Skip to main content
Log in

Domain structure and viscoelastic properties of graft copolymer

I. Domain formation of a graft copolymer of poly(methyl acrylate) with styrene from its solution

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The domain structures of film specimens cast from benzene solutions of a series of graft copolymer of poly(methyl acrylate) with styrene with different degrees of grafting, from 10 to 80 vol% of styrene component, were investigated with phase-contrast and dye-staining microscopy. The graft copolymers were synthesized by coupling polystyryllithium, obtained by anionic polymerization technique, onto a well-fractionated PMA, so that the coupling density of the grafted segment along the backbone segment was varied but the molecular weights of the grafted and backbone segments were kept constant to cover the above range of volume fraction of styrene component for the series of graft copolymer.

It was found that with an increase of the volume fraction of styrene component (grafted segment) the domain structure changes from spheres of styrene component dispersed in a matrix of MA component, to alternating lamellae of the two components, and to spheres of MA component dispersed in a matrix of styrene component. Two types of rodlike domains, usually found for block copolymers as the intermediates between the spherical and lamellar domains, were missed.

The domain formation mechanism was discussed in terms of a quasi-equilibrium phenomenon of micelle formation, microphase separation between the grafted and backbone segments, at a critical micelle concentration. TheGibbs free energies of five types of micelle formations; anA sphere in aB shell micelle, anA rod in aB sheath micelle, alternating lamellar micelle ofA andB, aB rod in anA sheath, and aB sphere in anA shell micelle, were discussed in terms of molecular and thermodynamic parameters. Comparing the free energy levels of the five types of micelle formations with each other, it was revealed that the free energy levels for forming the two types of rodlike micelles can not be the lowest at any volume fraction of grafted segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merrett, F. M., Trans. Faraday Soc.50, 759 (1954).

    Google Scholar 

  2. Merrett, F. M., Ric. Sci.25, 279 (1955).

    Google Scholar 

  3. Molau, G. E., Block Polymer, Arrarwal ed., pp. 79–106 (New York 1970).

  4. Y. Gallot, M. Leng, H. Benoit, andP. Rempp, J. Chim. Phys.59, 1093 (1962).

    Google Scholar 

  5. Gallot, Y., E. Franta, P. Rempp, andH. Benoit, J. Polymer Sci., Part C4, 473 (1963).

    Google Scholar 

  6. Dondos, A., P. Rempp, andH. Benoit, J. Chim. Phys.62, 821 (1965).

    Google Scholar 

  7. Dondos, A., P. Rempp, andH. Benoit, J. Polymer Sci., Part B4, 293 (1966).

    Google Scholar 

  8. Merrett, F. M., J. Polymer Sci.24, 467 (1957).

    Google Scholar 

  9. Soen, T., T. Horino, Y. Ogawa, andH. Kawai, J. Appl. Polymer Sci.10, 1499 (1966).

    Google Scholar 

  10. Molau, G. E., J. Polymer Sci., Part A3, 1267 (1965).

    Google Scholar 

  11. Molau, G. E., J. Polymer Sci., Part A3, 4235 (1965).

    Google Scholar 

  12. Molau, G. E. andH. Keskkula, J. Polymer Sci., A-14, 1595 (1966).

    Google Scholar 

  13. Kato, K., Japan Plastics19, No. 10, 89 (1968).

    Google Scholar 

  14. Bucknall, C. B., Brit. Plastics40, 118 (1967).

    Google Scholar 

  15. Moton, M., A. A. Rembaum, andJ. L. Hall, J. Polymer Sci., Part A1, 361 (1963).

    Google Scholar 

  16. Moton, M. andR. Milkvich, J. Polymer Sci., Part A1, 443 (1963).

    Google Scholar 

  17. Moton, M., E. E. Bostick, andR. G. Clarke, J. Polymer Sci., Part A1, 475 (1963).

    Google Scholar 

  18. Basu, S. andH. Roy, J. Sci. Ind. Res.11B, 90 (1952).

    Google Scholar 

  19. Krigbaum, W. R. andP. J. Flory, J. Polymer Sci.11, 37 (1953).

    Google Scholar 

  20. Vanzo, E., J. Polymer Sci., Part A-14, 1727 (1966).

    Google Scholar 

  21. Inoue, T., T. Soen, H. Kawai, M. Fukatsu, andM. Kurata, J. Polymer Sci., Part B6, 75 (1968).

    Google Scholar 

  22. Inoue, T., T. Soen, T. Hashimoto, andH. Kawai, J. Polymer Sci., Part A-27, 1283 (1969).

    Google Scholar 

  23. Uchida, T., T. Soen, T. Inoue, andH. Kawai, J. Polymer Sci., Part A-2 (in press).

  24. Soen, T., T. Inoue, K. Miyoshi, andH. Kawai, submitted to J. Polymer Sci., A-2.

  25. Inoue, T., T. Soen, T. Hashimoto, andH. Kawai, Macromolecules3, 87 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof.R. Hosemann on the occasion of his 60th birthday.

A part of M. S. thesis ofT. Ono, presented to the Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, March 11, 1969; presented before the 18th Annual Meeting of the Society of Polymer Science, Japan, Kyoto, May 20, 1969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, T., Minamiguchi, H., Soen, T. et al. Domain structure and viscoelastic properties of graft copolymer. Kolloid-Z.u.Z.Polymere 250, 394–403 (1972). https://doi.org/10.1007/BF01507504

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01507504

Keywords

Navigation