Skip to main content
Log in

The effect of subarctic woodland vegetation on the radiation balance of a melting snow cover

Der Einfluß der subarktischen Kriechholzvegetation auf die Strahlungsbilanz der schmelzenden Schneedecke

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series A Aims and scope Submit manuscript

Summary

The net radiation flux is a large component of the snowpack energy balance and as such is an important consideration in snowmelt studies. Physical features of a forest canopy greatly affect the supply of radiant energy to the snowpack. While a number of studies of the snowpack radiation balance in closed crown boreal forests are available, little attention has been paid to the unique subarctic open woodlands. In this study components of the radiation budget were measured over melting snowpacks at treeless and woodland sites in the Canadian subarctic. It was found that the woodland canopy reduces incoming solar flux by about 22% but increases the downward long wave flux by approximately 37%. Daytime radiation budgets are presented for sunny and cloudy days. In general the results represents a contrast to previous forest snow radiation balance studies.

Zusammenfassung

Die Strahlungsbilanz ist ein bedeutender Anteil der Wärmebilanz der Schneedecke und muß daher bei Untersuchungen der Schneeschmelze berücksichtigt werden. Der Aufbau eines Waldbestandes beeinflußt den Strahlungsfluß zur Schneedecke stark. Während eine Reihe von Untersuchungen über die Strahlungsbilanz der Schneedecke in geschlossenen borealen Wäldern zur Verfügung stehen, blieben die einmaligen, offenen subarktischen Kriechholzzonen wenig beachtet.

In dieser Untersuchung wurden die Komponenten der Strahlungsbilanz über schmelzenden Schneedecken sowohl an offenen wie an Kriechholzstandorten der kanadischen Subarktis gemessen. Es stellte sich heraus, daß der Kriechholzbestand die einfallende Sonnenstrahlung um etwa 22% reduziert, den nach unten gerichteten langwelligen Strahlungsfluß jedoch ungefähr um 37% erhöht. Es werden Strahlungsbilanzen für die Tages-stunden unter klaren und bewölkten Verhältnissen vorgestellt. Die Ergebnisse stellen einen Gegensatz zu früheren Untersuchungen der Strahlungsbilanz der Schneedecke in Wäldern dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton, F., Wendler, G.: The Heat Balance During the Snowmelt Season for a Permafrost Watershed in Interior Alaska. Arch. Met. Geoph. Biocl., Ser. A31, 19–33 (1982).

    Google Scholar 

  2. Ferderer, C. A.: Solar Radiation Absorption by Leafless Hardwood Forest. Agric. Met.9, 3–23 (1971).

    Article  Google Scholar 

  3. Ferderer, C. A., Leonard, R. E.: Snowmelt in Hardwood Forests. Proc. Eastern Snow Conf.28, 95–101 (1971).

    Google Scholar 

  4. Fraser, E. M.: The Lichen Woddlands of the Knob Lake Area. McGill Sub-Arctic Res. Paper, No. 1, Dept. of Geography, McGill University, 28 pp., 1956.

  5. Gay, L. W., Knoerr, K. R., Bratten, M. O.: Solar Radiation Variability on the Floor of a Pine Plantation. Agric. Met.8, 39–50 (1971).

    Article  Google Scholar 

  6. Hare, F. K., Ritchie, J. C.: The Boreal Bioclimates. Geogr. Rev.62, 333–365 (1972).

    Google Scholar 

  7. Hendrie, L. K., Price, A. G.: Energy Balance and Snowmelt in a Leafless Deciduous Forest. Proc. on Modelling of Snowcover Runoff (Colbeck, S. C., Ray, M., eds.), pp. 211–221. U.S. Army Cold Regions Res. and Engineering Lab., Hanover, N.H., 1979.

    Google Scholar 

  8. Kelly, J. J., Weaver, D. F.: Physical Processes at the Surface of the Arctic Tundra. Arctic33, 425–437 (1969).

    Google Scholar 

  9. Lafleur, P.: The Snowpack Radiation Balance in Subarctic Open Woodlands During the Melt Season. M.Sc. Thesis, Water Ecosystems Program, Trent University, Peterborough, Ontario, 1984.

    Google Scholar 

  10. Male, D. H., Gray, D. M.: Problems in Developing a Physically Based Snowmelt Model. Canadian Journal of Civil Engineering2, 474–488 (1975).

    Google Scholar 

  11. Male, D. H., Granger, R. G.: Snow Surface Energy Exchange. Water Resources Res.17, 609–627 (1981).

    Google Scholar 

  12. Petzold, D. E.: The Radiation Balance of Melting Snow in Open Boreal Forest. Arctic and Alpine Res.7, 393–398 (1981).

    Google Scholar 

  13. Price, A. G., Petzold, D. E.: Surface Emissivities in a Boreal Forest During Snowmelt. Arctic and Alpine Res.16, 45–51 (1984).

    Google Scholar 

  14. Rouse, W. R.: Microclimate at the Arctic Treeline. 1. Radiation Balance of Tundra and Forest. Water Resources Res.20, 57–66 (1984).

    Google Scholar 

  15. Weller, G., Cubly, S., Parker, D. T., Benson, C.: The Tundra Microclimate During Snowmelt at Barrow, Alaska. Arctic25, 291–300 (1972).

    Google Scholar 

  16. Weller, G., Holmgren, B.: The Microclimates of the Arctic Tundra. J. Appl. Met.13, 854–867 (1974).

    Article  Google Scholar 

  17. Wendler, G.: The Heat Balance at the Snow Surface During the Melting Period (March–April 1966) Near Fairbanks, Alaska. Gerlands Beitr. Geoph.76, 453–460 (1967).

    Google Scholar 

  18. Wilson, R. G., Petzold, D. E.: A Solar Radiation Model for Subarctic Woodlands. J. Appl. Met.12, 1259–1266 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafleur, P., Adams, P. The effect of subarctic woodland vegetation on the radiation balance of a melting snow cover. Arch. Met. Geoph. Biocl. A. 34, 297–310 (1986). https://doi.org/10.1007/BF02257764

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257764

Keywords

Navigation