 1001–1007.

    Article  CAS  Google Scholar 

  23. Nakamura, M., S. Kiyohara, K. Saito, K. Sugita, and T. Sugo (1998) Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde.J. Chromatogr. A 822: 53–58.

    Article  CAS  Google Scholar 

  24. Slama, I., E. Jourdan, C. Grosset, A. Ravel, A. Villet, and E. Peyrin (2003) Role of the vancomycin-ristocetin heterodimerization on the enantioselectivity of D.L-tryptophan and D,L-dansyl tryptophan.J. Chromatogr. B 795: 115–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Ho Row.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Row, K.H. Optimum operational conditions for chiral separation of tryptophan enatiomers using ligand exchange liquid chromatography. Biotechnol. Bioprocess Eng. 12, 235–241 (2007). https://doi.org/10.1007/BF02931098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931098

Keywords

Navigation