Skip to main content
Log in

Dynamics of cellular homeostasis: Recovery time for a perturbation from equilibrium

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the collecting ductin vivo, the principal cell encounters a wide range in luminal flow rate and luminal concentration of NaCl. As a consequence, there are substantial variations in the transcellular fluxes of Na+ and Cl, conditions which would be expected to perturb cell volume and cytosolic concentrations. Several control mechanisms have been identified which can potentially blunt these perturbations, and these entail cellular regulation of the luminal membrane Na+ channel and peritubular membrane K+ and Cl channels. To illustrate the impact of these regulated channels, a mathematical model of the principal cell of the rat cortical collecting duct has been developed, in which ion channel permeabilities are either constant or regulated. In comparison to the model with fixed permeabilities, the model with regulated channels demonstrates enhanced cellular homeostasis following steady-state variation in luminal NaCl. However, in the transient response to a cytosolic perturbation, the difference in recovery time between the models is small. An approximate analysis is presented which casts these models as dynamical systems with constant coefficients. Despite the presence of regulated ion channels, concordance of each model with its linear approximation is verified for experimentally meaningful perturbations from the reference condition. Solution of a Lyapunov equation for each linear system yields a matrix whose application to a perturbation permits explicit estimation of the time to recovery. Comparison of these solution matrices for regulated and non-regulated cells confirms the similarity of the dynamic response of the two models. These calculations suggest that enhanced homeostasis by regulated channels may be protective, without necessarily hastening recovery from cellular perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, J. S., R. Laprade and J.-Y. Lapointe. 1994. Coupling between transepithelial Na transport and basolateral K conductance in renal proximal tubule.Amer. J. Physiol. 266, F517-F527.

    Google Scholar 

  • Chaillet, J. R., A. G. Lopes and W. F. Boron. 1985. Basolateral Na−H exchange in the rabbit cortical collecting tubule.J. Gen. Physiol. 86, 795–812.

    Article  Google Scholar 

  • Dawson, D. C. and N. W. Richards. 1990. Basolateral K conductance: role in regulation of NaCl absorption and secretion.Amer. J. Physiol. 259, C181-C195.

    Google Scholar 

  • Diamond, J. M. 1982. Transcellular cross-talk between epithelial cell membranes.Nature 300, 683–685.

    Article  Google Scholar 

  • Frindt, G., C. O. Lee, J. M. Yang and E. E. Windhager, 1988. Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules.Miner. Electrolyte Metab. 14, 40–47.

    Google Scholar 

  • Frindt, G., L. G. Palmer and E. E. Windhager. 1996. Feedback regulation of Na channels in rat CCT. IV. Mediation by activation of protein kinase C.Amer. J. Physiol. 270, F371-F376.

    Google Scholar 

  • Frindt, G., R. B. Silver, E. E. Windhager and L. G. Palmer, 1993. Feedback regulation of Na channels in rat CCT. II. Effects of inhibition of Na entry.Amer. J. Physiol.,264, F565-F574.

    Google Scholar 

  • Garay, R. P. and P. J. Garrahan. 1973. The interaction of sodium and potassium with the sodium pump in red cells.J. Physiol. 231, 297–325.

    Google Scholar 

  • Gifford, J. D., J. H. Galla, R. G. Luke and R. Rick. 1990. Ion concentrations in the rat CCD: differences between cell types and effect of alkalosis.Amer. J. Physiol. 259, F778-F782.

    Google Scholar 

  • Hewer, G. and C. Kenney. 1988. The sensitivity of the stable Lyapunov equation.SIAM J. Contr. Optimiz. 26, 321–344.

    Article  MATH  MathSciNet  Google Scholar 

  • Koeppen, B. M. and B. A. Stanton. 1992. Sodium chloride transport. Distal nephron. InThe Kidney. Physiology and Pathophysiology, D. W. Seldin and G. Giebisch (Eds.), ch. 55, pp. 2003–2039. New York: Raven Press.

    Google Scholar 

  • Kunzelmann, K., L. Gerlach, U. Frőbe and R. Greger. 1991. Bicarbonate permeability of epithelial chloride channels.Pf. Arch. 417, 616–621.

    Article  Google Scholar 

  • Muto, S., K. Yasoshima, K. Yoshitomi, M. Imai and Y. Asano. 1990. Electrophysiological identification of alpha and beta-intercalated cells and their distribution along the rabbit distal nephron segments.J. Clin. Invest. 86, 1829–1839.

    Article  Google Scholar 

  • Rouch, A. J., L. Chen, S. L. Troutman and J. A. Schafer. 1991. Na transport in isolated rat CCD: effects of bradykinin, ANP, clonidine, and hydrochlorothiazide.Amer. J. Physiol. 260, F86-F95.

    Google Scholar 

  • Schafer, J. A., S. L. Troutman and E. Schlatter. 1990. Vasopressin and mineralocorticoid increase apical membrane driving force for K secretion in rat CCD.Amer. J. Physiol. 258, F199-F210.

    Google Scholar 

  • Schlatter, E., R. Greger and J. A. Schafer. 1990. Principal cells of cortical collecting ducts of the rat are not a route of transepithelial Cl transport.Pf. Arch. 417, 317–323.

    Article  Google Scholar 

  • Schlatter, E. and J. A. Schafer. 1987. Electrophysiological studies in principal cells of rat cortical collecting tubules.Pf. Arch. 409, 81–92.

    Article  Google Scholar 

  • Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”.Amer. J. Physiol. 241, F579-F590.

    Google Scholar 

  • Schultz, S. G. 1992. Membrane cross-talk in sodium-absorbing epithelial cells. InThe Kidney. Physiology and Pathophysiology, D. W. Seldin and G. Giebisch (Eds.), ch. 11, pp. 287–299. New York: Raven Press.

    Google Scholar 

  • Strange, K. 1991. Volume regulatory Cl loss after Na pump inhibition in CCT principal cells.Amer. J. Physiol.,260, F225-F234.

    Google Scholar 

  • Strieter, J., J. L. Stephenson, G. H. Giebisch and A. M. Weinstein. 1992. A mathematical model of the cortical collecting tubule of the rabbit.Amer. J. Physiol. 263, F1063-F1075.

    Google Scholar 

  • Strieter, J., J. L. Stephenson, L. G. Palmer and A. M. Weinstein. 1990. Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium.J. Gen. Physiol. 96, 319–344.

    Article  Google Scholar 

  • Tang, Y. and J. L. Stephenson. 1996. Calcium dynamics and homeostasis in a mathematical model of the principal cell of the cortical collecting tubule.J. Gen. Physiol. 107, 207–230.

    Article  Google Scholar 

  • Tereda, Y. and M. A. Knepper. Thiazide-sensitive NaCl absorption in rat cortical collecting duct.Amer. J. Physiol. 259, F519–F528.

  • Weiner, I. D., A. E. Weill and A. R. New. 1994. Distribution of Cl/HCO3 exchange and intercalated cells in rabbit cortical collecting duct.Amer. J. Physiol. 267, F952-F964.

    Google Scholar 

  • Weinstein, A. M. 1992. Chloride transport in a mathematical model of the rat proximal tubule.Amer. J. Physiol. 263, F784-F798.

    Google Scholar 

  • Weinstein, A. M. 1994. Mathematical models of tubular transport.Annu. Rev. Physiol. 56, 691–709.

    Article  Google Scholar 

  • Weinstein, A. M. 1996. Coupling of entry to exit by peritubular K+-permeability in a mathematical model of the rat proximal tubule.Amer. J. Physiol. 271, F158-F168.

    Google Scholar 

  • Windhager, E. E. and A. Taylor. 1983. Regulatory role of intracellular calcium ions in epithelial Na transport.Annu. Rev. Physiol. 45, 519–532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, A.M. Dynamics of cellular homeostasis: Recovery time for a perturbation from equilibrium. Bltn Mathcal Biology 59, 451–481 (1997). https://doi.org/10.1007/BF02459460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459460

Keywords

Navigation