Skip to main content
Log in

The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A prototype dynamical core for the Community Atmospheric Model (CAM) component of the Community Climate System Model (CCSM) is presented. The 3D governing primitive equations are specified in curvilinear coordinates on the cubed-sphere combined with a hybrid pressureη vertical coordinate. The horizontal space discretisation is based on a ℙ N − ℙ N spectral element variational formulation. A semi-implicit time integration scheme is derived in order to circumvent the severe time step restrictions associated with gravity waves. Eigen-mode decomposition of the vertical structure matrix results in a set of decoupled 2D modified Helmholtz problems which are solved using a preconditioned conjugate gradient iteration. An idealized climate simulation is presented, where the semi-implicit scheme permits a much larger time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asselin, R. (1972). Frequency filter for time integrations.Mon. Weather Rev. 100, 487–490.

    Article  Google Scholar 

  2. Bénard, P. (2003). Stability of semi-implicit and iterative centered implicit time discretization schemes for various equation systems used in NWP.Mon. Weather Rev. 131, 2479–2491.

    Article  Google Scholar 

  3. Blackmon, M. B., Boville, B., Bryan, F., Dickinson, R., Gent, P., Kiehl, J., Moritz, R., Randall, D., Shukla, J., Solomon, S., Bonan, G., Doney, S., Fung, I., Hack, J., Hunke, E., Hurrell, J., et al. (2001). The Community Climate System Model.Bull. Amer. Met. Soc. 82, 2357–2376.

    Article  Google Scholar 

  4. Bourchtein, A., and Kadychnikov, V. (2004). Well posedness of the initial value problem for vertically discretized hydrostatic equations.SIAM J. Numer. Anal. 41, 195–207.

    Article  MathSciNet  Google Scholar 

  5. Bourke, W. (1974). A multi-level spectral model. I. Formulation and hemispheric integrations.Mon. Weather Rev. 102, 687–701.

    Article  Google Scholar 

  6. Côté, J., Béland, M., and Staniforth, A. (1983). Stability of vertical discretization schemes for semi-implicit primitive equation models: Theory and application.Mon. Weather Rev. 111, 1189–1207.

    Article  Google Scholar 

  7. Daley, R., Girard, C., Henderson, J., and Simmonds, I. (1976). Short-term forecasting with a multi-level spectral primitive equations model.Atmosphere 14, 98–116.

    Google Scholar 

  8. Giraldo, F. X., Perot J. B., and Fischer, P. F. (2003). A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations.J. Comput. Phys. 190, 623–650.

    Article  MATH  MathSciNet  Google Scholar 

  9. Giraldo, F. X., and Rosmond, T. E. R. (2004). A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical Core,Mon. Weather Rev. 132, 133–153.

    Article  Google Scholar 

  10. Hayashi, Y.-Y., and Sumi, A. (1986). The 30–40 day oscillations simulated in an aquaplanet model.J. Meterol. Soc. Jpn. 64, 451–467.

    Google Scholar 

  11. Held, I. H., and Suarez, M. J. (1994). A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models.Bull. Amer. Met. Soc. 75, 1825–1830.

    Article  Google Scholar 

  12. Iskandarani, M., Haidvogel, D. B., and Boyd, J. P. (1995). A staggered spectral element model with application to the oceanic shallow water equations.Int. J. Numer. Meth. Fluids 20, 394–414.

    Article  Google Scholar 

  13. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L., and Rasch, P. J. (1996). Description of the NCAR Community Climate Model: CCM3. NCAR Tech. Note, NCAR TN-420+STR, 152 pp. [Available from National Center for Atmospheric Research, Boulder CO, 80307.]

  14. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and Rasch, P. J. (1998). The National Center for Atmospheric Research Community Climate Model: CCM3.J. Climate 11, 1131–1149.

    Article  Google Scholar 

  15. Kwizak, M., and Robert, A. J. (1971). A semi-implicit scheme for grid point atmospheric models of the primitive equations.Mon. Weather Rev. 99, 32–36.

    Article  Google Scholar 

  16. Lin, S. J., and Rood, R. B. (2002). A vertically Lagrangian finite-volume dynamical core for global models,Mon. Weather Rev., submitted.

  17. Loft, R. D., Thomas, S. J., and Dennis, J. M. (2001). Terascale spectral element dynamical core for atmospheric general circulation models. Proceedings of ACM/IEEE Supercomputing 2001, CD-ROM.

  18. Maday, Y., Patera, A. T., and Ronquist, E. M. (1990). An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow.J. Sci. Comput. 5, 263–292.

    Article  MATH  MathSciNet  Google Scholar 

  19. Rancic, M., Purser, R. J., and Mesinger, F. (1996). A global shallow-water model using an expanded spherical cube: Gnomic versus conformal coordinates.Q. J. Roy Meteor. Soc. 122, 959–982.

    Article  Google Scholar 

  20. Robert, A. J. (1969). The integration of a spectral model of the atmosphere by the implicit method. Proc.WMO-IUGG Symp. on NWP, Tokyo, Japan Meteorological Agency, VII, 19–24.

  21. Sadourny, R. (1972). Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids.Mon. Weather Rev. 100, 136–144.

    Article  Google Scholar 

  22. Simmons, A. J., Hoskins, B. J., and Burridge, D. M. (1978). Stability of the semi-implicit method of time integration.Mon. Weather Rev. 106, 405–412.

    Article  Google Scholar 

  23. Simmons, A. J., and Temperton, C. (1997). Stability of a two-time-level semi-implicit integration scheme for gravity wave motion.Mon. Weather Rev. 125, 600–615.

    Article  Google Scholar 

  24. Simmons, A. J., and Burridge, D. M. (1981). An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates.Mon. Weather Rev. 109, 758–766.

    Article  Google Scholar 

  25. Staniforth, A. N., and Mitchell, H. J. (1977). A semi-implicit finite-element barotropic model.Mon. Weather Rev. 105, 154–169.

    Article  Google Scholar 

  26. St-Cyr, A., and Thomas, S. J. (2004). Nonlinear operator integration factor splitting for the shallow water equations.Appl. Numer. Math. submitted.

  27. Taylor, M., Tribbia, J., and Iskandarani, M. (1997). The spectral element method for the shallow water equations on the sphere.J. Comput. Phys. 130, 92–108.

    Article  MATH  Google Scholar 

  28. Thomas, S. J., and Loft, R. D. (2002). Semi-implicit spectral element atmospheric model.J. Sci. Comput. 17, 339–350.

    Article  MATH  MathSciNet  Google Scholar 

  29. Williamson, D. L., and Olson, J. G. (1994). Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model.Mon. Weather Rev. 122, 1594–1610.

    Article  Google Scholar 

  30. Williamson, D. L., Olson, J. G., and Boville, B. A. (1998). A comparison of semi-Lagrangian and Eulerian tropical climate simulations.Mon. Weather Rev. 126, 1001–1012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S.J., Loft, R.D. The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation. J Sci Comput 25, 307–322 (2005). https://doi.org/10.1007/BF02728993

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728993

Key words

Navigation