Skip to main content
Log in

The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hydrocephalus is a state in which the circulation of cerebrospinal fluid is disturbed. This fluid, produced within the brain at a constant rate, moves through internal cavities in it (ventricles), then exits through passages so that it may be absorbed by the surrounding membranes (meninges). Failure of fluid to move properly through these passages results in the distention of the passages and the ventricles. Ultimately, this distention causes large displacements and distortion of brain tissue as well as an increase of fluid in the extracellular space of the brain (edema). We use a two-phase model of fluid-saturated material to simulate the steady state of the hydrocephalic brain. Analytic solutions for the displacement of brain tissue and the distribution of edema for the annular regions of an idealized cylindrical geometry and small-strain theory are found. The solutions are used for a large-deformation analysis by superposition of the responses obtained for incrementally increasing loading. The effects of structural and hydraulic differences of white and gray brain matter, and the ependymal lining surrounding the venticles, are examined. The results reproduce the characteristic steady-state distribution of edema seen in hydrocephalus, and are compared with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin, R. J. and R. E. Craine. 1976. Continuum theories of mixtures: applications.J. Inst. Math. Appl. 17, 153.

    MATH  MathSciNet  Google Scholar 

  • Biot, M. A. 1941. General theory of three-dimensional consolidation.J. Appl. Phys. 12, 155.

    Article  MATH  Google Scholar 

  • Bowen, R. M. 1976. Theory of mixtures. InContinuum Physics, A. C. Eringen (Ed), Vol. II. New York: Academic.

    Google Scholar 

  • Detournay, E. 1993. Fundamentals of poroelasticity. InComprehensive Rock Engineering: Principles, Practice, and Projects, C. Fairhurst (Ed). Elmsford, NY: Pergamon.

    Google Scholar 

  • Drake, J. M., O. Mostachfi, G. Tenti and S. Sivaloganathan. 1996. Realistic simple mathematical model of brain biomechanics for computer simulation of hydrocephalus and other brain abnormalities.Can. J. Neurol. Sci. 23, S5 (abstract).

    Google Scholar 

  • Fung, Y. C. 1994.A First Course in Continuum Mechanics for Physical Scientists and Engineers. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Hakim, S. and C. Hakim. 1984. A biomechanical model of hydrocephalus and its relationship to treatment. InHydrocephalus, K. Shapiro and A. Marmarou (Eds). New York: Raven.

    Google Scholar 

  • Hirano, A. 1993. Edema and myelin-associated extracellular spaces. InBrain Edema, Y. Inaba, I. Klatzo and M. Spatz (Eds). Berlin: Springer-Verlag.

    Google Scholar 

  • Jayaraman, G. 1983. Water transport in the arterial wall—a theoretical study.J. Biomech. 16, 833.

    Article  Google Scholar 

  • Kaczmarek, M. 1992. On kinematics in the theory of multiphase media, comparison between two traditions.Mech. Res. Comm. 19, 361.

    Article  MATH  MathSciNet  Google Scholar 

  • Kenyon, D. E. 1976. Transient filtration in porous elastic cylinder.J. Appl. Mech. 43, 594.

    Google Scholar 

  • Klanchar, M. and J. M. Tarbell. 1987. Modeling water flow through arterial tissue.Bull. Math. Biol. 49.

  • Kumpel, H.-J. 1991. Poroelasticity: parameters reviewed.Geophys. J. Int. 105, 783.

    Google Scholar 

  • Lux, W. E., G. M. Hochwald, A. Sahar and J. Ransohoff. 1970. Periventricular water content.Arch. Neurol. 23, 475.

    Google Scholar 

  • Metz, H., J. McElhaney and A. K. Ommaya. 1970. A comparison of the elasticity of live, dead and fixed brain tissue.J. Biomech. 3, 453.

    Article  Google Scholar 

  • Mow, V. C., S. C. Kuei, W. M. Lai and C. G. Armstrong. 1980. Biphasic creep and stress relaxation of articular cartilage: theory and experiments.J. Biomech. Eng. 102, 73.

    Article  Google Scholar 

  • Nag, S. 1991. InTextbook of Neuropathology, R. L. Davis and D. M. Robertson (Eds), p. 95. Baltimore: William and Wilkins.

    Google Scholar 

  • Nagashima, T., B. Horwitz and S. I. Rapoport. 1990. A mathematical model for vasogenic brain edema.Adv. Neurol. 52, 317.

    Google Scholar 

  • Nagashima, T., N. Tanaki, S. Matsumoto, B. Horwitz and Y. Seguchi. 1987. Biomechanics of hydrocephalus: a new theoretical model.Neurosurgery 21, 898.

    Google Scholar 

  • Nyberg-Hansen, R., A. Tovik and R. Bhatia. 1975. On the pathology of experimental hydrocephalus.Brain Res. 95, 343.

    Article  Google Scholar 

  • Oloyede, A. and N. D. Broom. 1991. Is classical consolidation theory applicable to articular cartilage deformation?Clin. Biomech. 6, 206.

    Article  Google Scholar 

  • Pasquini, U., M. Bronzini, E. Gozzoli, P. Mancini, F. Menichelli and U. Salvolini. 1977. Periventricular hypodensity in hydrocephalus: a clinico-radiological and mathematical analysis using computed tomography.J. Comp. Assist. Tomography 1, 443.

    Article  Google Scholar 

  • Rabenstain, A. L. 1972.Introduction to Ordinary Differential Equations. New York: Academic.

    Google Scholar 

  • Rall, D. P., W. W. Oppelt and C. S. Patlak. 1962. Increased extracellular space of brain as determined by diffusion of inulin from the ventricular system.Life Sci. 1, 43.

    Article  Google Scholar 

  • Rekate, H. and W. Olivero. 1990.Hydrocephalus, R. M. Scott (Ed), p. 11. Baltimore: William and Wilkins.

    Google Scholar 

  • Reulen, H. J., R. Graham, M. Spatz and I. Klatzo. 1977. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema.J. Neurosurgery 46, 24.

    Article  Google Scholar 

  • Subramaniam, R. P., S. R. Neff and R. Pakal. 1995. A numerical study of the biomechanics of structural neurologic diseases. InHigh Performance Computing 1995—Grand Challenges in Computer Simulation, A. Tentner (Ed), p. 552. San Diego: Society for Computer Simulation.

    Google Scholar 

  • Weller, R. O. and J. Mitchell. 1980. Cerebrospinal fluid edema and its sequelae in hydrocephalus.Adv. Neurol. 28, 111.

    Google Scholar 

  • Yang, M. and L. A. Taber. 1991. The possible role of poroelasticity in the apparent viscoelastic behavior of cardiac muscle.J. Biomech. 24, 587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Subramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarek, M., Subramaniam, R.P. & Neff, S.R. The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry. Bltn Mathcal Biology 59, 295–323 (1997). https://doi.org/10.1007/BF02462005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462005

Keywords

Navigation