Skip to main content
Log in

Segregation studies in CHO hybrid cells: I. Spontaneous and mutagen-induced segregation events of two recessive drug-resistant loci

  • Published:
Somatic Cell Genetics

Abstract

The process of segregation or phenotypic expression of two recessive drug-resistant loci from heterozygous Chinese hamster ovary hybrid lines is examined. The spontaneous segregation rates of phytohaemagglutinin resistance (Phar) and a temperature-dependent 8-azaguanine-resistant locus (Azarts) from heterozygous quasitetraploid lines using Luria-Delbruck fluctuation analysis were 5×10−5 and 10−5 events/cell/generation, respectively. In quasihexaploid lines, the latter rates increased 40-and 200-fold, respectively, and were dependent on the number of presumptive drug-sensitive alleles. The mutagens EMS, MNNG, ICR-170, ICR-191, and γ rays significantly increased the frequency of segregation events. The mutagen-induced frequency of dominant mutations to ouabain (OuaR) and α-amanitin (AmaR) resistance in the same hybrid line was much lower in comparison to segregation events and was mutagen specific. The chromosome number per metaphase cell was more variable than DNA content in quasitetraploid lines. These properties of marker segregation are consistent with mechanisms of either restricted chromosome loss, rearrangement, or mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. De Mars, R. (1974).Mutat. Res. 24:335–364.

    PubMed  Google Scholar 

  2. Siminovitch, L. (1976).Cell 7:1–11.

    PubMed  Google Scholar 

  3. Thompson, L.H., and Baker, R.M. (1973). InMethods in Cell Biology, Vol. 6, Prescott, D.M. (ed), Academic Press, New York, pp. 209–281.

    Google Scholar 

  4. Chasin, L.A. (1973).J. Cell. Physiol. 82:299–308.

    PubMed  Google Scholar 

  5. Chasin, L.A., and Urlaub, G. (1975).Science 187:1091–1093.

    PubMed  Google Scholar 

  6. Chasin, L.A. (1972).Nature New Biol. 240:50–52.

    PubMed  Google Scholar 

  7. Marin, G. (1969).Exp. Cell Res. 57:29–36.

    PubMed  Google Scholar 

  8. Harris, M. (1975).J. Cell. Physiol. 86:413–430.

    PubMed  Google Scholar 

  9. Harris, J.F., and Whitmore, G.F. (1974).J. Cell. Physiol. 83:43–51.

    PubMed  Google Scholar 

  10. Stanley, P., Caillibot, V., and Siminovitch, L. (1975).Somatic Cell Genet. 1:3–26.

    PubMed  Google Scholar 

  11. Stanley, P., Caillibot, V., and Siminovitch, L. (1975).Cell 6:121–128.

    PubMed  Google Scholar 

  12. Stanley, P., Siminovitch, L., Nariasimhian, S., and Schachter, H. (1975).Proc. Natl. Acad. Sci. USA 72:3323–3327.

    PubMed  Google Scholar 

  13. Baker, R.M., Brunette, D.M., Mankovitz, R., Thompson, L.H., Whitmore, G.F., Siminovitch, L., and Till, J.E. (1974).Cell 1:9–21.

    Google Scholar 

  14. Lobban, P.E., and Siminovitch, L. (1975).Cell 4:167–172.

    PubMed  Google Scholar 

  15. Ingles, C.J., Guialis, A., Lam, J., and Siminovitch, L. (1976).J. of Biol. Chem. 251:2729–2734.

    Google Scholar 

  16. Chan, V.L., Whitmore, G.F., and Siminovitch, L. (1972).Proc. Natl. Acad. Sci. USA 69:3119–3123.

    PubMed  Google Scholar 

  17. Stanners, C.P., Eliceiri, G., and Green, H. (1971).Nature New Biol. 230:52–53.

    PubMed  Google Scholar 

  18. Borsa, J., and Whitmore, G.F. (1969).Mol. Pharmacol. 5:303–317.

    PubMed  Google Scholar 

  19. McBurney, M.W., and Whitmore, G.F. (1974).Cell 2:173–182.

    PubMed  Google Scholar 

  20. Thompson, L.H., Harkins, J.L., and Stanners, C.P. (1973).Proc. Natl. Acad. Sci. USA 70:3094–3098.

    PubMed  Google Scholar 

  21. Deaven, L.L., and Peterson, D.F. (1974). InMethods in Cell Biology, Vol. 8, Prescott, D.M. (ed), Academic Press, New York, pp. 179–204.

    Google Scholar 

  22. Van Dilla, M., Steinmetz, L., Davis, D., Calvert, R., and Gray, J. (1974).I.E.E.E. Trans. Nucl. Sci. NS-21:714–720.

    Google Scholar 

  23. Luria, S.E., and Delbruck, M. (1943).Genetics 28:491–511.

    Google Scholar 

  24. Lea, D.E., and Coulson, C.A. (1949).J. of Genet. 49:264–285.

    Google Scholar 

  25. Burch, P.R.J. (1965).Proc. R. Soc. London 162B:223–239.

    Google Scholar 

  26. Alper, T., Fowler, J.F., Morgan, R.L., Vonberg, D.D., Ellis, F., Oliver, R. (1962).Br. J. Radiol. 35:722–723.

    Google Scholar 

  27. Hsie, A.W., Brimer, P.A., Mitchell, T.J., Gosslee, D.G. (1975).Somatic Cell Genet. 1:247–261.

    PubMed  Google Scholar 

  28. Arlett, C.F., Turnbull, D., Harcourt, S.A., Lehmann, A.R., and Colella, C.M. (1975).Mutation Res. 33:261–278.

    PubMed  Google Scholar 

  29. Baker, W.K. (1968).Advan. Genet. 14:133–169.

    Google Scholar 

  30. Kraemer, P.M., Peterson, D.F., and Van Dilla, M.A. (1971).Science 174:714–717.

    PubMed  Google Scholar 

  31. Gray, J.W., Carrano, A.V., Steinmetz, L.L., Van Dilla, M.A., Moore, D.H., Mayall, B.H., and Mendelsohn, M.L. (1975).Proc. Natl. Acad. Sci. USA 72:1231–1234.

    PubMed  Google Scholar 

  32. Worton, R.G., Ho, C.C., and Duff, C. (1977).Somatic Cell Genet. 3:27–46.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.F., Whitmore, G.F. Segregation studies in CHO hybrid cells: I. Spontaneous and mutagen-induced segregation events of two recessive drug-resistant loci. Somat Cell Mol Genet 3, 173–193 (1977). https://doi.org/10.1007/BF01551813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01551813

Keywords

Navigation