Skip to main content
Log in

Solution chemical constraints in the chemical-mechanical polishing of copper: Aqueous stability diagrams for the Cu-H2O and Cu-NH3-H2O systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A general graphical approach to the solution chemistry of chemical mechanical polishing is presented with the aid of a variety of aqueous stability diagrams, such as Eh-pH (Pourbaix), log Metal-pH, and log Ligand-pH diagrams. The common thermodynamic origin of these diagrams is highlighted. The important role played by concentration gradients in effecting chemical mechanical polishing is stressed and illustrated with the aid of stability diagrams generated for the Cu-H2O and Cu-NH3-H2O model systems. It is demonstrated that chemical mechanical polishing is feasible when the following two conditions are satisfied simultaneously: (a) at the metal surface dissolved metal concentration is high and/or ligand concentration is low (this favors oxide film formation), and (b) in the bulk aqueous phase the metal concentration is low and/or the ligand concentration is high (this favors the dissolution of film fragments).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Murarka, J. Steigerwald and R. J. Gutmann,MRS Bull. (6), 46 (1993).

    Google Scholar 

  2. F. Pintchovski,IEEE IEDM Tech. Dig. 97 (1994).

  3. J. Torres,Appl. Surf. Sci. 91, 112 (1995).

    Article  CAS  Google Scholar 

  4. L.C. Parrillo,Advanced Metallization for ULSI Applications in 1994, eds. R. Blumenthal and G. Janssen, (Pittsburgh, PA: Mater. Res. Soc., 1995), p. 3.

    Google Scholar 

  5. C. Steinbrüchel,Appl. Surf. Sci. 91, 139 (1995).

    Article  Google Scholar 

  6. J.M. Steigerwald, S.P. Murarka, R.J. Gutmann and D.J. Duquette,Mater. Chem. and Phys. 41, 217 (1995).

    Article  CAS  Google Scholar 

  7. R.J. Gutmann, J.M. Steigerwald, L. You, D.T. Price, J. Neirynck, D.J. Duquette and S.P. Murarka,Thin Solid Films 270, 596 (1995).

    Article  CAS  Google Scholar 

  8. J.M. Steigerwald, D.J. Duquette, S.P. Murarka and R.J. Gutmann,J. Electrochem. Soc. 142, 2379 (1995).

    Article  CAS  Google Scholar 

  9. J.M. Steigerwald, S. Murarka, R.J. Gutmann and D.J. Duquette,J. Electrochem. Soc. 141, 3512 (1994).

    Article  CAS  Google Scholar 

  10. J.M. Steigerwald, R. Zirpoli, S. Murarka, D. Price and R.J. Gutmann,J. Electrochem. Soc. 141, 2842 (1994).

    Article  CAS  Google Scholar 

  11. J.M. Steigerwald, S.P. Murarka, D.J. Duquette and R.J. Gutmann,Advanced Metallization for Devices and Circuits Science, Technology and Manufacturability, eds. S.P. Murarka, A. Katz, K.N. Tu and K. Maex, 337 (Pittsburgh, PA: Mater. Res. Soc., 1994), p. 133.

    Google Scholar 

  12. M. Pourbaix,Atlas of Electrochemical Equilibria in Aqueous Solutions, London: Pergamon, 1966).

    Google Scholar 

  13. W. Stumm and J.J. Morgan,Aquatic Chemistry, 2nd ed., (New York: Wiley, 1981).

    Google Scholar 

  14. K. Osseo-Asare, D. Wei and K.K. Mishra,J. Electrochem. Soc. 143, 749 (1996).

    Article  CAS  Google Scholar 

  15. K. Osseo-Asare, D. Wei and K. Mishra,Cleaning Technology in Semiconductor Device Manufacturing, eds. J. Ruzyllo and R.E. Novak, PV 94-7 (Pennington, NJ: Electrochem. Soc., 1994), p. 34.

    Google Scholar 

  16. K. Osseo-Asare and T.H. Brown,Hydrometallurgy 4, 217 (1979).

    Article  CAS  Google Scholar 

  17. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney and R.L. Nuttall,J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).

  18. G.B. Naumov, B.N. Ryzhenko and I.L. Khodakovsky,Handbook of Thermodynamic Data (Moskow: Atomizdat, 1971). Translated from the Russian by the U.S. Geological Survey. NTIS PB-226 722, 1974.

    Google Scholar 

  19. R.M. Smith and A.E. Martell,Critical Stability Constants Vol. 4 (New York: Plenum, 1977).

    Google Scholar 

  20. CF. Baes, Jr. and R.E. Mesmer,The Hydrolysis of Cations (New York: Wiley, 1976).

    Google Scholar 

  21. W.J.M. Tegart,The Electrolytic and Chemical Polishing of Metals in Research and Industry 2nd ed., (New York: Pergamon, 1959).

    Google Scholar 

  22. P.A. Jacquet,Metall. Rev. 1, 157 (1956).

    CAS  Google Scholar 

  23. A. Hickling and J.K. Higgins,Trans. Inst. Met. Finish. 29,274 (1953).

    Google Scholar 

  24. J. Halpern,J. Electrochem. Soc. 100, 421 (1953).

    CAS  Google Scholar 

  25. M.J. Nicol,J. South Afric. Inst. Min. Metall. 291 (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osseo-Asake, K., Mishra, K.K. Solution chemical constraints in the chemical-mechanical polishing of copper: Aqueous stability diagrams for the Cu-H2O and Cu-NH3-H2O systems. J. Electron. Mater. 25, 1599–1607 (1996). https://doi.org/10.1007/BF02655582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655582

Key words

Navigation