Skip to main content

Advertisement

Log in

Iron and manganese micro-precipitates within a cretaceous biosiliceous ooze from the Arctic Ocean: possible hydrothermal source

  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The oldest sediment most recently recovered from the Arctic Ocean is a biosiliceous ooze nearly devoid of nonbiogenic particles and exhibiting small-scale color changes. Color variations are due to changes in iron and manganese content. These elements are probably of local hydrothermal origin, and the Mn precipitation may be bacteria-mediated. An iron silicate phase seems to form at the expense of biogenic silica. The ooze deposited slowly until a sudden sediment input, probably a volcanigenic deposit now weathered to clay minerals, induced dissolution of siliceous microfossils. This clay layer contains calcium phosphate microspheres enriched in rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mudie PJ, Blasco SM (1985) Lithostratigraphy of the CESAR cores. In: Jackson HR, Mudie PJ, Blasco SM (eds) Initial Geological Report on CESAR—the Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Survey Canada Paper 84-22, pp 59–99

  2. Mudie PJ (1985) Palynology of the CESAR cores, Alpha Ridge. In: Jackson HR, Mudie PJ, Blasco SM (eds) Initial Geological Report on CESAR—the Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Survey Canada Paper 84-22, pp 149–174

  3. Bukry D (1985) Correlation of late Cretaceous Arctic silicoflagellates from the Alpha Ridge. In: Jackson HR, Mudie PJ, Blasco SM (eds) Initial Geological Report on CESAR—the Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Survey Canada Paper 84-22, pp 125–135

  4. Mudie PJ, Stoffyn-Egli P, Van Wagoner NA (1987) Geological constraints for tectonic models of the Alpha Ridge. Journal Geodynamics 6:215–236

    Google Scholar 

  5. Ling HY, McPherson LM, Clark DL (1973) Late Cretaceous (Maestrichtian?) silicoflagellates from the Alpha Cordillera of the Arctic Ocean. Science 180:1360–1361

    Google Scholar 

  6. Clark DL (1974) Late Mesozoic and early Cenzoic sediment cores from the Arctic Ocean. Geology 2:41–44

    Google Scholar 

  7. Clark DL, Byers CW, Pratt LM (1986) Cretaceous black mud from the central Arctic Ocean. Paleoceanography 1:265–271

    Google Scholar 

  8. Iijima A, Utada M (1983) Recent developments in the sedimentology of siliceous deposits in Japan. In: Iijima A, Hein JR, Siever R (eds) Siliceous Deposits in the Pacific Region. Elsevier Science Publishing, New York, pp 45–64

    Google Scholar 

  9. Hein JR, Kuijpers EP, Denyer P, Sliney RG (1983) Petrology and geochemistry of Cretaceous and Paleogene cherts from western Costa Rica. In: Iijima A, Hein JR, Siever R (eds) Siliceous Deposits in the Pacific Region. Elsevier Science Publishing, New York, pp 143–174

    Google Scholar 

  10. Yoshida S (1983) Chert-laminite, one of the principal sediments in a geosyncline. In: Iijima A, Hein JR, Siever R (eds) Siliceous Deposits in the Pacific Region. Elsevier Science Publishing, New York, pp 441–456

    Google Scholar 

  11. Welton JE (1984) SEM Petrology Atlas. American Association Petroleum Geologists Methods in Exploration Series 4, Tulsa, Oklahoma, 237 pp

  12. Kitchell JA, Clark DL (1982) Late Cretaceous-Paleogene paleogeography and paleocirculation: evidence of north polar upwelling. Paleogeography, Paleoclimatology, Paleoecology 40:135–165

    Google Scholar 

  13. Smith FGW, Kalber FA (1974) Handbook of Marine Science 2. CRC Press, Cleveland, Ohio, 377 pp

    Google Scholar 

  14. Bonatti E (1981) Metal deposits in the oceanic lithosphere. In: Emiliani C (ed) The Sea 7. John Wiley & Sons, New York, pp 639–686

    Google Scholar 

  15. Martin JH, Knauer GA (1973) The elemental composition of plankton. Geochimica Cosmochimica Acta 37:1639–1653

    Google Scholar 

  16. Collier R, Edmond J (1984) The trace element geochemistry of marine biogenic particulate matter. Progress in Oceanography 13:113–199

    Google Scholar 

  17. Wollast R (1974) The silica problem. In: Goldberg ED (ed) The Sea 5, John Wiley & Sons, New York, pp 359–392

    Google Scholar 

  18. Forsyth DA, Asudeh I, Green AG, Jackson HR (1986) Crustal structure of the northern Alpha Ridge beneath the Arctic Ocean. Nature 322:349–352

    Google Scholar 

  19. Van Wagoner NA, Robinson PT (1985) Petrology and geochemistry of a CESAR bedrock sample: implications for the origin of the Alpha Ridge. In: Jackson HR, Mudie PJ, Blasco SM (eds) Initial Geological Report on CESAR—The Canadian Expedition to Study the Alpha Ridge. Geological Survey Canada Paper 84-22, pp 47–57

  20. Marshall KC (1979) Biogeochemistry of manganese minerals. In: Trudinger PA, Swaine DJ (eds) Biogeochemical Cycling of Mineral-Forming Elements. Elsevier Science Publishing, New York, pp 253–292

    Google Scholar 

  21. Nealson KH (1983) The microbial iron cycle. In: Krumbein WE (ed) Microbial Geochemistry. Blackwell Scientific Publications, Boston, pp 191–221

    Google Scholar 

  22. Cowen JP, Silver MW (1984) The association of iron and manganese with bacteria on marine macroparticulate material. Science 224:1340–1342

    Google Scholar 

  23. Cowen JP, Bruland KW (1985) Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry. Deep-Sea Research 32:253–272

    Google Scholar 

  24. Cowen JP, Massoth GJ, Baker ET (1986) Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322:169–171

    Google Scholar 

  25. Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson H, Rosson RA (1982) Environmental oxidation rate of manganese (11): bacterial catalysis. Geochimica Cosmochimica Acta 46:1073–1079

    Google Scholar 

  26. Tebo BM (1983) The Ecology and Ultrastructure of Marine Manganese Oxidizing Bacteria. Ph.D. Thesis, University Microfilms International, Ann Arbor, Michigan, 220 pp

    Google Scholar 

  27. Ghiorse WC (1980) Electron microscopic analyses of metaldepositing microorganisms in surface layers of Baltic Sea ferromanganese concretions. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of Ancient and Modern Environments. Springer-Verlag, New York, pp 345–354

    Google Scholar 

  28. Muir MD (1978) Microenvironments of some modern and fossil iron- and manganese-oxidizing bacteria. In: Krumbein WE (ed) Environmental Biogeochemistry and Geomicrobiology 3. Ann Arbor Science, Ann Arbor, Michigan, pp 937–944

    Google Scholar 

  29. Knoll AH, Awramik SM (1983) Ancient microbial ecosystems. In: Krumbein WE (ed) Microbial Geochemistry. Blackwell Scientific Publications, Boston, pp 287–315

    Google Scholar 

  30. Hein JR, Yeh H-W, Alexander E (1979) Origin of iron-rich montmorillonite from the manganese nodule belt of the North Equatorial Pacific. Clays and Clay Minerals 27:185–194

    Google Scholar 

  31. Marchig V, Gundlach H (1981) Separation of iron from manganese and growth of manganese nodules as a consequence of diagenetic ageing of radiolarians. Marine Geology 40:M35-M43

    Google Scholar 

  32. Cole TG (1985) Composition, oxygen isotope geochemistry, and origin of smectite in the metalliferous sediments of the Bauer Deep, southast Pacific. Geochimica Cosmochimica Acta 49:221–235

    Google Scholar 

  33. Winters GV, Buckley DE (1986) The influence of dissolved FeSi3O3 (OH)8 0 on chemical equilibria in pore waters from deep-sea sediments. Geochimica Cosmochimica Acta 50:277–288

    Google Scholar 

  34. De Lange GJ, Rispens FB (1986) Indication of a diagenetically induced precipitate of an Fe-Si mineral in sediment from the Nares abyssal plain, western North Atlantic. Marine Geology 73:85–97

    Google Scholar 

  35. Hein JR, Scholl DW (1978) Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geological Society America Bulletin 89:197–210

    Google Scholar 

  36. Kastner M, Siever R (1979) Low temperature feldspars in sedimentary rocks. American Journal Science 279:435–479

    Google Scholar 

  37. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Google Scholar 

  38. O'Brien GW, Harris JR, Milnes AR, Veeh HH (1981) Bacterial origin of East Australian continental margin phosphorite. Nature 294:442–444

    Google Scholar 

  39. Gibbs PG, Bryan GW (1984) Calcium phosphate granules in muscle cells of Nephtys (Annelida, Polychaeta)—a novel skeleton? Nature 310:494–495

    Google Scholar 

  40. Afschuler ZS (1980) The geochemistry of trace elements in marine phosphorites. Part 1. Characteristic abundances and enrichment. In: Bentor YK (ed) Marine Phosphorites-Geochemistry, Occurrence, Genesis. Society Economic Paleontologists and Mineralogists Special Publication 29, pp 19–30

  41. Holland HD (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, pp 498–506

    Google Scholar 

  42. Clark AM (1984) Mineralogy of the rare earth elements. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 33–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoffyn-Egli, P. Iron and manganese micro-precipitates within a cretaceous biosiliceous ooze from the Arctic Ocean: possible hydrothermal source. Geo-Marine Letters 7, 223–231 (1987). https://doi.org/10.1007/BF02242775

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02242775

Keywords

Navigation