Skip to main content
Log in

Finite volume discretization and multilevel methods in flow problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article is intended as a preliminary report on the implementation of a finite volume multilevel scheme for the discretization of the incompressible Navier-Stokes equations. As is well known the use of staggered grids (e.g. MAC grids, Perićet al. Comput. Fluids,16(4), 389–403, (1988)) is a serious impediment for the implementation of multilevel schemes in the context of finite differences. This difficulty is circumvented here by the use of a colocated finite volume discretization (Faureet al. (2004a) Submitted, Perićet al. Comput. Fluids,16(4), 389–403, (1988)), for which the algebra of multilevel methods is much simpler than in the context of MAC type finite differences. The general ideas and the numerical simulations are presented in this article in the simplified context of a two-dimensional Burgers equations; the two-, and three-dimensional Navier-Stokes equations introducing new difficulties related to the incompressibility condition and the time discretization, will be considered elsewhere (see Faureet al. (2004a) Submitted and Faureet al. (2004b), in preparation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costa, B., Dettori, L., Gottlieb, D., and Temam, R. (2001). Time marching multilevel techniques for evolutionary dissipative problems.SIAM J. Sci. Comput. 23(1), 46–65 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  2. Calgaro, C., Debussche, A., and Laminie, J. (1998) On a multilevel approach for the two-dimensional Navier-Stokes equations with finite elements.Int. J. Numer. Methods Fluids,27(1–4, Special Issue), 241–258 Finite elements in fluids.

    Article  MATH  MathSciNet  Google Scholar 

  3. Chehab, J.-P. (1998). Incremental unknowns method and compact schemes.RAIRO Modél. Math. Anal. Numér. 32(1), 51–83.

    MATH  MathSciNet  Google Scholar 

  4. Chorin, A. J. Numerical solution of the Navier-Stokes equations.Math. Comp. 22, 745–762.

  5. Calgaro, C., Laminie, J. and Temam, R. (1997). Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization.Appl. Numer. Math. 23(4), 403–442.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, M., and Temam, R. (1991). The incremental unknown method. I, II.Appl. Math. Lett. 4(3), 73–76; 77–80.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dubois, T., Jauberteau, F., and Temam, R. (1999).Dynamic Multilevel Methods and the Numerical Simulation of Turbulence, Cambridge University Press, Cambridge.

    Google Scholar 

  8. Eymard, R., Gallouët, T., and Herbin, R. (2000). Finite volume methods.Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, pp. 713–1020.

    Google Scholar 

  9. Faure, S., Laminie, J., and Temam, R. (2004a). Colocated finite volume schemes for fluid flows.Submitted.

  10. Faure, S., Laminie, J., and Temam, R. (2004b). Finite volume discretization and multilevel methods for the Navier-Stokes equations.In prep.

  11. Garcia, S. (2000). Incremental unknowns for solving the incompressible Navier-Stokes equations.Math. Comput. Simulation,52(5–6), 445–489.

    Article  MathSciNet  Google Scholar 

  12. Hou, T. Y. editor.Multiscale Modeling and Simulation.

  13. Harlow, F. H., and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.Phys. Fluids,8(12).

  14. Lien, F. S., and Leschziner, M. A. (1994a). A general non-orthogonal colocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, part 1: Computational implementation.Comput. Methods Appl. Mech. Eng. 114, 123–148.

    Article  MathSciNet  Google Scholar 

  15. Lien, F. S., and Leschziner, M. A. (1994b). A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, part 2: Application.Comput. Methods Appl. Mech. Eng. 114, 149–167.

    Article  MathSciNet  Google Scholar 

  16. Lions, J.-L., Temam, R., and Wang, S. H. (1992). New formulations of the primitive equations of atmosphere and applications.Nonlinearity,5(2), 237–288.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lions, J.-L., Temam, R., and Wang, S. H. (1992). On the equations of the large-scale ocean.Nonlinearity,5(5), 1007–1053.

    Article  MATH  MathSciNet  Google Scholar 

  18. Laminie, J. and Zahrouni, E. (2003). A dynamical multilevel scheme for the burgers equation: wavelet and hierarchical finite element.Numerical Methods in PDEA, To appear.

  19. Perić, M., Kessler, R., and Sheuerer, G. (1988). Comparison of finite-volume numerical methods with staggered and colocated grids.Comput. Fluids,16(4), 389–403.

    Article  Google Scholar 

  20. Pouit, F. (1998).Etude de schémas numériques multiniveaux utilisant les Inconnues Incrémentales, dans le cadre des différences finies: application à la mécanique des fluides. Thèse, Université Paris 11.

  21. Rasch, P., and Thomas, S. J. (2005). Computational and numerical methods in atmoshphere and ocean. InLectures given at the Summer School on Applications of Advanced Mathematical and Computational Methods to Atmospheric and Oceanic Problems (MCAO2003), National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA.

    Google Scholar 

  22. Stein, E., De Borst, R., and Hughes, T. J.R. (eds)Encyclopedia of Computational Mechanics. Wiley, New York, 2004.

    MATH  Google Scholar 

  23. Smith, K. M., Cope, W. K., and Vanka, S. P. (1993). A multigrid procedure for three-dimensional flows on nonorthogonal collocated grids.Int. J. Numer. Methods Fluids,17(10), 887–904.

    Article  MATH  MathSciNet  Google Scholar 

  24. Temam, R. (1969). Sur l’approximation de la solution des equations de navier-stokes par la méthode des pas fractionnaires, i et ii.Arch Rational Mech. Anal. 32(2), 135–153.

    Article  MATH  MathSciNet  Google Scholar 

  25. Temam, R. (1990). Inertial manifolds and multigrid methods.SIAM J. Math. Anal. 21(1), 154–178.

    Article  MATH  MathSciNet  Google Scholar 

  26. Temam, R. (1993). Méthodes multirésolutions en analyse numérique. InBoundary value problems for partial differential equations and applications, vol. 29 ofRMA Res. Notes Appl. Math., Masson, Paris, pp. 253–276.

    Google Scholar 

  27. Temam, R. (1994). Applications of inertial manifolds to scientific computing: a new insight in multilevel methods. InTrends and perspectives in applied mathematics, vol. 100,Appl. Math. Sci., Springer, New York, pp. 293–336.

    Google Scholar 

  28. Temam, R. (1996). Multilevel methods for the simulation of turbulence. A simple model.J. Comput. Phys. 127(2), 309–315.

    Article  MATH  MathSciNet  Google Scholar 

  29. Van Kan, J. (1986). A second-order accurate pressure-correction scheme for viscous incompressible flow.SIAM J. Sci. Statist. Comput. 7, 870–891.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, S., Laminie, J. & Temam, R. Finite volume discretization and multilevel methods in flow problems. J Sci Comput 25, 231–261 (2005). https://doi.org/10.1007/BF02728990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728990

Key words

Navigation