Skip to main content
Log in

Microtubules inside the plasma membrane of squid giant axons and their possible physiological function

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of application of the microtubule-disassembling reagents to squid giant axons upon resting potential, the height of the propagated action potential, and the threshold to evoke action potential were studied using colchicine, podophyllotoxin, vinblastine, griseofulvin, sulfhydryl reagents including NEM, diamide, DTNB and PCMB, and Ca2+ ions. At the same time, the effects of concentrations of K halides and K glutamate on the above physiological properties were studied in comparison within vitro characteristics of microtubule assembly from purified axoplasmic tubulin.

It was found that there was good correlation between conditions supporting maintenance of membrane excitability and microtubule assembly. The experiments suggest that associated with the internal surface of the plasma membrane there are microtubules which regulate in part both resting and action potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Haga, T., Kurokawa, M. 1973. Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve.Biochem. J. 136:731

    Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Meves, H. 1964. The effect of diluting the internal solution on the electrical properties of a perfused giant axon.J. Physiol. (London) 170:541

    Google Scholar 

  • Baumgold, J., Matsumoto, G., Tasaki, I. 1978. Biochemical studies of nerve excitability: The use of protein modifying reagents for characterizing sites involved in nerve excitation.J. Neurochem. 30:91

    Google Scholar 

  • Begenisich, T., Lynch, C. 1974. Effects of internal divalent cations on voltage-clamped squid axon.J. Gen. Physiol. 63:675

    Google Scholar 

  • Chandler, W.K., Hodgkin, A.L., Meves, H. 1965. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.J. Physiol. (London) 180:821

    Google Scholar 

  • Davison, P.F., Huneeus, F.C. 1970. Fibrillar proteins from squid axons: II. Microtubule protein.J. Mol. Biol. 52:429

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218

    Google Scholar 

  • Gainer, H., Carbone, E., Singer, I., Sisco, K., Tasaki, I. 1974. Depolarization-induced change in the enzymatic radio-iodination of a protein on the internal surface of the squid giant axon membrane.Comp. Biochem. Physiol. 47 A:477

    Google Scholar 

  • Gainer, H., Gainer, V. S. 1976. Proteins in the squid giant axons.In: Electrobiology of Nerve, Synapse and Muscle. J.P., Reuben, D.P. Purpura, M.V.L. Bennett and E.R. Kandel, editors. p. 155. Raven Press, New York

    Google Scholar 

  • Haga, T., Kurokawa, M. 1975. Microtubule formation from two components separated by gel filtration of a tubulin preparation.Biochim. Biophys. Acta 392:335.

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37

    Google Scholar 

  • Huneeus, F.C., Davison, P.F. 1970. Fibrillar proteins from squid axons. I. Neurofilament protein.J. Mol. Biol. 52:415

    Google Scholar 

  • Inoue, I., Pant, H.C., Tasaki, I., Gainer, H. 1976. Release of proteins from the inner surface of squid axon membrane labeled with tritiated N-ethylmaleimide.J. Gen. Physiol. 68:385

    Google Scholar 

  • James, K.A.C., Bray, J.J., Morgan, I.G., Austin, L. 1970. The effect of colchicine on the transport of axonal protein in the chicken.Biochem. J. 117:767

    Google Scholar 

  • Kobayashi, T., Shimizu, T. 1976. Roles of nucleoside triphosphates in microtubule assembly.J. Biochem. (Tokyo) 79:1357

    Google Scholar 

  • Kuriyama, R., Sakai, H. 1974. Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization.J. Biochem. (Tokyo) 76:651

    Google Scholar 

  • Matsumoto, G. 1976. Transportation and maintenance of adult squid (Doryteuthis bleekeri) for physiological studies.Biol. Bull. 150:279

    Google Scholar 

  • Metuzals, J., Tasaki, I. 1978. Subaxolemmal filamentous network in the giant nerve fiber of the squid (Loligo pealei 1.) and its possible role in excitability.J. Cell Biol. 78:597

    Google Scholar 

  • Mohri, H. 1976. The function of tubulin in motile systems.Biochim. Biophys. Acta 456:85

    Google Scholar 

  • Olmsted, J. B., Borisy, G. G. 1975. Ionic and nucleotide requirements for microtubule polymerizationin vitro.Biochemistry 14:2996

    Google Scholar 

  • Pant, H. C., Terakawa, S., Baumgold, J., Tasaki, I., Gainer, H. 1978. Protein release from the internal surface of the squid giant axon membrane during excitation and potassium depolarization.Biochim. Biophys. Acta 513:132

    Google Scholar 

  • Roobol, A., Gull, K., Pogson, C. I. 1976. Inhibition by griseofulvin of microtubule assemblyin vitro.FEBS Lett. 67:248

    Google Scholar 

  • Sakai, H., Matsumoto, G. 1978. Tubulin and other proteins from squid giant axons.J. Biochem. (Tokyo) 83:1413

    Google Scholar 

  • Schauf, C. L. 1975. The interaction of calcium withmyxicola giant axons and a description in terms of a simple surface charge model.J. Physiol. (London) 248:613

    Google Scholar 

  • Snyder, J.A., McIntosh, J.R. 1976. Biochemistry and physiology of microtubules.Annu. Rev. Biochem. 45:699

    Google Scholar 

  • Stadler, J., Franke, W.W. 1974. Characterization of the colchicine binding of membrane fractions from rat and mouse liver.J. Cell Biol. 60:297

    Google Scholar 

  • Takahashi, K., Yoshii, M. 1978. Effects of internal free calcium upon the sodium and calcium channels in the tunicate egg analyzed by the internal perfusion technique.J. Physiol. (London) 279:519

    Google Scholar 

  • Takenaka, T., Yoshioka, T., Horie, H., Watanabe, F. 1976. Changes in125I-labeled membrane proteins during excitation of the squid giant axon.Comp. Biochem. Physiol. 55B:89

    Google Scholar 

  • Tasaki, I. 1968. Nerve Excitation: A Macromolecular Approach. Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Tasaki, I., Singer, I., Takenaka, T. 1965. Effects of internal and external ionic environment on excitability of squid giant axon; a macromolecular approach.J. Gen. Physiol. 48:1095

    Google Scholar 

  • Tasaki, I., Watenabe, A., Lerman, L. 1967. Role of divalent cations in excitation of squid giant axons.Am. J. Physiol. 213:1465

    Google Scholar 

  • Terakawa, S., Nagano, M., Watanabe, A., 1977. Intracellular divalent cations and plateau duration of squid giant axons treated with tetraethylammonium.Jpn. J. Physiol. 27:785

    Google Scholar 

  • Weber, K., Wehland, J., Herzog, W. 1976. Griseofulvin interacts with microtubules bothin vivo andin vitro.J. Mol. Biol. 102:817

    Google Scholar 

  • Weisenberg, R.C. 1972. Microtubule formationin vitro in solutions containing low calcium concentrations.Science 177:1104

    Google Scholar 

  • Wilson, L., Bamburg, J.R., Mizel, S.B., Grisham, L.M., Creswell, K.M. 1974. Interaction of drugs with microtubule proteins.Fed. Proc. 33:158

    Google Scholar 

  • Yoshioka, T., Pant, H.C., Tasaki, I., Baumgold, J., Matsumoto, G., Gainer, H. 1978. An approach to the study of intracellular proteins related to the excitability of the squid giant axon.Biochim. Biophys. Acta 538:616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, G., Sakai, H. Microtubules inside the plasma membrane of squid giant axons and their possible physiological function. J. Membrain Biol. 50, 1–14 (1979). https://doi.org/10.1007/BF01868784

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868784

Keywords

Navigation