Skip to main content
Log in

Impaired renal gluconeogenesis and energy metabolism in maleic acid-induced nephropathy in rats

  • Published:
Research in Experimental Medicine

Summary

The effects of maleic acid on the gluconeogenic capacity and energy metabolism of rat kidney cortex were studied.In vitro maleic acid inhibits glucose production from various substrates by rat kidney cortex slices. Of the substrates tested, inhibition of gluconeogenesis was much greater with pyruvate, lactate andα-ketoglutarate than with glycerol, succinate, fumarate and malate. Subcutaneous injection of maleic acid produced a dose-dependent effect on aminoaciduriain vivo and on gluconeogenic capacity of slices prepared from the kidney cortices. The content of adenine nucleotides and adenylate kinase activity of kidney cortex of the maleic acid injected rats were significantly decreased.

While no ultrastructural alteration of the glomeruli was demonstrable with any of the doses of maleic acid injected, electron microscopic changes of the tubules were dose-dependent, and correlated well with the degree of aminoaciduria and inhibition of gluconeogenic capacity of kidney cortex slices. Vesiculation of mitochondrial cristae found in the proximal, as well as distal convoluted tubular cells, may be associated with impairment of energy metabolism and, in turn, the reduced renal gluconeogenic capacity of the kidney cortex and the amino aciduria of maleic acid nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, H.: Adenosine-5-triphosphate determination with phosphoglycerate kinase. In: Methods of enzymatic analysis, p. 539. Weinheim-New York: Verlag Chemie/Academic Press 1965.

    Google Scholar 

  2. —: Adenosine-5-diphosphate and adenosine-5-monophosphate. In: Methods of enzymatic analysis, p. 573. Weinheim-New York: Verlag Chemie/Academic Press 1965.

    Google Scholar 

  3. Angielski, S., Rogulski, J.: Effect of maleic acid upon the kidney. I. Oxidation of Krebs cycle intermediates by various tissues of maleate-intoxicated rats. Acta biochim. pol.9, 357 (1962).

    PubMed  Google Scholar 

  4. —, The effect and metabolism of maleic acid in the kidney. Acta Biol. et Med. Soc. Sc. Gedan.7, 61 (1963).

    Google Scholar 

  5. Bahlmann, J., Ochwadt, B., Schröder, E.: Über den Glucose- und Lactat-Stoffwechsel von isolierten Hundenieren. Pflügers Arch. ges. Physiol.286, 207 (1965).

    Google Scholar 

  6. Benoy, M. P., Elliott, K. A. C.: The metabolism of lactic and pyruvic acids in normal and tumor tissues. V. Synthesis of carbohydrate. Biochem. J.31, 1268 (1937).

    Google Scholar 

  7. Berliner, R. W., Kennedy, T. J., Hilton, J. G.: Effect of maleic acid on renal function. Proc. Soc. exp. Biol. (N.Y.)75, 791 (1950).

    Google Scholar 

  8. Colowick, S. P.: Adenylate kinase (Myokinase, ADP phosphomutase). In: Methods in enzymology, Vol. II, p. 598. Weinheim-New York: Academic Press 1955.

    Google Scholar 

  9. Decker, K.: Acetyl CoA. In: Methods of enzymatic analysis, p. 423. Weinheim-New York: Verlag Chemie/Academic Press 1965.

    Google Scholar 

  10. Deutsch, W.: An improvement of Warburg's method for cutting tissue slices for respiratory experiments. J. Physiol. (Lond.)87, 56p (1936).

    Google Scholar 

  11. Dzúrik, R., Krajči-Lazáry, B., Niederland, T. R.: Glucose metabolism in rat kidney: Influence of insulin and adrenaline. J. Physiol. (Lond.)168, 782 (1963).

    Google Scholar 

  12. Eisenstein, A. B.: Current concepts of gluconeogenesis. Amer. J. clin. Nutr.20, 282 (1967).

    PubMed  Google Scholar 

  13. Gills, K. W., Meyer, A.: An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature (Lond.)93, 4979 (1965).

    Google Scholar 

  14. Green, D. E., Perdue, J. F.: Correlation of mitochondrial structure and function. Ann. N.Y. Acad. Sci.137, 667 (1966).

    PubMed  Google Scholar 

  15. Harrison, H. E., Harrison, H. E.: Experimental production of renal glycosuria, phosphaturia and aminoaciduria by injection of maleic acid. Science120, 606 (1954).

    PubMed  Google Scholar 

  16. Henning, H. V., Stumpf, B., Ohly, B., Seubert, W.: On the mechanism of gluconeogenesis and its regulation. III. The glucogenic capacity and the activities of pyruvate carboxylase and PEP-carboxylase of rat kidney and rat liver after cortisol treatment and starvation. Biochem. J.344, 274 (1966).

    Google Scholar 

  17. Kamm, D. E., Fuisz, R. E., Goodman, A. D., Cahill, G. F., Jr.: Acid-base alterations and renal gluconeogenesis. Effect of pH, bicarbonate concentration and PCO2. J. clin. Invest.46, 1172 (1967).

    PubMed  Google Scholar 

  18. Kaufman, S., Gilvarg, C., Cori, O., Ochoa, S.: Enzymatic oxydation ofα-ketoglutarate and coupled phosphorylation. J. biol. Chem.203, 869 (1953).

    PubMed  Google Scholar 

  19. Kramer, H. J., Gonick, H. C.: Experimental Fanconi syndrome. I. Effect of maleic acid on renal cortical Na-K-ATPase and ATP levels. J. Lab. clin. Med.76, 799 (1970).

    PubMed  Google Scholar 

  20. Krebs, H. A., Bennett, D. A. H., De Gasquet, P., Gascoyne, T., Yoshida, T.: Renal gluconeogenesis. The effect of the gluconeogenic capacity of rat-kidneycortex slices. Biochem. J.86, 22 (1963).

    PubMed  Google Scholar 

  21. —, The Croonian lecture, 1963: Gluconeogenesis. Proc. roy. Soc.159, 545 (1964).

    Google Scholar 

  22. Lehninger, A. L.: The mitochondrion. New York: Benjamin 1965.

    Google Scholar 

  23. McCann, W. P.: Renal glucose production and uptake in separate sites and its significance. Amer. J. Physiol.203, 572 (1962).

    Google Scholar 

  24. Reinecke, R. M.: The kidney as a source of glucose in the eviscerated rat. Amer. J. Physiol.140, 276 (1943).

    Google Scholar 

  25. Rogulski, J.: The sulfhydryl groups of cellular fractions in the kidney of maleate-treated rats. Acta biochim. pol.10, 419 (1963).

    PubMed  Google Scholar 

  26. —: Biosynthesis of amino acids and the biochemical specifity of kidney. Acta Biol. et Med. Soc. Sc. Gedan.9, 120 (1965).

    Google Scholar 

  27. —, Angielski, S., Gmaj, P., Hoppe, A.: The effect of maleate on acidification of urine. Proc. Fourth Int. Congr. Nephrol., Stockholm. Abstracts1, 221 (1969).

    Google Scholar 

  28. Rosenberg, L. E., Berman, M., Segal, S.: Studies of the kinetics of amino acid transport, incorporation into protein and oxidation in kidney-cortex slices. Biochim. biophys. Acta (Amst.)71, 664 (1963).

    Google Scholar 

  29. —, Segal, S.: Maleic acid-induced inhibition of amino acid transport in rat kidney. Biochem. J.92, 345 (1964).

    PubMed  Google Scholar 

  30. Russell, J. A., Wilhelmi, A. E.: Gluconeogenesis in kidney tissue of the adrenalectomized rat. J. biol. Chem.140, 747 (1941).

    Google Scholar 

  31. Taggart, J. V., Angielski, S., Morrell, M.: Complete oxidation of maleic acid via D (+) malate in kidney. Biochim. biophys. Acta (Amst.)58, 141 (1962).

    Google Scholar 

  32. Utter, M. F., Keech, D. B.: Pyruvate carboxylase. I. Nature of the reaction. J. biol. Chem.238, 2603 (1963).

    PubMed  Google Scholar 

  33. Yoshida, T., Metcoff, J.: Metabolic basis of aminonucleoside nephrosis in rats. II. Inhibition of renal gluconeogenesis by aminonucleoside. J. Lab. clin. Med.72, 576 (1968).

    PubMed  Google Scholar 

  34. Webber, K. W.: Amino acid excretion patterns in developing rats. Canad. J. Physiol. Pharmacol.45, 867 (1967).

    Google Scholar 

  35. White, L. W., Landau, B. R.: Effect of glucocorticoids on metabolism of carbohydrate by kidney cortex. Amer. J. Physiol.211, 449 (1966).

    PubMed  Google Scholar 

  36. Worthen, H. G.: Renal toxicity of maleic acid in the rat. Enzymatic and morphologic observations. Lab. Invest.13, 791 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the U.S.P.H.S., National Institutes of Health (AM-08951, HD-168-01, HE-12077-01, 5 ROI MH-12320-03, AM-5290-06), from the Jennie Singer Children's Welfare Leagues, and from the Deutsche Forschungsgemeinschaft (Scha 169/1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schärer, K., Yoshida, T., Voyer, L. et al. Impaired renal gluconeogenesis and energy metabolism in maleic acid-induced nephropathy in rats. Res. Exp. Med. 157, 136–152 (1972). https://doi.org/10.1007/BF01851694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01851694

Key words

Navigation