Skip to main content
Log in

Identification at strain level ofRhizoctonia solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The relatedness of nine isolates ofRhizoctonia solani, belonging to anastomosis group (AG) 4, and one isolate of AG1 was determined by comparative sequence analysis based on direct sequencing of PCR-amplified ribosomal DNA [the internal transcribed spacer (ITS) region and the 5.8 s ribosomal DNA]. The 5.8s rDNA is completely conserved, but both ITS regions show variation among strains. AG1 was an outgroup based on anastomosis ability and RFLP analyses. Phylogenetic analyses based on the ITS sequences suggest that the analyzed AG4 strains can be divided into three groups that correlate with habitat and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams GC (1988)Thanatephorus cucumeris (Rhizoctonia solani), a species complex of wide host range. Adv Plant Pathol 6:535–552

    Google Scholar 

  • Anderson NA (1982) The genetics and pathology ofRhizoctonia solani. Anon Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Blakemore EJA, Jaccoud Filho DS, Reeves JC (1994) PCR for the detection ofPyrenophora species,Fusarium monoliforme, Stenocarpella maydis, and thePhomopsis/Diaporthe complex. In: Schots A, Dewey FM, Oliver R (eds) Modern assays for plant pathogenic fungi: Identification, detection and quantification. CAB International, Oxford University Press, Cambridge, UK, pp 205–213

    Google Scholar 

  • Bowman BH, Taylor JW, Brownlee AG, Lee J, Lu S-D, White TJ (1992) Molecular evolution of the fungi; relationship of theBasidiomycetes, Ascomycetes andChytridiomycetes. Mol Biol Evol 9:285–296

    PubMed  Google Scholar 

  • Boysen M, Skouboe P, Frisvad J, Rossen L (1995)Penicillium roqueforti consists of three different species. Microbiology (in press)

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol System 22:525–564

    Article  Google Scholar 

  • Carling DE, Rothrock CS, MacNish GC, Sweetingham MW, Brainard KA, Winters SW (1994) Characterization of anastomosis group 11 (AG-11) ofRhizoctonia solani. Phytopathology 84:1387–1393

    Google Scholar 

  • Castanho B, Butler EE (1978)Rhizoctonia decline: studies on hypovirulence and potential use in biological control. Phytopathology 68:1511–1514

    Google Scholar 

  • Cubeta MA, Echandi E, Abernethy T, Vilgalys R (1991) Characterization of anastomosis groups of binucleateRhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81:1395–1400

    Google Scholar 

  • Curran J, Driver F, Ballard JWO, Milner RJ (1994) Phylogeny ofMetarhizium: analysis of ribosomal sequence data. Mycol Res 98:547–552

    Google Scholar 

  • Devereux J, Haeberh P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP manual version 3.5. University of Washington, Washington

    Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373–9377

    PubMed  Google Scholar 

  • Gardes M, Bruns D (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    PubMed  Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85:7652–7656

    PubMed  Google Scholar 

  • Ichielevich-Auster M, Sneh B, Koltin Y, Barash I (1985) Suppression of damping-off caused byRhizoctonia species by a non-pathogenic isolate ofR. solani. Phytopathology 75:1080–1084

    Google Scholar 

  • Johanson A (1994) PCR for detection of the fungi that cause Sigatoka Leaf Spots of banana and plantain. In: Schots A, Dewey FM, Oliver R (eds) Modern assays for plant pathogenic fungi: Identification, detection and quantification. CAB International. Oxford University Press, Cambridge, UK, pp 215–221

    Google Scholar 

  • Johnk JS, Jones RK (1994) Comparison of whole-cell fatty acid compositions in intraspecific groups ofRhizoctonia solani AG-1. Biochem Cell Biol 84:271–275

    Google Scholar 

  • Kuninaga S, Yokosawa R (1984) DNA base-sequence homology inRhizoctonia solani Kühn. IV. Genetic relatedness within AG-4. Ann Phytopathol Soc 50:322–330

    Google Scholar 

  • Liu ZL, Sinclair JB (1993) Differentiation of intraspecific groups within anastomosis group 1 ofRhizoctonia solani using ribosomal DNA internal transcribed spacer and isozyme conparisons. Can J Plant Pathol 15:272–280

    Google Scholar 

  • Liu ZL, Nickrent DL, Sinclair JB (1990) Genetic relationships among isolates ofRhizoctonia solani anastomosis group-2 based on isozyme analysis. Can J Plant Pathol 12:376–382

    Google Scholar 

  • Liu ZL, Domier LL, Sinclair, JB (1993) ISG-specific ribosomal DNA polymorphism of theRhizoctonia solani species complex. Mycologia 85:795–800

    Google Scholar 

  • Muthumeenakshi S, Mills PR, Brown AE, Seaby DA (1994) Intraspecific molecular variation amongTrichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology 140:769–777

    PubMed  Google Scholar 

  • Nazar RN, Wong WN, Abrahamson JLA (1987) Nucleotide sequence of the 18–25s ribosomal RNA intergenic region from a thermophileTermomyces lanuginosus. J Biol Chem 262:7523–7527

    PubMed  Google Scholar 

  • Nues RW van, Rientjes JMJ, van der Sande CAFM, Zerp SF, Sluiter C, Venema J, Planta RJ, Raué HA (1994) Separate structural elements within internal transcribed spacer 1 ofSaccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17s and 26s rRNA. Nucleic Acids Res 22:912–919

    PubMed  Google Scholar 

  • Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups ofRhizoctonia solani Kühn. Annu Rev Phytopathol 25:125–143

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Skouboe P, Frisvad JC, Lauritsen D, Boysen ME, Rossen L (1995) The ITS region in interverticilatePenicillium species reflects ecological groups. Microbiology (in press)

  • Sneh B, Katan J, Henis Y, Wahl I (1966) Methods for evaluating the inoculum density ofRhizoctonia solani in naturally infested soil. Phytopathology 56:74–78

    Google Scholar 

  • Sneh B, Zeidan M, Ichielevich-Auster M, Barash I, Koltin Y (1986) Increased growth responses induced by a non-pathogenicRhizoctonia solani. Can J Bot 64:2372–2378

    Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification ofRhizoctonia species APS Press, Minnesota, USA, pp 67–75

    Google Scholar 

  • Swofford DL (1991) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey, Champaign, Illinois

    Google Scholar 

  • Thornton CR, Dewey FM, Gilligan CA (1994) Development of monoclonal antibody-based immunological assays for the detection of live propagules ofRhizoctonia solani in the soil. In: Schots A, Dewey FM, Oliver R (eds) Modern assays for plant pathogenic fungi: identification, detection and quantification. CAG International, Oxford University Press, Oxford, UK, pp 215–221

    Google Scholar 

  • Sande CAFM van der, Kwa M, van Nues, RW (1992) Functional analysis of internal transcribed spacer 2 ofSaccharomyces cerevisiae ribosomal DNA. J Mol Biol 223:899–910

    Article  PubMed  Google Scholar 

  • Vilgalys R (1988) Genetic relatedness among anastomosis groups inRhizoctonia as measured by DNA/DNA hybridization. Phytopathology 78:698–702

    Google Scholar 

  • Vilgalys R, Gonzalez D (1990) Ribosomal DNA Restriction fragment length polymorphisms inRhizoctonia solani. Phytopathology 80:151–158

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Yao C, Frederiksen RA, Magail CW (1992) Length heterogeneity in ITS2 and the methylation status of CCGG and GCGC sites in the RNA genes of the genusPeronosclerospora. Curr Genet 22:415–420

    Article  PubMed  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.J.G.M. de Wit

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boysen, M., Borja, M., del Moral, C. et al. Identification at strain level ofRhizoctonia solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions. Curr Genet 29, 174–181 (1996). https://doi.org/10.1007/BF02221582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02221582

Key words

Navigation