Skip to main content
Log in

The role of cyclic AMP in insulin release

  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andersson, T., and Nygren, P., Clonidine promotes the accumulation of45Ca in pancreatic β-cell organelles. Res. Commun. Chem. Path. Pharmac.42 (1983) 369–376.

    Google Scholar 

  2. Bernofsky, C., and Amamoo, D.G., ADP-ribosylation of isolated rat islets of Langerhans. Biochem. biophys. Res. Commun.118 (1984) 663–668.

    Article  PubMed  Google Scholar 

  3. Bouman, P.R., Wolters, G.H.J., and Konijnendijk, W., Insulin secretion and cyclic adenosine 3′,5′-monophosphate levels in pancreatic islets of fed and fasted rats. Time course and dose kinetics during glucose stimulation. Diabetes28 (1979) 132–140.

    PubMed  Google Scholar 

  4. Bowen, V., and Lazarus, N.R., Glucose-mediated insulin release from mouse islets of Langerhans: cyclic nucleotide phosphodiesterase. Biochem. J.128 (1972) 97P.

    Google Scholar 

  5. Brisson, G.R., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. XI. Effects of theophylline and epinephrine on45Ca efflux from perifused islets. Metabolism22 (1973) 455–465.

    PubMed  Google Scholar 

  6. Brisson, G.R., Malaisse-Lagae, F., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release VII. A proposed site of action for adenosine-3′,5′-cyclic monophosphate. J. clin. Invest.51 (1972) 232–241.

    PubMed  Google Scholar 

  7. Campbell, I.L., and Taylor, K.W., The effect of metabolites, papaverine, and probenecid on cyclic AMP efflux from isolated rat islets of Langerhans. Biochim. biophys. Acta677 (1981) 357–364.

    Google Scholar 

  8. Capito, K., and Hedeskov, C.J., Effects of glucose, glucose metabolites and calcium ions on adenylate cyclase activity in homogenates of mouse pancreatic islets. Biochem. J.162 (1977) 569–573.

    PubMed  Google Scholar 

  9. Carpinelli, A.R., and Malaisse, W.J., Regulation of86Rb outflow from pancreatic islets. IV. Effect of cyclic AMP, dibutyryl-cyclic AMP and theophylline. Acta diabet. lat.17 (1980) 199–205.

    Google Scholar 

  10. Carpinelli, A.R., and Malaisse, W.J., the stimulus-secretion coupling of glucose-induced insulin release. XLIV. A possible link between glucose metabolism and phosphate flush. Diabetologia19 (1980) 458–464.

    Article  PubMed  Google Scholar 

  11. Cerasi, E., and Luft, R., Clinical diabetes and theories of pathogenesis, in: Handbook of Physiology, section 7 Endocrinology, vol. I, Endocrine pancreas, pp. 627–640. Eds D.F. Steiner and N. Freinkel. American Physiological Society, Washington, D.C., 1972.

    Google Scholar 

  12. Charles, M.A., Lawecki, J., Pictet, R., and Grodsky, G.M., Insulin secretion. Interrelationships of glucose, cyclic adenosine 3′∶5′ monophosphate, and calcium. J. biol. Chem.250 (1975) 6134–6140.

    PubMed  Google Scholar 

  13. Cherksey, B., Mendelsohn, S., Zadunaisky, J., and Altszuler, N., Demonstration of α2-adrenergic receptors in rat pancreatic islets using radioligand binding. Proc. Soc. exp. Biol. Med.171 (1982) 196–200.

    PubMed  Google Scholar 

  14. Cherksey, B., Mendelsohn, S., Zadunaisky, J., and Altszuler, N., Displacement of alpha- and beta-radioligands by specific adrenergic agonists in rat pancreatic islets. Pharmacology27 (1983) 95–102.

    PubMed  Google Scholar 

  15. Cook, D.L., and Perara, E., Islet electrical pacemaker response to alpha-adrenergic stimulation. Diabetes31 (1982) 985–990.

    PubMed  Google Scholar 

  16. Cooper, R.H., Ashcroft, S.J.H., and Randle, P.J., Concentration of adenosine 3′∶5′-cyclic monophosphate in mouse pancreatic islets measured by a protein-binding radioassay. Biochem. J.134 (1973) 599–605.

    Google Scholar 

  17. Coore, H.G., and Randle, P.J., Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem. J.93 (1964) 66–78.

    PubMed  Google Scholar 

  18. Davis, B., and Lazarus, N.R., Effect of glucagon, diazoxide, phentolamine on islet adenylate cyclase. Horm. Metab. Res.6 (1974) 166–167.

    PubMed  Google Scholar 

  19. Davis, B., and Lazarus, N., Regulation of 3′,5′-cyclic AMP-dependent protein kinase in the plasma membranes of cod (Gadus callarius) and mouse islets. J. Membrane Biol.20 (1975) 301–318.

    Article  Google Scholar 

  20. Dods, R.F., and Burdowski, A., Adenosine 3′,5′-cyclic monophosphate dependent protein kinase and phosphoprotein phosphatase activities in rat islets of Langerhans. Biochem. biophys. Res. Commun.51 (1973) 421–427.

    Article  PubMed  Google Scholar 

  21. Garcia-Morales, P., Dufrane, S.P., Sener, A., Valverde, I., and Malaisse, W.J., Inhibitory effect of clonidine upon adenylate cyclase activity, cyclic AMP production and insulin release in rat pancreatic islets. Biosci. Rep.4 (1984) 511–521.

    Article  PubMed  Google Scholar 

  22. Goldfine, I.D., Perlman, R., and Roth, J., Inhibition of cyclic-3′,5′-AMP phosphodiesterase in islet cells and other tissues by tolbutamide. Nature234 (1971) 295–297.

    PubMed  Google Scholar 

  23. Goldfine, D., Roth, J., and Birnbaumer, L., Glucagon receptors in β-cells. Binding of125I-glucagon and activation of adenylate cyclase. J. biol. Chem.247 (1972) 1211–1218.

    PubMed  Google Scholar 

  24. Grill, V., Borglund, E., and Cerasi, E., Cyclic AMP in rat pancreatic islets. Evidence for uniform labeling of precursor and product with [3H]adenine. Biochim. biophys. Acta499 (1977) 251–258.

    PubMed  Google Scholar 

  25. Grill, V., and Cerasi, E., Effect of hexoses and mannoheptulose on cyclic AMP accumulation and insulin secretion in rat pancreatic islets. Biochim. biophys. Acta437 (1976) 36–50.

    PubMed  Google Scholar 

  26. Hahn, H.-J., Gylfe, E., and Hellman, B., Calcium and pancreatic B-cell function. 7. Evidence for cyclic AMP-induced translocation of intracellular calcium. Biochim. biophys. Acta630 (1980) 425–432.

    PubMed  Google Scholar 

  27. Harrison, D.E., and Ashcroft, S.J.H., Effect of Ca2+, calmodulin and cyclic AMP on the phosphorylation of endogenous proteins by homogenates of rat islets of Langerhans. Biochim. biophys. Acta714 (1982) 313–319.

    PubMed  Google Scholar 

  28. Harrison, D.E., Ashcroft, S.J.H., Christie, M.R., and Lord, J.M., Protein phosphorylation in the pancreatic B-cell. Experientia40 (1984) 1075–1084.

    PubMed  Google Scholar 

  29. Hellman, B., Idahl, L.Å., Lernmark, Å., and Täljedal, I.-B., The pancreatic β-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc. natl Acad. Sci. USA71 (1974) 3405–3409.

    PubMed  Google Scholar 

  30. Henquin, J.C., and Meissner, H.P., Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B-cell. Biochem. biophys. Res. Commun.112 (1983) 614–620.

    Article  PubMed  Google Scholar 

  31. Henquin, J.C., Schmeer, W., and Meissner, H.P., Forskolin, an activator of adenylate cyclase, increases Ca2+-dependent electrical activity induced by glucose in mouse pancreatic B-cells. Endocrinology112 (1983) 2218–2220.

    PubMed  Google Scholar 

  32. Henquin, J.C., Schmeer, W., Nenquin, M., and Meissner, H.P., Forskolin suppresses the slow cyclic variations of glucose-induced electrical activity in pancreatic B-cells. Biochem. biophys. Res. Commun.120 (1984) 797–803.

    Article  PubMed  Google Scholar 

  33. Howell, S.L., and Montague, W., Adenylate cyclase activity in isolated rat islets of Langerhans. Effects of agents which alter rates of insulin secretion. Biochim. biophys. Acta320 (1973) 44–52.

    PubMed  Google Scholar 

  34. Howell, S.L., and Whitfield, M., Cytochemical localization of adenyl cyclase activity in rat islets of Langerhans. J. Histochem. Cytochem.20 (1972) 873–879.

    PubMed  Google Scholar 

  35. Hubinont, C., Best, L., Sener, A., and Malaisse, W.J., Activation of protein kinase C by a tumor-promoting phorbol ester in pancreatic islets. FEBS Lett.170 (1984) 247–253.

    Article  PubMed  Google Scholar 

  36. Idahl, L.-Å., and Hellman, B., Regulation of pancreatic β-cell glycogen through cyclic-3,5-AMP. Diabetologia7 (1971) 139–142.

    Article  PubMed  Google Scholar 

  37. Katada, T., and Ui, M., Slow interaction of islet-activating protein with pancreatic islets during primary culture to cause reversal of α-adrenergic inhibition of insulin secretion. J. biol. Chem.255 (1980) 9580–9588.

    PubMed  Google Scholar 

  38. Katada, T., and Ui, M., In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, adenosine 3′∶5′-monophosphate accumulation and45Ca flux. J. Biochem.89 (1981) 979–990.

    PubMed  Google Scholar 

  39. Katada, T., and Ui, M., Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J. biol. Chem.256 (1981) 8310–8317.

    PubMed  Google Scholar 

  40. Kato, R., and Nakaki, T., Alpha-2-adrenoceptors beyond cAMP generation: islets of Langerhans and intestinal epithelium. Trends Pharmac. Sci.4 (1983) 34–36.

    Article  Google Scholar 

  41. Kawazu, S., Sener, A., Couturier, E., and Malaisse, W.J., Metabolic, cationic and secretory effects of hypoglycemic sulfonylureas in pancreatic islets. Naunyn-Schmiedeberg's Arch. Pharmak.312 (1980) 277–283.

    Article  Google Scholar 

  42. Kuo, W.-N., Hodgins, D.S., and Kuo, J.F., Adenylate cyclase in islets of Langerhans. Isolation of islets and regulation of adenylate cyclase activity by various hormones and agents. J. biol. Chem.248 (1973) 2705–2711.

    PubMed  Google Scholar 

  43. Langer, J., Panten, U., and Zielmann, S., Effect of α-adrenoceptor antagonists on clonidine-induced inhibition of insulin secretion by isolated pancreatic islets. Br. J. Pharmac.79 (1983) 415–420.

    Google Scholar 

  44. Leclercq-Meyer, V., Herchuelz, A., Valverde, I., Couturier, E., Marchand, J., and Malaisse, W.J., Mode of action of clonidine upon islet function. Dissociated effect upon the time course and magnitude of insulin release. Diabetes29 (1980) 193–200.

    PubMed  Google Scholar 

  45. Leitner, J.W., Sussman, K.E., Vatter, A.E., and Schneider, F.H., Adenine nucleotides in the secretory granule fraction of the islets. Endocrinology95 (1975) 662–677.

    Google Scholar 

  46. Levy, J., Herchuelz, A., Sener, A., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. XX. Fasting: a model for altered glucose recognition by the B-cell. Metabolism25 (1976) 583–591.

    Article  PubMed  Google Scholar 

  47. Lipson, L.G., and Oldham, S.B., The role of calmodulin in insulin secretion: the presence of a calmodulin-stimulatable phosphodiesterase in pancreatic islets of normal and pregnant rats. Life Sci.32 (1983) 775–780.

    Article  PubMed  Google Scholar 

  48. Malaisse, W.J., Brisson, G., and Malaisse-Lagae, F., The stimulus-secretion coupling of glucose-induced insulin release. I. Interactions of epinephrine and alkaline earth cations. J. Lab. clin. Med.76 (1970) 895–902.

    PubMed  Google Scholar 

  49. Malaisse, W.J., Garcia-Morales, P., Dufrane, S.P., Sener, A., and Valverde, I., Forskolin-induced activation of adenylate cyclase, cyclic AMP production and insulin release in rat pancreatic islets. Endocrinology (1984) in press.

  50. Malaisse, W.J., Hutton, J.C., Kawazu, S., Herchuelz, A., Valverde, I., and Sener, A., The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia16 (1979) 331–341.

    PubMed  Google Scholar 

  51. Malaisse, W.J., and Malaisse-Lagae, F., Biochemical, pharmacological, and physiological aspects of the adenyl cyclase-phosphodiesterase system in the pancreatic β-cells, in: The structure and Metabolism of the Pancreatic Islets, pp. 435–443. Eds S. Falkmer, B. Hellman and I.-B. Täljedal. Pergamon Press, Oxford 1970.

    Google Scholar 

  52. Malaisse, W.J., Malaisse-Lagae, F., and King, S., Effects of neutral red and imidazole upon insulin secretion. Diabetologia4 (1968) 370–374.

    Article  PubMed  Google Scholar 

  53. Malaisse, W.J., Malaisse-Lagae, F., and Mayhew, D.A., A possible role for the adenyl cyclase system in insulin secretion. J. clin. Invest.46 (1967) 1724–1734.

    PubMed  Google Scholar 

  54. Malaisse, W.J., Malaisse-Lagae, F., Wright, P.H., and Ashmore, J., Effect of adrenergic and cholinergic agents upon insulin secretion in vitro. Endocrinology80 (1967) 975–978.

    PubMed  Google Scholar 

  55. Malaisse, W.J., Pipeleers, D.G., and Levy, J., The stimulus-secretion coupling of glucose-induced insulin release. XVI. A glucose-like and calcium-independent effect of cyclic AMP. Biochim. biophys. Acta362 (1974) 121–128.

    PubMed  Google Scholar 

  56. Malaisse, W.J., Sener, A., Herchuelz, A., Carpinelli, A.R., Poloczek, P., Winand, J., and Castagna, M., Insulinotropic effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in rat pancreatic islets. Cancer Res.40 (1980) 3827–3831.

    PubMed  Google Scholar 

  57. Malaisse, W.J., Sener, A., Koser, M., Ravazzola, M., and Malaisse-Lagae, F., The stimulus-secretion coupling of glucose-induced insulin release. XXV. Insulin release due to glycogenolysis in glucose-deprived islets. Biochem. J.164 (1977) 447–454.

    PubMed  Google Scholar 

  58. Malaisse, W.J., Svoboda, M., Dufrane, S.P., Malaisse-Lagae, F., and Christophe, J., Effect ofBordetella Pertussis toxin on ADP-ribosylation of membrane proteins, adenylate cyclase activity and insulin release in rat pancreatic islets. Submitted for publication.

  59. Malaisse, W.J., Valverde, I., Owen, A., Verhulst, D., and Cantraine, F., Mathematical modelling of cyclic AMP-Ca2+ interactions in pancreatic islets. Diabetes31 (1982) 170–177.

    PubMed  Google Scholar 

  60. Maldonato, A., Renold, A.E., Sharp, G.W.G., and Cerasi, E., Glucose-induced proinsulin biosynthesis. Role of islet cyclic AMP. Diabetes26 (1977) 538–545.

    PubMed  Google Scholar 

  61. Miller, E.A., Wright, P.H., and Allen, D.O., Effect of hormones on accumulation of cyclic AMP-14C in isolated pancreatic islets of rats. Endocrinology91 (1972) 1117–1119.

    PubMed  Google Scholar 

  62. Montague, W., and Cook, J.R., The role of adenosine 3′∶5′-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans. Biochem. J.122 (1971) 115–120.

    PubMed  Google Scholar 

  63. Montague, W., and Howell, S.L., The mode of action of adenosine-3′∶5′-cyclic monophosphate in mammalian islets of Langerhans. Preparation and properties of islet-cell protein phosphokinase. Biochem. J.129 (1972) 551–560.

    PubMed  Google Scholar 

  64. Montague, W., and Howell, S.L., The mode of action of adenosine-3′∶5′-cyclic monophosphate in mammalian islets of Langerhans. Efects of insulin secretagogues on islet-cell protein kinase activity. Biochem. J.134 (1973) 321–327.

    PubMed  Google Scholar 

  65. Moody, A.J., Markussen, J., Schaich-Fries, A., Steenstrup, C., Sundby, F., Malaisse, W., and Malaisse-Lagae, F., The insulin-releasing activities of extracts of pork intestine. Diabetologia6 (1970) 135–140.

    Article  PubMed  Google Scholar 

  66. Nakaki, T., Nakadate, T., Ishii, K., and Kato, R., Postsynaptic alpha-2 adrenergic receptors in isolated rat islets of Langerhans: inhibition of insulin release and cyclic 3′∶5′-adenosine monophosphate accumulation. J. Pharmac. exp. Ther.216 (1981) 607–612.

    Google Scholar 

  67. Nakaki, T., Nakadate, T., Yamamoto, S., and Kato, R., Inhibition of dibutyryl cyclic AMP-induced insulin release by alpha-2 adrenergic stimulation. Life Sci.32 (1983) 191–195.

    Article  PubMed  Google Scholar 

  68. Pace, C.S., and Goldsmith, K.T., The tumor-promoting phorbol ester, TPA, enhances glucose- and glyburide-induced electrical activity in B-cells. Diabetes33, suppl. 1 (1984) 35A.

    Google Scholar 

  69. Patel, Y.C., Amherdt, M., and Orci, L., Quantitative electron microscopic autoradiography of insulin, glucagon and somatostatin binding sites on islets. Science217 (1982) 1155–1156.

    PubMed  Google Scholar 

  70. Rabinovitch, A., Grill, V., Renold, A.E., and Cerasi, E., Insulin release and cyclic AMP accumulation in response to glucose in pancreatic islets of fed and starved rats. J. clin. Invest.58 (1976) 1209–1216.

    PubMed  Google Scholar 

  71. Rosen, O.M., Hirsch, A.H., and Goren, E.N., Factors which influence cyclic AMP formation and degradation in an islet cell tumor of the Syrian Hamster. Archs Biochem.146 (1971) 600–603.

    Google Scholar 

  72. Samols, E., Marri, G., and Marks, V., Promotion of insulin secretion by glucagon. Lancet2 (1965) 415–416.

    Article  Google Scholar 

  73. Sams, D.J., and Montague, W., The role of adenosine-3′∶5′-cyclic monophosphate in the regulation of insulin release. Properties of islet-cell adenosine-3′∶5′-cyclic monophosphate phosphodiesterase. Biochem. J.129 (1972) 945–952.

    PubMed  Google Scholar 

  74. Santana De Sa, S., Ferrer, R., Rojas, E., and Atwater, I., Effects of adrenaline and noradrenaline on glucose-induced electrical activity of mouse pancreatic β-cell. Q. J. Physiol.68 (1983) 247–258.

    Google Scholar 

  75. Scholler, Y., De Maertelaer, V., and Malaisse, W.J., Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. II. Calcium-stimulated calcium release. Submitted for publication.

  76. Scholler, Y., De Maertelaer, V., and Malaisse, W.J., Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. III. Glucose-induced inhibition of calcium efflux. Biophys. J., in press.

  77. Sehlin, J., Calcium uptake by subcellular fractions of pancreatic islets. Effects of nucleotides and theophylline. Biochem. J.156 (1976) 63–69.

    PubMed  Google Scholar 

  78. Sener, A., Levy, J., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. Does glycolysis control calcium transport in the B-cell? Biochem. J.156 (1976) 521–525.

    PubMed  Google Scholar 

  79. Sener, A., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. XXXVIII. Metabolic events in islets stimulated by non-metabolizable secretagogues. Eur. J. Biochem.98 (1979) 141–147.

    Article  PubMed  Google Scholar 

  80. Sharp, G.W.G., Wiedenkeller, D.E., Kaelin, D., Siegel, E.G., and Wollheim, C.B., Stimulation of adenylate cyclase by Ca2+ and calmodulin in rat islets of Langerhans. Explanation for the glucose-induced increase in cyclic AMP levels. Diabetes29 (1980) 74–77.

    Google Scholar 

  81. Siegel, E., Wollheim, C.B., Kikuchi, M., Renold, A.E., and Sharp, G.W.G., Dependency of cyclic AMP-induced insulin release on intra-and extracellular calcium in rat islets of Langerhans. J. clin. Invest.65 (1980) 233–241.

    PubMed  Google Scholar 

  82. Steinberg, J.P., Leitner, J.W., Draznin, B., and Sussman, K.E., Calmodulin and cyclic AMP. Possible different sites of action of these two regulatory agents in exocytotic hormone release. Diabetes33 (1984) 339–345.

    PubMed  Google Scholar 

  83. Sugden, M.C., and Ashcroft, S.J.H., Cyclic nucleotide phosphodiesterase of rat pancreatic islets. Effects of Ca2+, calmodulin and trifluoperazine. Biochem. J.197 (1981) 459–464.

    PubMed  Google Scholar 

  84. Sugden, M.C., Ashcroft, S.J.H., and Sugden, P.H., Protein kinase activities in rat pancreatic islets of Langerhans. Biochem. J.180 (1979) 219–229.

    PubMed  Google Scholar 

  85. Svoboda, M., Garcia-Morales, P., Dufrane, S.P., Sener, A., Valverde, I., Christophe, J., and Malaisse, W.J., Stimulation by cholera toxin of ADP-ribosylation of membrane proteins, adenylate cyclase and insulin release in pancreatic islets. Submitted for publication.

  86. Tamagawa, T., and Henquin, J.C., Epinephrine modifications of insulin release and of86Rb+ or45Ca2+ fluxes in rat islets. Am. J. Physiol.244 (1983) E245-E252.

    PubMed  Google Scholar 

  87. Thams, P., Capito, K., and Hedeskov, C.J., Differential effects of Ca2+-calmodulin on adenylate cyclase activity in mouse and rat pancreatic islets. Biochem. J.206 (1982) 97–102.

    PubMed  Google Scholar 

  88. Thams, P., Capito, K., and Hedeskov, C.J., Characteristics of an adenylate cyclase enhancing factor from mouse pancreatic islet cytosol. Diabetologia26 (1984) 375–378.

    Article  PubMed  Google Scholar 

  89. Turtle, J.R., and Kipnis, D.M., An adrenergic receptor mechanism for the control of cyclic 3′,5′-adenosine monophosphate synthesis in tissues. Biochem. biophys. Res. Commun.28 (1967) 797–802.

    PubMed  Google Scholar 

  90. Ullrich, S., and Wollheim, C.B., Islet cyclic AMP levels are not lowered during α-adrenergic inhibition of insulin release. Studies with epinephrine and forskolin. J. biol. Chem.259 (1984) 4111–4115.

    PubMed  Google Scholar 

  91. Valverde, I., Garcia-Morales, P., Ghiglione, M., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. LIII. Calcium dependency of the cyclic AMP response to nutrient secretagogues. Horm. Metab. Res.15 (1983) 62–68.

    PubMed  Google Scholar 

  92. Valverde, I., and Malaisse, W.J., Calmodulin and pancreatic B-cell function. Experientia40 (1984) 1061–1068.

    PubMed  Google Scholar 

  93. Valverde, I., Sener, A., Herchuelz, A., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. XLVII. The possible role of calmodulin. Endocrinology108 (1981) 1305–1312.

    PubMed  Google Scholar 

  94. Valverde, I., Vandermeers, A., Anjaneyulu, R., and Malaisse, W.J., Calmodulin activation of adenylate cyclase in pancreatic islets. Science206 (1979) 225–227.

    PubMed  Google Scholar 

  95. Wollheim, C.B., Blondel, B., and Sharp, G.W.G., Effect of cholera toxin on insulin release in monolayer cultures of the endocrine pancreas. Diabetologia10 (1974) 783–787.

    Article  PubMed  Google Scholar 

  96. Wright, P.H., and Malaisse, W.J., Effects of epinephrine, stress and exercise upon insulin secretion by the rat. Am. J. Physiol.214 (1968) 1031–1034.

    PubMed  Google Scholar 

  97. Zawalich, W.S., Karl, R.C., Ferrendelli, S.A., and Matschinsky, F.M., Factors governing glucose-induced elevation of cyclic 3′,5′ AMP levels in pancreatic islets. Diabetologia11 (1975) 231–235.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaisse, W.J., Malaisse-Lagae, F. The role of cyclic AMP in insulin release. Experientia 40, 1068–1075 (1984). https://doi.org/10.1007/BF01971453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01971453

Key words

Navigation