Skip to main content
Log in

Karyotype and genome size of zoarcids and notothenioids (Taleostei, Perciformes) from the Ross Sea: cytotaxonomic implications

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the absence of fossils, the origin of Notothenioidei, a perciform suborder dominating the fish fauna of the Southern Ocean, remains conjectural; some morphoecological evidence suggests relationships to zoarcoids. To test this point we have compared the karyotype morphology and genome size of two species of zoarcids from the Ross Sea to those of one species each of the notothenioid families Artedidraconidae, Bathydraconidae, Channichthyidae and Nototheniidae from the same region. A karyotype of 48, mostly acrocentric, chromosomes, localization of nucleolar organizers on a pair of small dibrachial chromosomes, a genome size of about 3 pg of DNA, characterize both zoarcids; similar features can be found in the karyology of the notothenioids (especially the Nototheniidae). However, all shared characters appear as plesiomorphic in teleost karyology, which does not help in producing new data on the problem of notothenioid relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson ME (1984) Zoarcidae: development and relationships. In: Moser HG, Richards WG, Cohen DM, Fahay MP, Kendall AW, Richardson SL (eds) Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol Spec Publ 1:578–582

  • Anderson ME (1990) The origin and evolution of the Antarctic Ichthiofauna. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Inst Ichthyology, Grahamstown, South Africa, pp 28–33

    Google Scholar 

  • Bogart JP (1990) Polyploidy in evolution of amphibians and reptiles. In: Lewis HE (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 341–369

    Google Scholar 

  • Bull JJ (1983) Evolution of sex determining mechanisms. Benjamin/ Cumming, Menlo Park, California

    Google Scholar 

  • Cavalier-Smith T (1985) The evolution of genome size. Wiley, New York

    Google Scholar 

  • Cheng CC, de Vries AL (1991) The role of antifreeze glycopeptides and peptides in the freeze avoidance of cold-water fish. In: Di Prisco G (ed) Life under extreme conditions: biochemical adaptation. Springer, Berlin Heidelberg, New York, pp 1–14

    Google Scholar 

  • de Vries AL (1988) The role of antifreeze glycopeptides and peptides in the freezing avoidance of Antarctic fishes. Comp Biochem Physiol 908:611–621

    Google Scholar 

  • Eakin RR (1981) Osteology and relationships of the fishes of the Antarctic family Harpagiferidae (Pisces, Notothenioidei). In: Kornicker LS (ed) Antarct Res Ser, vol 31. Biology of the Antarctic seas IX: 81–147. American Geophysical Union, Washington, DC

    Google Scholar 

  • Eastman JT (1991) Evolution and diversification of Antarctic Notothenioid fishes. Am Zool 31:93–109

    Google Scholar 

  • Eastman JT (1993) Antarctic fish biology. Academic Press, San Diego, California

    Google Scholar 

  • Garrido-Ramos MA, Jamilena M, Lozano R, Cardenas S, Ruiz Rejon C, Ruiz Rejon M (1995) Cytogenetic analysis of gilthead seabreamSparus auratus (Pisces, Perciformes), a deletion affecting the NOR in hatchery stock. Cytogenet Cell Genet 68:3–7

    CAS  PubMed  Google Scholar 

  • Gold JR (1979) Cytogenetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology. VIII. Bioenergetics and growth. Academic Press, New York, pp 353–405

    Google Scholar 

  • Gold JR (1980) Chromosomal change and rectangular evolution in North American Cyprinid fishes. Genet Res 35:157–164

    Google Scholar 

  • Gold JR, Amemiya CT (1987) Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome 29:481–489

    CAS  Google Scholar 

  • Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. JLB Smith Inst Ichthyology, Grahamstown, South Africa

    Google Scholar 

  • Gosline WA (1968) The suborder of perciform fishes. Proc US Natl Mus 124:1–78

    Google Scholar 

  • Grande L, Eastman JT (1986) A review of Antarctic ichthyofaunas in the light of new fossil discoveries. Palaeontology 29:113–137

    Google Scholar 

  • Hinegardner R (1976) Evolution of genome size. In: Ayala F (ed) Molecular evolution. Sinauer, Sunderland, pp 179–199

    Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolar organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Iwami T (1985) Osteology and relationship of the family Channichthyidae. Mem Natl Inst Polar Res Tokyo Ser E 36:1–69

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52:201–220

    Google Scholar 

  • Lin MS, Comings DE, Alfi OS (1977) Optical studies of the interactions of 4′-6-diamino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60:15–25

    Article  CAS  PubMed  Google Scholar 

  • Lozano R, Ruiz Rejon C, Ruiz Rejon M (1992) A comparative analysis of NORs in diploid and triploid salmonids: implications with respect to the diploidization process occurring in this fish group. Heredity 69:450–457

    Google Scholar 

  • Miller RG (1993) A history and atlas of the fishes of the Antarctic Oceans. Foresta Institute, Carson City, Nevada

    Google Scholar 

  • Mittwoch U (1973) Genetics of sex differentiation. Academic Press, New York

    Google Scholar 

  • Morescalchi A (1992) Structural and molecular approaches to the phylogeny of Amphibia. Boll Zool 59:23–31

    Google Scholar 

  • Morescalchi A (1994) Chromosomes, sex determination and environment in teleosteans. In: Dallai R (ed) Sex origin and evolution. Selected Symposia Monographs. Unione Zoologica Italiana, 6, Mucchi, Modena, pp 137–149

    Google Scholar 

  • Morescalchi A, Pestarino M, Pisano E, Stanyon R, Stingo V, Morescalchi MA (1991) Preliminary data on the cytogenetics of Notothenioid fishes. In: Battaglia B, Bisol PM, Varotto M (eds) Proc First Meeting Biol Antarctica, Roma 1989, Martello, Milano, pp 201–213

    Google Scholar 

  • Morescalchi A, Hureau JC, Olmo E, Ozouf-Costaz C, Pisano E, Stanyon R (1992a) A multiple sex-chromosome system in Antarctic ice-fishes. Polar Biol 11:655–661

    Article  Google Scholar 

  • Morescalchi A, Pisano E, Stanyon R, Morescalchi MA (1992b) Cytotaxonomy of Antarctic teleosts of thePagothenia/ Trematomus complex (Nototheniidae, Perciformes). Polar Biol 12:553–558

    Article  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Alien & Unwin, London

    Google Scholar 

  • Ohno S (1974) Animal cytogenetics, vol 4. Borntraeger, Berlin

    Google Scholar 

  • Ojima Y (1983) Fish cytogenetics. In: Sharma AK, Sharma A (eds) Chromosome in evolution of eukaryotic groups, nol. CRC Press, Boca Raton, Fla, pp 111–145

    Google Scholar 

  • Ozouf-Costaz C, Hureau JC, Beaunier M (1991) Chromosome studies on fish of the suborder Notothenioidei collected in the Weddell Sea during Epos 3 cruise. Cybium 15:271–289

    Google Scholar 

  • Pedersen RA (1971) DNA content, ribosomal gene multiplicity and cell size in fish. J Expl Zool 177:65–78

    CAS  Google Scholar 

  • Phillips RB, Pleyte KA, Hartley SE (1988) Stock-specific differences in the number and chromosomal positions of the nucleolar organizer regions in arctic charSalvelinus alpinus. Cytogenet Cell Genet 48:9–12

    Google Scholar 

  • Prirodina VP (1986) Karyotypes ofCottoperca gobio (Bovichthyidae, Notothenioidei) as compared to the karyotypes of other Notothenioidei. Morphology and distribution of fishes of the Southern Ocean. Proc Zool Inst Leningrad 153:67–71

    Google Scholar 

  • Purdom CE (1973) Induced polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platicthys flesus). Heredity 29:11–17

    Google Scholar 

  • Schmid M (1982) Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87:327–344

    Article  Google Scholar 

  • Stingo V, Capriglione T, Rocco I, Improta R, Morescalchi A (1989) Genome size and A-T rich DNA in Selachians. Genetica 79:197–205

    Article  Google Scholar 

  • Thorgaard GH (1986) Ploidy manipulation and performance. Aquaculture 57:57–64

    Article  Google Scholar 

  • Young GC (1991) Fossil fishes from Antarctica. In: Tingey RJ (ed) The geology of Antarctica. Oxford University Press, Oxford, pp 538–567

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morescalchi, A., Morescalchi, M.A., Odierna, G. et al. Karyotype and genome size of zoarcids and notothenioids (Taleostei, Perciformes) from the Ross Sea: cytotaxonomic implications. Polar Biol 16, 559–564 (1996). https://doi.org/10.1007/BF02329052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02329052

Keywords

Navigation