Skip to main content
Log in

Inter-RNA homology and possible roles of small RNAs

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The nucleotide sequence of a segment of U1 and U3b small RNAs (sRNAs) is shown to have a high complementarity with the nucleotide sequence of a part of the leader region of almost all eukaryotic genes studied so far. The complementary region of U3b is located in the unpaired segment of the secondary structure of U3b constructed by Reddy et al. (1979). A similar complementarity is also observed between these RNAs and the leader regions of eukaryotic viruses, but the complementary region is not always identical with that for eukaryotic genes. Complementarity is also observed between the 3′ end of 18S rRNA and a segment of U1 or U3b which is almost contiguous to the region complementary with mRNA. These observations suggest that U1 and U3b may be involved in mRNA processing and transport in the nucleus or in translation in the cytoplasm. In addition to U1 and U3b, another sRNA, i.e., 4.5S RNAI, is shown to have segments which are homologous to the Hogness box of the flanking region of gene and the Proudfoot-Brownlee (PB) box of mRNA near the poly(A) attachment site. The two segments which are complementary with these boxes are located almost contiguously on a co-joined loop of the secondary structure of 4.5S RNAI constructed by Ro-Choi et al. (1972). Since the Hogness box and PB box are both considered as a recognition site by the RNA polymerase, it is possible that 4.5S RNAI is involved in mediating gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baralle FE, Brownlee GG (1978) Nature 274:84–87

    Google Scholar 

  • Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM (1980) Nature 284:26–32

    Google Scholar 

  • Bernard O, Hozumi N, Tonegawa S (1978) Cell 15:1133–1144

    Google Scholar 

  • Branlant C, Krol A, Ebel JP, Lazar E, Gallinaro H, Jacob M, Sri-Widata J, Jeanteur P (1980) Nucleic Acids Res 8:4143–4154

    Google Scholar 

  • Busch H, personal communication

  • Chang JC, Temple GF, Poon R, Neumann KH, Kan YN (1977) Proc Natl Acad Sci USA 74:5145–5149

    Google Scholar 

  • Cochet M, Gannon F, Hen R, Maroteaux L, Perrin F, Chambon P (1979) Nature 282:567–574

    Google Scholar 

  • Cordell B, Bell G, Tischer E, DeNoto FM, Ullrich A, Pictet R, Rutter WJ, Goodman HM (1979) Cell 18:533–543

    Google Scholar 

  • Derynck R, Content J, DeClercq E, Volckaert G, Tavernier J, Devos R, Fiers W (1980) Nature 285:542–547

    Google Scholar 

  • Flytzanis C, Alonso A, Louis C, Krieg L, Sekeris CE (1978) FEBS Lett 96:201–206

    Google Scholar 

  • Gallwitz D, Sures I (1980) Proc. Natl. Acad Sci USA 77:2546–2550

    Google Scholar 

  • Gannon F, O'Hare K Perrin F, LePennec JP, Benoist C, Cochet M, Breathnach R, Royal A, Garapin A, Cami B, Chambon P (1979) Nature 278:428–434

    Google Scholar 

  • Grosschedl R Birnstiel ML (1980) Proc Natl Acad Sci USA 77:1432–1436

    Google Scholar 

  • Hagenbüchle O, Bovey R, Young RA (1980) Cell 21:179–187

    Google Scholar 

  • Hagenbüchle O, Santer M, Steitz JA (1978) Cell 13:551–563

    Google Scholar 

  • Heindell HC, Liu A, Paddock GV, Studnick GM, Salser WA (1978) Cell 15:43–54

    Google Scholar 

  • Hellung-Larsen P, Fredericksen S (1977) Comp Biochem Physiol 58B:273–281

    Google Scholar 

  • Jelinek W, Leinwand L (1978) Cell 15:205–214

    Google Scholar 

  • Kanehisa T, Fujitani H, Sano M, Tanaka T (1971) Biochim Biophys Acta 240:46–55

    Google Scholar 

  • Kano Y, Komatsu H, Nakanoin K, Fujiwara Y (1978) Exp Cell Res 115:444–448

    Google Scholar 

  • Konkel DA, Maizel Jr, JV, Leder P, (1979) Cell 18:865–873

    Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Nature 283:220–224

    Google Scholar 

  • Lerner MR, Steitz JA (1979) Proc Natl Acad Sci USA 76:5495–5499

    Google Scholar 

  • Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolodner R, Tizard R (1979) Cell 18:545–558

    Google Scholar 

  • Nishioka Y, Leder P (1979) Cell 18:875–882

    Google Scholar 

  • Pasek M, Goto T, Gilbert W, Zink B, Schaller H, Mackay P, Leadbetter G, Murray K (1979) Nature 282:575–579

    Google Scholar 

  • Proudfoot NJ, Brownlee GG (1976) Nature 263:211–214

    Google Scholar 

  • Reddy R, Henning D, Busch H (1979) J Biol Chem 254:11097–11105

    Google Scholar 

  • Reddy R, Ro-Choi TS, Henning D, Busch H (1974) J Biol Chem 249:6486–6494

    Google Scholar 

  • Richards RI, Shine J, Ullrich A, Wells JRE, Goodman HM (1979) Nucleic Acids Res 7:1137–1146

    Google Scholar 

  • Ro-Choi TS, Henning D (1977) J Biol Chem 252:3814–3820

    Google Scholar 

  • Ro-Choi TS, Reddy R, Henning D, Takano T, Taylor CW, Busch H (1972) J Biol Chem 247:3205–3222

    Google Scholar 

  • Rogers J, Wall R (1980) Proc Natl Acad Sci 77:1877–1879

    Google Scholar 

  • Roskam WG, Rougeon F (1979) Nucleic Acids Res 7:305–320

    Google Scholar 

  • Salser W (1977) Cold Spring Harb Symp 985–1002

  • Seeburg PH, Shine J, Martial JA, Baxter JD, Goodman HM (1977) Nature 270:486–494

    Google Scholar 

  • Seidman JG, Leder A, Edgell MH, Polsky F, Tilghman SM, Tiemeier DC, Leder P (1978) Proc Natl Acad Sci USA 75:3881–3885

    Google Scholar 

  • Siedman JG, Max EE, Leder P (1979) Nature 280:370–375

    Google Scholar 

  • Shibata H, Ro-Choi TS, Reddy R, Choi YC, Henning D, Busch H (1975) J Biol Chem 250:3909–3920

    Google Scholar 

  • Sures I, Levy S, Kedes LH (1980) Proc Natl Acad Sci USA 77:1265–1269

    Google Scholar 

  • Taniguchi T, Mantei N, Schwarzstein M, Nagata S, Muramatsu M, Weissman C (1980) Nature 285:547–549

    Google Scholar 

  • Ting AC Tsai MJ, O'Malley BW (1980) In press

  • Tonegawa S, Maxam AM, Tizard R, Bernard O, Gilbert W (1978) Proc Natl Acad Sci USA 75:1485–1489

    Google Scholar 

  • Tsujimoto Y, Suzuki Y (1979) Cell 18:591–600

    Google Scholar 

  • Van Ooyen A, van den Berg J, Mantei N, Weissman C (1979) Science 206:337–344

    Google Scholar 

  • Weinberg RA, Penman S (1968) J Mol Biol 38:289–304

    Google Scholar 

  • Zieve G, Penman S (1976) Cell 8:19–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gojobori, T., Nei, M. Inter-RNA homology and possible roles of small RNAs. J Mol Evol 17, 245–250 (1981). https://doi.org/10.1007/BF01732762

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732762

Key words

Navigation