Skip to main content
Log in

Deficient expression ofO 6-Methylguanine-DNA methyltransferase combined with mismatch-repair proteins hMLH1 and hMSH2 is related to poor prognosis in human biliary tract carcinoma

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

O 6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that transfers methyl groups fromO 6-methylguanine to itself. Alkylation of DNA at theO 6 position of guanine is an important step in the induction of mutations in the organism by alkylating agents. TheO 6-methyl G:T mismatch is recognized by the mismatch-repair (MMR) pathway. The biliary duct is highly exposed to alkylating agents because of its anatomical location.

Methods

We examined 39 surgically resected gallbladder carcinomas and 35 extrahepatic bile duct carcinomas and evaluated the expression of MGMT and MMR protein (hMLH1 and hMSH2) by immunohistochemical staining.

Results

MGMT-negative staining was detected in 59.0% of gallbladder carcinoma specimens and 60.0% of extrahepatic bile duct carcinoma specimens. In gallbladder carcinoma, hMLH1- and hMSH2-negative staining was observed in 51.3% and 59.0%, respectively, whereas in extrahepatic bile duct carcinoma, the respective values were 57.1% and 65.7%. MGMT-negative staining correlated with hepatic invasion in gallbladder carcinoma and with poor prognosis in both types of tumor. Furthermore, a combined MGMT and MMR status was shown to be a more significant prognostic biomarker in both tumor types.

Conclusions

Combined MGMT and MMR is a possible prognostic marker that probably reflects an accumulation of genetic mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coulonidre C, Miller JH. Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene ofEscherichia coli.J Mol Biol 1977;117:577–606.

    Article  Google Scholar 

  2. Pegg AE. MammalianO 6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents.Cancer Res 1990;50:6119–29.

    PubMed  CAS  Google Scholar 

  3. Citron M, Decker R, Chen S, et al.O 6-Methylguanine-DNA methyltransferase in human normal and tumor tissue from brain, lung, and ovary.Cancer Res 1991;51:4131–4.

    PubMed  CAS  Google Scholar 

  4. Gerson SL, Trey JE, Miller K, Berger NA. Comparison ofO 6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues.Carcinogenesis 1986;7:745–9.

    Article  PubMed  CAS  Google Scholar 

  5. Day RS III, Ziolkowski CH, Scudiero DA, et al. Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.Nature 1980;288:724–7.

    Article  PubMed  CAS  Google Scholar 

  6. Tsujimura T, Zhang YP, Fujio C, et al.O 6-Methylguanine methyltransferase activity and sensitivity of Japanese tumor cell strains to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride.Jpn J Cancer Res 1987;78:1207–15.

    PubMed  CAS  Google Scholar 

  7. Sklar R, Strauss B. Removal ofO 6-methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines.Nature 1981;289:417–20.

    Article  PubMed  CAS  Google Scholar 

  8. Domoradzki J, Pegg AE, Dolan ME, Maher VM, McCormick JJ. Correlation betweenO 6-methylguanine-DNA-methyltransferase activity and resistance of human cells to the cytotoxic and mutagenic effect ofN-methyl-N′-nitro-N-nitrosoguanidine.Carcinogenesis 1984;5:1641–7.

    Article  PubMed  CAS  Google Scholar 

  9. Yarosh DB, Foote RS, Mitra S, Day RS III. Repair ofO 6-methylguanine in DNA by demethylation is lacking in Mer human tumor cell strains.Carcinogenesis 1983;4:199–205.

    Article  PubMed  CAS  Google Scholar 

  10. Branch P, Aquilina G, Bignami M, Karran P. Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage.Nature 1993;362:652–4.

    Article  PubMed  CAS  Google Scholar 

  11. David L, Silva F, Seruca R, Pinto M, Reis C, Sobrinho-Simoes M. Correspondence re: A. E. Biemer-Huttmann et al. Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin. Cancer Res. 6: 1909–1916, 2000.Clin Cancer Res 2000;6: 4461–2.

    Google Scholar 

  12. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair.Genes Dev 1996;10:1433–42.

    PubMed  CAS  Google Scholar 

  13. Thibodeau SN, French AJ, Roche PC, et al. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes.Cancer Res 1996;56: 4836–40.

    PubMed  CAS  Google Scholar 

  14. Tavani A, Negri E, La Vecchia C. Biliary tract tumors.Ann Ist Super Sanita 1996;32:615–9.

    PubMed  CAS  Google Scholar 

  15. Imai M, Hoshi T, Ogawa K. K-ras codon 12 mutations in biliary tract tumors detected by polymerase chain reaction denaturing gradient gel electrophoresis.Cancer 1994;73:2727–33.

    Article  PubMed  CAS  Google Scholar 

  16. Hanada K, Itoh M, Fujii K, Tsuchida A, Ooishi H, Kajiyama G. K-ras and p53 mutations in stage I gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct.Cancer 1996; 77:452–8.

    Article  PubMed  CAS  Google Scholar 

  17. Itoi T, Watanabe H, Ajioka Y, et al. APC, K-ras codon 12 mutations and p53 gene expression in carcinoma and adenoma of the gall-bladder suggest two genetic pathways in gall-bladder carcinogenesis.Pathol Int 1996;46:333–40.

    PubMed  CAS  Google Scholar 

  18. Sasatomi E, Tokunaga O, Miyazaki K. Precancerous conditions of gallbladder carcinoma: overview of histopathologic characteristics and molecular genetic findings.J Hepatobiliary Pancreat Surg 2000;7:556–67.

    Article  PubMed  CAS  Google Scholar 

  19. Ajiki T, Onoyama H, Yamamoto M, et al. p53 Protein expression and prognosis in gallbladder carcinoma and premalignant lesions.Hepatogastroenterology 1996;43:521–6.

    PubMed  CAS  Google Scholar 

  20. Yoshida S, Todoroki T, Ichikawa Y, et al. Mutations of p16Ink4/ CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers.Cancer Res 1995;55:2756–60.

    PubMed  CAS  Google Scholar 

  21. Wistuba II, Albores-Saavedra J. Genetic abnormalities involved in the pathogenesis of gallbladder carcinoma.J Hepatobiliary Pancreat Surg 1999;6:237–44.

    Article  PubMed  CAS  Google Scholar 

  22. Nakabeppu Y, Nathans D. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity.Cell 1991;64: 751–9.

    Article  PubMed  CAS  Google Scholar 

  23. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes.Methods Enzymol 1990;185:60–89.

    PubMed  CAS  Google Scholar 

  24. Kawate H, Ihara K, Kohda K, Sakumi K, Sekiguchi M. Mouse methyltransferase for repair ofO 6-methylguanine andO 4-methylthymine in DNA.Carcinogenesis 1995;16:1595–602.

    Article  PubMed  CAS  Google Scholar 

  25. Ishibashi T, Nakabeppu Y, Kawate H, Sakumi K, Hayakawa H, Sekiguchi M. Intracellular localization and function of DNA repair methyltransferase in human cells.Mutat Res 1994;315:199–212.

    PubMed  CAS  Google Scholar 

  26. Fritz G, Kaina B. Genomic differences betweenO 6-methylguanine-DNA methyltransferase proficient (Mex+) and deficient (Mex) cell lines: possible role of genetic and epigenetic changes in conversion of Mex+ into Mex.Biochem Biophys Res Commun 1992;183:1184–90.

    Article  PubMed  CAS  Google Scholar 

  27. Matsukura S, Miyazaki K, Yakushiji H, et al. Expression and prognostic significance ofO 6-methylguanine-DNA methyltransferase in hepatocellular, gastric, and breast cancers.Ann Surg Oncol 2001;8:807–16.

    Article  PubMed  CAS  Google Scholar 

  28. Kaina B, Fritz G, Mitra S, Coquerelle T. Transfection and expression of humanO 6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents.Carcinogenesis 1991;12:1857–67.

    Article  PubMed  CAS  Google Scholar 

  29. Fornace AJ Jr, Papathanasiou MA, Hollander MC, Yarosh DB. Expression of theO 6-methylguanine-DNA methyltransferase gene MGMT in MER+ and MER human tumor cells.Cancer Res 1990;50:7908–11.

    PubMed  CAS  Google Scholar 

  30. Pieper RO, Futscher BW, Dong Q, Ellis TM, Erickson LC. Comparison ofO-6-methylguanine DNA methyltransferase (MGMT) mRNA levels in Mer+ and Mer human tumor cell lines containing the MGMT gene by the polymerase chain reaction technique.Cancer Commun 1990;2:13–20.

    PubMed  CAS  Google Scholar 

  31. Kroes RA, Erickson LC. The role of mRNA stability and transcription inO 6-methylguanine DNA methyltransferase (MGMT) expression in Mer+ human tumor cells.Carcinogenesis 1995;16: 2255–7.

    Article  PubMed  CAS  Google Scholar 

  32. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia.Adv Cancer Res 1998;72:141–96.

    Article  PubMed  CAS  Google Scholar 

  33. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands.Proc Natl Acad Sci U S A 1996;93:9821–6.

    Article  PubMed  CAS  Google Scholar 

  34. Herman JG, Umar A, Polyak K et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma.Proc Natl Acad Sci U S A 1998;95:6870–5.

    Article  PubMed  CAS  Google Scholar 

  35. Deng G, Chen A, Hong J, Chae HS, Kim YS. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression.Cancer Res 1999;59:2029–33.

    PubMed  CAS  Google Scholar 

  36. Harris LC, Potter PM, Tano K, Shiota S, Mitra S, Brent TP. Characterization of the promoter region of the humanO 6-methylguanine-DNA methyltransferase gene.Nucleic Acids Res 1991;19: 6163–7.

    Article  PubMed  CAS  Google Scholar 

  37. Costello JF, Futscher BW, Tano K, Graunke DM, Pieper RO. Graded methylation in the promoter and body of theO 6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells.J Biol Chem 1994;269: 17228–37.

    PubMed  CAS  Google Scholar 

  38. Qian XC, Brent TP. Methylation hot spots in the 5′ flanking region denote silencing of theO 6-methylguanine-DNA methyltransferase gene.Cancer Res 1997;57:3672–7.

    PubMed  CAS  Google Scholar 

  39. Watts GS, Pieper RO, Costello JF, Peng YM, Dalton WS, Futscher BW. Methylation of discrete regions of theO 6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene.Mol Cell Biol 1997;17:5612–9.

    PubMed  CAS  Google Scholar 

  40. Citron M, Graver M, Schoenhaus M, et al. Detection of messenger RNA fromO 6-methylguanine-DNA methyltransferase gene MGMT in human normal and tumor tissues.J Natl Cancer Inst 1992;84:337–40.

    Article  PubMed  CAS  Google Scholar 

  41. Zaidi NH, Liu L, Gerson SL. Quantitative immunohistochemical estimates ofO 6-alkylguanine-DNA alkyltransferase expression in normal and malignant human colon.Clin Cancer Res 1996;2:577–84.

    PubMed  CAS  Google Scholar 

  42. Silber JR, Bobola MS, Ghatan S, Blank A, Kolstoe DD, Berger MS.O 6-Methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics.Cancer Res 1998;58:1068–73.

    PubMed  CAS  Google Scholar 

  43. Mattern J, Koomagi R, Volm M. Smoking-related increase ofO 6-methylguanine-DNA methyltransferase expression in human lung carcinomas.Carcinogenesis 1998;19:1247–50.

    Article  PubMed  CAS  Google Scholar 

  44. Mineura K, Izumi I, Watanabe K, Kowada M.O 6-Alkylguanine-DNA alkyltransferase activity in human brain tumors.Tohoku J Exp Med 1991;165:223–8.

    Article  PubMed  CAS  Google Scholar 

  45. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair geneO 6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia.Cancer Res 1999;59:793–7.

    PubMed  CAS  Google Scholar 

  46. Ueki T, Tovota M, Sohn T, et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma.Cancer Res 2000;60:1835–9.

    PubMed  CAS  Google Scholar 

  47. Esteller M, Toyota M, Sanchez-Cespedes M, et al. Inactivation of the DNA repair geneO 6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.Cancer Res 2000;60:2368–71.

    PubMed  CAS  Google Scholar 

  48. Hengstler JG, Tanner B, Moller L, Meinert R, Kaina B. Activity ofO(6)-methylguanine-DNA methyltransferase in relation to p53 status and therapeutic response in ovarian cancer.Int J Cancer 1999;84:388–95.

    Article  PubMed  CAS  Google Scholar 

  49. Sakumi K, Shiraishi A, Shimizu S, Tsuzuki T, Ishikawa T, Sekiguchi M. Methylnitrosourea-induced tumorigenesis in MGMT gene knockout mice.Cancer Res 1997;57:2415–8.

    PubMed  CAS  Google Scholar 

  50. Iwakuma T, Sakumi K, Nakatsuru Y, et al. High incidence of nitrosamine-induced tumorigenesis in mice lacking DNA repair methyltransferase.Carcinogenesis 1997;18:1631–5.

    Article  PubMed  CAS  Google Scholar 

  51. Kat A, Thilly WG, Fang WH, Longley MJ, Li GM, Modrich P. An alkylation-tolerant, mutator human cell line is deficient in strandspecific mismatch repair.Proc Natl Acad Sci U S A 1993;90: 6424–8.

    Article  PubMed  CAS  Google Scholar 

  52. Karran P, Bignami M. DNA damage tolerance, mismatch repair and genome instability.Bioessays 1994;16:833–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kawate H, Sakumi K, Tsuzuki T, et al. Separation of killing and tumorigenic effects of an alkylating agent in mice defective in two of the DNA repair genes.Proc Natl Acad Sci U S A 1998;95:5116–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Miyazaki MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohya, N., Miyazaki, K., Matsukura, S. et al. Deficient expression ofO 6-Methylguanine-DNA methyltransferase combined with mismatch-repair proteins hMLH1 and hMSH2 is related to poor prognosis in human biliary tract carcinoma. Annals of Surgical Oncology 9, 371–379 (2002). https://doi.org/10.1007/BF02573872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02573872

Key Words

Navigation