Skip to main content
Log in

Ion-transporting ATPases and matrix mineralization in cultured osteoblastlike cells

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Cultures of osteoblastlike cells obtained from the endosteal surfaces of rabbit long bones formed and mineralized an extracellular matrix when they were supplied daily with medium containing fresh ascorbate. No matrix formed without this supplementation. The matrix mineralized whether or not beta-glycerophosphate, a substrate of alkaline phosphatase, was added to the medium. The ion-transporting ATPase activities of untreated, ascorbate-treated, and ascorbate plus beta-glycerophosphate-treated cells were measured. Ascorbate-treated and ascorbate plus beta-glycerophosphate-treated cells had similar enzyme activities. The activities of the Ca2+-ATPase; Ca2+,Mg2+-ATPase; and alkaline phosphatase in treated cells were elevated over the activities in untreated cells. Na+,K+-ATPase activity was lower in treated than in untreated cells. HCO3 -ATPase activity was not changed by treatment. Alkaline phosphatase activity was 20 times higher in freshly isolated osteoblastlike cells than in cells grown to confluence in primary culture. In addition, subculturing further reduced the activity of this osteoblast-marker enzyme. The activities of the ion-transporting ATPases and alkaline phosphatase in second passage cells were similar to the activities of these enzymes in fresh, noncalcifying tissues. Nevertheless, second passage cells retain the ability to mineralize an extracellular matrix, and their ion-transporting ATPase and alkaline phosphatase activities are altered when the cells mineralize a matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binderman, I.; Duksin, D.; Harell, A.; Katzir, E.; Sachs, L. Formation of bone tissue in culture from isolated bone cells. J. Cell Biol. 61: 427–439; 1974.

    Article  PubMed  CAS  Google Scholar 

  2. Boyum, A. Separation of leukocytes from blodo and bone marrow. Scand. J. Clin. Lab. Invest. 21 (Suppl. 97): 77–89; 1968.

    CAS  Google Scholar 

  3. Chow, S. Y.; Kemp, J. W.; Woodbury, D. M. Correlation of iodide transport with Na+,K+-ATPase, HCO3 -ATPase and carbonic anhydrase activities in different functional states of the rat thyroid gland. J. Endocrinol. 92: 371–379; 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Cohn, D. V.; Wong, G. L. Isolated bone cells. In: Simmons, D. J.; Konin, A. S., eds. Skeletal research, an experimental approach. New York: Academic Press; 1979: 3–20.

    Google Scholar 

  5. Ecarot-Charrier, B.; Glorieur, F. H.; van der Rest M.; Pereira, G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J. Cell Biol. 96: 639–643; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Engstrom, C.; Granstrom, G. Alkaline phosphatases in endochondrial ossification of rats low in calcium and vitamin D deficient. Acta Orthop. Scand. 53: 317–323; 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Farley, J. R.; Ivey, J. L.; Baylink, D. J. Human skeletal alkaline phosphatase. J. Biol. Chem. 255: 4680–4686; 1980.

    PubMed  CAS  Google Scholar 

  8. Felix, R.; Fleisch, H. The pyrophosphatase and (Ca2+-Mg2+)-ATPase activity of purified bone alkaline phosphatase. Biochim. Biophys. Acta 350: 84–94; 1974.

    PubMed  CAS  Google Scholar 

  9. Felix, R.; Fleisch, H. Pyrophosphatase and ATPase of isolated cartilage matrix vesicles. Calcif. Tissue Res. 22: 1–7; 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Harper, J. F.; Brooker, G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′ 0 acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1: 207–218; 1975.

    PubMed  CAS  Google Scholar 

  11. Itaya, K.; Ui, M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta 14: 361–366; 1966.

    Article  PubMed  CAS  Google Scholar 

  12. Katz, A. M.; Repke, D. I.; Upshaw, J. E.; Polascik, M. A. Characterization of dog cardiac microsomes. Biochim. Biophys. Acta 205: 473–490; 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Kowarski, S.; Schachter, D. Vitamin D and adenosine triphosphatase dependent on divalent cations in rat intestinal mucosa. J. Clin. Invest. 52: 2765–2773; 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Laemli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685; 1970.

    Article  Google Scholar 

  15. Lieberherr, M.; Vreven, J.; Vaes, G. The acid and alkaline phosphatases, inorganic pyrophosphatases and phosphoprotein phosphatases of bone. Biochim. Biophys. Acta 293: 160–169; 1973.

    PubMed  CAS  Google Scholar 

  16. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  17. Luben, R. A.; Wong, G. L.; Cohn, D. V. Biochemical characterization with parathormone and calcitonin of isolated bone cells: provisional identification of osteoclasts and osteoblasts. Endocrinology 99: 526–534; 1976.

    PubMed  CAS  Google Scholar 

  18. Majeska, R. J.; Wuthier, R. E. Studies on matrix vesicles isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim. Biophys. Acta 391: 51–60; 1975.

    PubMed  CAS  Google Scholar 

  19. Makinose, M. The phosphorylation of the membrane proteins of the sarcoplasmic reticulum during active calcium transport. J. Biochem. 10: 74–82; 1969.

    CAS  Google Scholar 

  20. Martin, D. L.; Melancon, M. J; DeLuca, H. F. Vitamin D stmulated, calcium-dependent adenosine triphosphatase from brush borders of rat small intestine. Biochem. Biophys. Res. Commun. 35: 819–823; 1969.

    Article  PubMed  CAS  Google Scholar 

  21. Matthews, J. L.; Vander Wiel, C.; Talmage, R. V. Bone lining cells and the bone fluid compartment, an ultrastructural study. Adv. Exp. Med. Biol. 103: 451–458; 1978.

    PubMed  CAS  Google Scholar 

  22. Melancon, M. J.; DeLuca, H. F. Vitamin D stimulation of calcium-dependent triphosphatase in chick intestinal brush borders. Biochemistry 9: 1658–1664; 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Messer, H. H.; Rogers, J.; Shami, Y.; Copp, D. H. Ca2+, Mg2+-activated ATPase and alkaline phosphatase of developing chick femora. Comp. Biochem. Physiol. (B) 51: 19–24; 1975.

    Article  CAS  Google Scholar 

  24. Nijweide, P. J.; van Iperen-van Gent, A. S.; Kawilarang-deHaas, W. W. N.; van der Plas, A. Wassenaar, A. M. Bone formation and calcification by isolated osteoblast-like cells. J. Cell. Biol. 93: 318–323; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Peck, W. A.; Carpenter, J.; Messinger, K.; DeBra D. Cyclic 3′5′ adenosine monophosphate in isolated bone cells: response to low concentrations of parathyroid hormone. Endocrinology 92: 692–697; 1973.

    Article  PubMed  CAS  Google Scholar 

  26. Posner, A. S. Intramitochondrial storage of stable amorphous calcium phosphate. Ann. NY Acad. Sci. 307: 248–249; 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Prockop, D. J.; Williams, C. J. Structure of the organic matrix: collagen structure (chemical). In: Nancollas, G. H., ed. Biological mineralization and deminseralization. Berlin: Springer-Verlag; 1982: 161–177.

    Google Scholar 

  28. Sandhu, H. S.; Jande, S. S. Investigation of alkaline phosphatase Ca2+-ATPase and Na+,K+-ATPase during beta-APN-induced initial bone mineralization inhibition. Acta Anat. (Basel) 112: 242–248; 1982.

    CAS  Google Scholar 

  29. Skillen, A. W.; Rahbani-Nobar, M. Alkaline phosphatase and ATPase acivities of rat bones: separation and characterization. Calcif. Tissue Int. 30: 67–71; 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. Ultrastruct. Res. 26: 31–43; 1969.

    Article  CAS  Google Scholar 

  31. Stekhoven, F. S.; Bonting, S. L. Transport adenosine triphosphatases: properties and functions. Physiol. Rev. 61: 1–76; 1981.

    CAS  Google Scholar 

  32. Talmage, R. V. Morphological and physiological considerations in a new concept of calcium transport in bone. Am. J. Anat. 129: 467–476; 1970.

    Article  PubMed  CAS  Google Scholar 

  33. Tenenbaum, H. C. Role of organic phosphate in mineralization of bonein vitro. J. Dent. Res. 60(C): 1586–1589; 1981.

    PubMed  CAS  Google Scholar 

  34. Vaughn, J.The physiology of bone. New York: Oxford University Press; 1981.

    Google Scholar 

  35. Wong, G.; Cohn, D. Separation of parathyroid hormone and calcitonin-sensitive cells from nonresponsive bone cells. Nature 252: 713–715; 1974.

    Article  PubMed  CAS  Google Scholar 

  36. Yee, J. A. Properties of osteoblast-like cells isolated from the cortical endosteal bone surface of adult rabbits. Calcif. Tissue Int. 35: 571–577; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grant NAG-2-108 from the National Aeronautics and Space Administration, Washington, D.C., and Grant 5 PO1 NS15767 from the National Institute of Neurological and Communicative Disorders and Stroke, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, R.E., Kemp, J.W., Jee, W.S.S. et al. Ion-transporting ATPases and matrix mineralization in cultured osteoblastlike cells. In Vitro 20, 837–846 (1984). https://doi.org/10.1007/BF02619629

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619629

Key words

Navigation