Skip to main content
Log in

1-Anilino-8-naphthalenesulfonate: A fluorescent probe of membrane surface structure, composition and mobility

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The binding of the hydrophobic fluorescent probe 1-anilino-8-naphthalene-sulfonate (ANS) on phospholipid vesicle membranes was studied to gain information about the structure and mobility in the polar head group region, and to determine the degree of mixing of lipids on the microscopic scale. The maximal degree of binding of ANS on dimyristoyl and dipalmitoyl-l-lecithin membranes is one ANS per four lecithin molecules, indicating a binding site composed of four polar head groups. ANS bound in this site has a long fluorescent lifetime (5 to 9 nsec) and high quantum yield (0.2 to 0.3), indicating that it is relatively inaccessible to the solvent water. The lack of paramagnetic quenching by added Mn2+ indicates that ANS bound to those fourmembered sites is also well shielded from added cations. Similarities in the temperature dependence of the binding constant and the reciprocal fluorescent lifetime indicate that the latter is determined by the propensity for polar head group motion and for water and ANS reorientation during the excited state of the molecule.

Membranes composed of lipids which lack a semi-polar head group (phosphatidic acid) or which have unfavorable polar head group conformations or strong interactions between the polar head groups (dimyristoyl ethanolamine) do not support the binding of ANS with a high quantum yield and long fluorescent lifetime. Incorporation of these lipids in a lecithin membrane decreases the maximal binding of ANS to a greater extent than can be explained on the basis of dilution of the lecithin with these lipids. A statistical model is presented, in which incorporation of one or more molecules of the second type into a four-membered lecithin binding site destroys the ability of this site to bind ANS with a long fluorescence lifetime. Agreement between this model and the results obtained with lipid mixtures indicate that egg phosphatidic acid and dimyristoyl ethanolamine mix well with dimyristoyl lecithin on the microscopic scale. The above criterion was also used to show that cholesterol mixes randomly with lecithin. In contrast to the behavior of the phospholipid mixtures, there was evidence for shortlived ANS species for cholesterol/lecithin mixtures with mole ratios between 0.6 and 1.0. This species is associated with binding sites in which the lecithin polar head groups are spaced out by the inclusion of cholesterol between the hydrocarbon chains of the lipid molecules. The effects of the ion carrier valinomycin and local anesthetics on the lecithin binding sites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzi, A., Chance, B., Radda, G. K., Lee, C. P. 1969. A fluorescence probe of energy dependent structure changes in fragmented membranes.Proc. Nat. Acad. Sci. 62:612

    PubMed  Google Scholar 

  2. Brand, L., Gohlke, J. R. 1971. Nanosecond time-resolved fluorescence spectra of a protein-dye complex.J. Biol. Chem. 246:2317

    PubMed  Google Scholar 

  3. Brand, L., Witholt, W. 1967. Fluorescence Measurements.In: Methods in Enzymology. C. H. W. Hirs, editor. Vol. 11, p. 776. Academic Press, Inc., New York-London

    Google Scholar 

  4. Chapman, D. 1972. Nuclear magnetic resonance spectroscopic studies of biological membranes.Ann. N. Y. Acad. Sci. 195:179

    PubMed  Google Scholar 

  5. Colley, C. M., Metcalf, J. C. 1972. The localization of small molecules in lipid bilayers.FEBS Letters 24:241

    PubMed  Google Scholar 

  6. Colley, C. M., Metcalfe, S. M., Turner, B., Burgen, A. S. V., Metcalfe, J. C. 1971. The binding of benzyl alcohol to erythrocyte membranes.Biochim. Biophys. Acta 233:720

    PubMed  Google Scholar 

  7. Conti, F., Tasaki, I., Wanke, E. 1971. Fluorescence signals in ANS-stained squid giant axons during voltage-clamp.Biophysik 8:58

    PubMed  Google Scholar 

  8. Darke, A., Finer, E. G., Flook, A. G., Phillips, M. G. 1971. Complex and cluster formation in mixed lecithin cholesterol bilayers, cooperativity of motion in lipid systems.FEBS Letters 18:326

    PubMed  Google Scholar 

  9. Daycock, J. T., Drake, A., Chapman, D. 1971. Nuclear relaxation (T) measurements of lecithin-water systems.Chem. Phys. Lipids 6:205

    Google Scholar 

  10. Durrell, L. 1958. The Alexandria Quartet: Justine. Faber and Faber, London, Ch. I., p. 13

    Google Scholar 

  11. Engleman, D. M. 1970. X-ray diffraction studies of phase transitions in the membrane of mycoplasma laidlawii.J. Mol. Biol. 47:115

    PubMed  Google Scholar 

  12. Fortes, P. A. G. 1972. Structural properties of the human red cell membrane and anion permeability studied with fluorescence probes. Ph. D. Dissertation, University of Pennsylvania, Philadelphia, Pa.

    Google Scholar 

  13. Haynes, D. H. 1972. Studien der Bindung und des Transportes von Ionen und Molekülen an Phospholipid-Membranen.In: Dechema Monographie, Tutzing Symposion der DECHEMA, Vol. 71, p. 119

  14. Haynes, D. H. 1972. Detection of ionophore cation complexes on phospholipid membranes.Biochim. Biophys. Acta 255:406

    PubMed  Google Scholar 

  15. Hinz, H.-J., Sturtevant, J. M. 1972. Calorimetric studies of dilute aqueous suspensions of bilayers formed from syntheticl-α-lecithins.J. Biol. Chem. 247:6071

    Google Scholar 

  16. Lecuyer, H., Dervichian, D. G. 1969. Structure of aqueous mixtures of lecithin and cholesterol.J. Mol. Biol. 45:39

    PubMed  Google Scholar 

  17. Lesslauer, W., Cain, J., Blasie, J. K. 1971. On the location of 1-anilino-8-naphthalenesulfonate in lipid model systems.Biochim. Biophys. Acta 241:547

    PubMed  Google Scholar 

  18. Levine, Y. K., Bailey, A. I., Wilkins, M. H. F. 1968. Multilayers of phospholipid bimolecular leaflets.Nature 220:577

    PubMed  Google Scholar 

  19. Lippert, J. L., Peticolas, W. L. 1971. Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers.Proc. Nat. Acad. Sci. 68:1572

    PubMed  Google Scholar 

  20. Phillips, M. C., Finer, E. G., Hauser, H. 1972. Differences between conformations of lecithin and phosphatidylethanolamine polar groups and their effects on interactions of phospholipid bilayer membranes.Biochim. Biophys. Acta 290:397

    PubMed  Google Scholar 

  21. Phillips, M. C., Williams, R. M., Chapman, D. 1969. On the nature of hydrocarbon chain motions on lipid liquid crystals.Chem. Phys. Lipids 3:234

    Google Scholar 

  22. Radda, G. K., Vanderkooi, J. 1972. Can fluorescent probes tell us anything about membranes.Biochim. Biophys. Acta 265:509

    Google Scholar 

  23. Schreier-Muccillo, S., Marsh, D., Dugas, H., Schneider, H., Smith, I. C. P. 1973. A spin probe study of the influence of cholesterol on motion and orientation of phospholipids in oriented multibilayers and vesicles.Chem. Phys. Lipids 10:11

    PubMed  Google Scholar 

  24. Stryer, L. 1965. The interaction of a napthalene dye with apomyglobin and apohemoglobin: A fluorescent probe of nonpolar binding sites.J. Mol. Biol. 13:482

    PubMed  Google Scholar 

  25. Träuble, H. 1971. Phasenumwandlungen in Lipiden: Mögliche Schaltprozesse in biologischen Membranen.Naturwissenschaften 58:277

    PubMed  Google Scholar 

  26. Träuble, H., Grell, E. 1971. The formation of asymmetrical spherical lecithin vesicles.Neurosci. Res. Prog. Bull. 9(3):373

    Google Scholar 

  27. Träuble, H., Haynes, D. H. 1971. The volume change in lipid bilayer lamella at the crystalline-lipid crystalline phase transition.Chem. Phys. Lipids 7:324

    Google Scholar 

  28. Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurements of lipid phase transitions.Biochim. Biophys. Acta 307:491

    PubMed  Google Scholar 

  29. Turner, D. G., Brand, L. 1968. Quantitative estimation of protein binding site polarity. Fluorescence of N-arylnaphthalenesulfonates.Biochemistry 7:3381

    PubMed  Google Scholar 

  30. Vanderkooi, J., Martonosi, A. 1971. Sarcoplasmic reticulum. XII: The interaction of 8-anilino-1-naphthalene sulfonate with skeletal muscle microsomes.Arch. Biochem. Biophys. 144:87

    PubMed  Google Scholar 

  31. Weber, G., Laurence, D. J. R. 1954. Fluorescent indicators of absorption in aqueous solution and on the solid phase.Biochem. J. 56:xxxi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, D.H., Staerk, H. 1-Anilino-8-naphthalenesulfonate: A fluorescent probe of membrane surface structure, composition and mobility. J. Membrain Biol. 17, 313–340 (1974). https://doi.org/10.1007/BF01870190

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870190

Keywords

Navigation