Skip to main content
Log in

Reconstruction and analysis of human alu genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The existing classification of human Alu sequences is revised and expanded using a novel methodology and a larger set of sequence data. Our study confirms that there are two major Alu subfamilies, Alu-J and Alu-S. The Alu-S subfamily consists of at least five distinct subfamilies referred to as Alu-Sx, Alu-Sq, Alu-Sp, Alu-Sc, and Alu-Sb. The Alu-Sp and Alu-Sq subfamilies have been revealed by this study. Alu subfamilies differ from one another in a number of positions called diagnostic. In this paper the diagnostic positions are defined in quantitative terms and are used to evaluate statistical significance of the observed subfamilies. Each Alu subfamily most likely represents pseudogenes retroposed from evolving functional source Alu genes. Evidence presented in this paper indicates that Alu-Sp and Alu-Sc pseudogenes were retroposed from different source genes, during overlapping periods of time, and at different rates. Our analysis also indicates that the previously identified Alu-type transcript BC200 comes from an active Alu gene that might have existed even before the origin of dimeric Alu sequences. The source genes for Alu pseudogene families are reconstructed. It is assumed that diagnostic differences between reconstructed source genes reflect mutations that have occurred in true source Alu genes under natural selection. Some of these mutations are compensatory and are used to reconstruct a common secondary structure of Alu RNAs transcribed from the source genes. The biological function of Alu RNA is discussed in the context of its homology to the elongation-arresting domain of 7SL RNA. Practical implications of our analyses for studies of the human and of other primate genomes are outlined. A computer program that identifies diagnostic bases in individual Alu repeats is designed and made available on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Britten RJ, Baron WF, Stout D, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85: 4770–4774

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Stout D, Davidson EH (1989) The current source of human Alu retroposons is a conserved gene shared with Old World monkey. Proc Natl Acad Sci USA 86: 3718–3722

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. Trends Genet 2:76–80

    Article  CAS  Google Scholar 

  • Deininger PL, Slagel VK (1988) Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol 8: 4566–4569

    PubMed  CAS  Google Scholar 

  • Ellis NA, Goodfellow PJ, Pym B, Smith M, Palmer M, Frischauf A-M, Goodfellow PN (1989) The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature 337: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Faulkner DV, Jurka J (1988) Multiple aligned sequence editor (MASE). Trends Biochem Sci 13: 321–322

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Woese CR (1975) 5S RNA secondary structure. Nature 256: 505–507

    Article  PubMed  CAS  Google Scholar 

  • Gundelfinger ED, Di Carlo M, Zopf D, Melli M (1984) Structure and evolution of the 7SL RNA component of the signal recognition particle. EMBO J 3: 2325–2332

    PubMed  CAS  Google Scholar 

  • Jang KL, Latchman DS (1989) HSV infection induces increased transcription of Alu repeated sequences by RNA polymerase III. FEBS Lett 258: 255–258

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (1989) Subfamily structure and evolution of the human L1 family of repetitive sequences. J Mol Evol 29: 496–503

    PubMed  CAS  Google Scholar 

  • Jurka J (1990) Novel families of interspersed repetitive elements from the human genome. Nucleic Acids Res 18: 137–141

    PubMed  CAS  Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85: 4775–4778

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Philips DG, Atonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166

    Article  PubMed  CAS  Google Scholar 

  • Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17: 2477–2491

    PubMed  CAS  Google Scholar 

  • Lehrman MA, Schneider WJ, Sudhof TC, Brown MS, Goldstein JL, Russell DW (1985) Mutation in LDL receptor: Alu-Alu tecombination deletes exons encoding transmembrane and cytoplasmic domains. Science 227: 140–146

    Article  PubMed  CAS  Google Scholar 

  • Lehrman MA, Goldstein J, Russell DW, Brown MS (1987a) Duplication of seven exons in LDL receptor genes caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell 48: 827–835

    Article  PubMed  CAS  Google Scholar 

  • Lehrman MA, Russell DW, Goldstein JL, Brown MS (1987b) Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem 262: 3354–3361

    PubMed  CAS  Google Scholar 

  • Levitt M (1969) Detailed molecular model for transfer ribonucleic acid. Nature 224: 759–763

    Article  PubMed  CAS  Google Scholar 

  • Markert ML, Hutton JJ, Wiginton DA, States JC, Kaufman RE (1988) Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements. J Clin Invest 81: 1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134: 1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Milosavljevic A (1990) Categorization of macromolecular sequences by minimal length encoding. PhD thesis, Available as: Technical Report UCSC-CRL-90-41 from the Computer and Information Sciences Dept., University of California at Santa Cruz

  • Milosavljevic A, Haussler D, Jurka J (1989) Informed parsimonious inference of prototypical genetic sequences. In: Rivest R, Haussler D, Warmuth MK (eds) Proceedings of the Second Annual Workshop on Computational Learning Theory. Morgan Kaufman, San Mateo, pp 102–117

    Google Scholar 

  • Pleij CWA (1990) Pseudoknots: a new motif in the RNA game. Trends Biochem Sci 15: 143–147

    Article  PubMed  CAS  Google Scholar 

  • Quentin Y (1988) The Alu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27: 194–202

    Article  PubMed  CAS  Google Scholar 

  • Rouyer F, Simmler MC, Page DC, Weissenbach J (1987) A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51: 417–425

    Article  PubMed  CAS  Google Scholar 

  • Ryan SC, Dugaiczyk A (1989) Newly arisen DNA repeats in primate phylogeny. Proc Natl Acad Sci USA 86: 9360–9364

    Article  PubMed  CAS  Google Scholar 

  • Schoeniger LO, Jelinek WR (1986) 4.5 S RNA is encoded by hundreds of tandemly linked genes, has a short half-life, and is hydrogen bonded in vivo to poly(A)-terminated RNAs in the cytoplasm of cultured mouse cells. Mol Cell Biol 6: 1508–1519

    PubMed  CAS  Google Scholar 

  • Selker EU (1990) DNA methylation and chromatin structure: a view from below. Trends Biochem Sci 15: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Siegel V, Walter P (1986) Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8: 1385–1397

    PubMed  CAS  Google Scholar 

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger P (1987) Clustering and subfamily relationships of the Alu family in the human genome. Mol Biol Evol 4: 19–29

    PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 145: 195–197

    Article  Google Scholar 

  • Stoppa-Lyonnet D, Carter PE, Meo T, Tosi M (1990) Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci USA 87: 1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Tomatsu S, Kobayashi Y, Fukumaki Y, Yubisui T, Orii T, Sakaki Y (1989) The organization and complete nucleotide sequence of the human NADH-cytochrome B5 reductase gene. Gene 80: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312: 171–172

    PubMed  CAS  Google Scholar 

  • Wagner M (1986) A consideration of the origin of processed pseudogenes. Trends Genet 2: 134–137

    Article  Google Scholar 

  • Walter P, Gilmore R, Bobel G (1984) Protein translocation across the endoplasmic reticulum. Cell 38: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Watson JB, Sutcliffe JG (1987) Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol Cell Biol 7: 3324–3327

    PubMed  CAS  Google Scholar 

  • Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data bases. Proc Natl Acad Sci USA 80: 726–730

    Article  PubMed  CAS  Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26: 180–186

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Latter G, Jurka J (1989) Maintenance of function without selection: Alu sequences as “cheap genes”. J Mol Evol 29: 504–512

    PubMed  CAS  Google Scholar 

  • Zwieb C (1985) The secondary structure of the 7SL RNA in the signal recognition particle: functional implications. Nucleic Acids Res 13: 6105–6124

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurka, J., Milosavljevic, A. Reconstruction and analysis of human alu genes. J Mol Evol 32, 105–121 (1991). https://doi.org/10.1007/BF02515383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515383

Key words

Navigation