Skip to main content
Log in

The effect of shear stress on solitary waves in arteries

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the present work, we study the propagation of solitary waves in a prestressed thick walled elastic tube filled with an incompressible inviscid fluid. In order to include the geometric dispersion in the analysis the wall inertia and shear deformation effects are taken into account for the inner pressure-cross-sectional area relation. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the long-wave approximation is examined. It is shown that, contrary to thin tube theories, the present approach makes it possible to have solitary waves even for a Mooney-Rivlin (M-R) material. Due to dependence of the coefficients of the governing Korteweg-deVries equation on initial deformation, the solution profile changes with inner pressure and the axial stretch. The variation of wave profiles for a class of elastic materals are depicted in graphical forms. As might be seen from these illustrations, with increasing thickness ratio, the profile of solitary wave is steepened for a M-R material but it is broadened for biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A i :

inner cross-sectional area

α:

a material constant for soft tissues

b :

a material constant for a M-R material

c kl :

Finger deformation tensor

γ:

thickness parameter for tube wall

λ i θ :

\(\left( {B_i = \lambda _\theta ^{i^2 } } \right)\) circumferential stretch on the inner surface of tube

λ z :

stretch in the axial direction

P :

hydrostatic pressure of elastic solid

P * i :

fluid pressure

ρ 0 :

mass density of solid

ρ f :

mass density of fluid

t kl :

Cauchy stress tensor

w * :

axial fluid velocity

References

  • Anliker, M., W. E. Moritz and E. Ogden 1968. Transmission characteristics of axial waves in blood vessels.J. Biomech. 1, 235–246.

    Article  Google Scholar 

  • Anliker, M., R. L. Rockwell and E. Ogden. 1971. Nonlinear analysis of flow pulses and shock waves in arteries.Z. Agnew. Math. Phys. 22, 217–246.

    Article  Google Scholar 

  • Atabek, H. B. and H. S. Lew. 1966. Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube.Biophys. J. 7, 480–503.

    Google Scholar 

  • Cowley, S. J. 1983. On the waves associated with elastic jumps on fluid filled elastic tubes.Q. J. Mech. Appl. Math. 36, 289–312.

    MATH  MathSciNet  Google Scholar 

  • Demiray, H. 1972. On the elasticity of soft biological tissues.J. Biomech. 5, 309–311.

    Article  Google Scholar 

  • Demiray, H. 1976. Large deformation analysis of some basic problems in biophysics.Bull. Math. Biol. 38, 701–712.

    MATH  Google Scholar 

  • Demiray, H. 1992. Wave propagation through a viscous fluid contained in a prestressed thin elastic tube.Int. J. Eng. Sci. 30, 1607–1620.

    Article  MATH  MathSciNet  Google Scholar 

  • Demiray, H. 1996a. Solitary waves in a prestressed elastic tubes.Bull. Math. Biol. 58, 939–955.

    Article  MATH  Google Scholar 

  • Demiray, H. 1996b. Nonlinear waves in a prestressed thick elastic tube filled with an inviscid fluid.Int. J. Eng. Sci. 34, 1519–1529.

    Article  MATH  MathSciNet  Google Scholar 

  • Erbay, H. A., S. Erbay and S. Dost. 1992. Wave propagation in fluid filled nonlinear viscoelastic tubes.Acta Mech. 95, 87–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Eringen, A. C. 1962.Nonlinear Theory of Continuous Media. New York: McGraw-Hill.

    Google Scholar 

  • Fenn, W. D. 1957. Changes in length of blood vessels on inflation. InTissue Elasticity, J. W. Remington (Ed), pp. 154–167. Washington, DC: American Physiological Society.

    Google Scholar 

  • Fung, Y. C. 1972. Stress-strain history relation of soft tissues in simple elongation. InBiomechanics. Its Foundations and Objectives, Y. C. Fung, N. Peronne and M. Anliker (Eds.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Fung, Y. C. 1984.Biodynamics: Circulation. New York: Springer-Verlag.

    Google Scholar 

  • Gow, B. S. and M. G. Taylor. 1968. Measurement of viscoelastic properties of arteries in the living dog.Circulation Res. 23, 111–122.

    Google Scholar 

  • Hashizume, Y. 1985. Nonlinear pressure waves in a fluid-filled elastic tube.J. Phys. Soc. Jpn. 54, 3305–3312.

    Article  Google Scholar 

  • Johnson, R. S. 1970. A nonlinear equation incorporating damping and dispersion.J. Fluid Mech. 42, 49–60.

    Article  MATH  MathSciNet  Google Scholar 

  • Karpman, V. I. 1975.Asymptotic Methods in Nonlinear Wave Theory. New York: Pergamon Press.

    Google Scholar 

  • McDonald, D. A. 1974.Blood Flow in Arteries. London: Arnold.

    Google Scholar 

  • Pedley, T. J. 1980.The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rachev, A. I. 1979. Effect of transmural pressure and muscular activity on pulse waves in arteries.J. Biomech. Eng. ASME 102, 119–123.

    Article  Google Scholar 

  • Rudinger, G. 1970. Shock waves in mathematical models of the aorta.J. Appl. Mech. 37, 34–37.

    Article  Google Scholar 

  • Simon, B. R., A. S. Kobayashi, D. E. Stradness and C. A. Wiederhielm. 1972. Re-evaluation of arterial constitutive laws.Circulation Res. 30, 491–500.

    Google Scholar 

  • Tait, R. J. and T. B. Moodie. 1984. Waves in nonlinear fluid filled tubes.Wave Motion 6, 197–203.

    Article  MATH  MathSciNet  Google Scholar 

  • Yomosa, Y. 1987. Solitary waves in large blood vessels.J. Phys. Soc. Jpn. 56, 506–520.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiray, H. The effect of shear stress on solitary waves in arteries. Bltn Mathcal Biology 59, 993–1012 (1997). https://doi.org/10.1007/BF02460003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460003

Keywords

Navigation