Skip to main content
Log in

Experimental hydrocephalus and hydrosyringomyelia in the cat

Radiological findings

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Fourty-six cats were made hydrocephalic and hydromyelic by means of an intracisternal kaolin injection. In 17 other cats hydrocephalus and syringohydromyelia were achieved by operative occlusion of the foramina Luschkae of the fourth ventricle. In both the kaolin treated animals and the animals whose outlets of the fourth ventricles were operatively obstructed a progressive dilatation of the ventricles and central canal occurred, which could be demonstrated and followed in 30 animals by ventriculography, myelography and/or contrast filling of the hydromyelic central canal. Coinciding with the dilatation of the central canal the clinical picture of a raised intracranial pressure due to obstructive hydrocephalus improved.

The presented results suggest that the dilated central canal acts as a kind of natural by-pass between the ventricles and the spinal subarachnoid space.

In order to determine the role of spinal kaolin arachnoiditis on spinal cyst formation and central canal dilatation in 13 animals, kaolin was locally applied in the lower thoracic region. The local spinal kaolin arachnoiditis had no influence on central canal dilatation or cyst formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, P., Wilson, A., Watson, G., The spinal cord central canal: Response to experimental hydrocephalus and canal occlusion. J. Neurosurg.36 (1972), 416–424.

    PubMed  Google Scholar 

  2. Bering, E. A., Jr., Studies on the role of the choroid plexus in tracer exchange between blood and cerebrospinal fluid. J. Neurosurg.82 (1955), 385–392.

    Google Scholar 

  3. Bering, A., Sato, O., Hydrocephalus: Changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J. Neurosurg.20 (1963), 1050–1063.

    PubMed  Google Scholar 

  4. Booz, K., Faulhauer, K., Donauer, E., Nieland, F., Morphologische VerÄnderungen am Zentralkanal der Katze nach Kaolininjektion in die Cisterna magna. Z. mikrosk.-anat. Forsch. Leipzig93 (1979), 643–661.

    Google Scholar 

  5. Bradbury, M. W. B., Lathem, W., A flow of cerebrospinal fluid along the central canal of the spinal cord of the rabbit and communications between this canal and the sacral subarachnoid space. J. Physiol.181 (1965), 785–800.

    PubMed  Google Scholar 

  6. Brocklehurst, G., Dolman, G. E., Hochwald, G. M., Serial section study of the terminal spinal cord in the normal and the kaolin hydrocephalic cat. Z. Kinderchir.22 (1977), 553–560.

    Google Scholar 

  7. Camus, J., Roussy, G., Cavités médullaires et méningites cervicales. Rev. neurol.27 (1914), 213–225.

    Google Scholar 

  8. Coben, L. A., Smith, K. R., Iodide transfer at four cerebrospinal fluid sites in the dog: Evidence for spinal iodide carrier transport. Exp. Neurol.23 (1969), 76–90.

    PubMed  Google Scholar 

  9. Davson, H., Physiology of the cerebrospinal fluid. Reprinted 1970. London: Churchill.

    Google Scholar 

  10. Dohrmann, G. J., Cervical spinal cord in experimental hydrocephalus. J. Neurosurg.37 (1972), 538–542.

    PubMed  Google Scholar 

  11. Edvinson, L., West, K. E., The time course of intracranial pressure as recorded in conscious rabbitts after treatment with different amounts of intracisternally injected Kaolin. Acta Neurol. Scand.47 (1971), 439–456.

    PubMed  Google Scholar 

  12. Eisenberg, H. M., McLennan, J. E., Welch, K., Ventricular perfusion in cats with Kaolin-induced hydrocephalus. J. Neurosurg.41 (1974), 20–28.

    PubMed  Google Scholar 

  13. Eisenberg, H. M., McLennan, J. E., Welch, K., Trevens, S., Radioisotope ventriculography in cats with Kaolin-induced hydrocephalus. Radiol.110 (1974), 399–402.

    Google Scholar 

  14. Epstein, F., Marlin, A., Hochwald, G. M., Ransohoff, J., Myelocele: A progressive intrauterine disease. Dev. Med. Child Neurol. (Suppl.)37 (1976), 12–13.

    Google Scholar 

  15. Epstein, F., Hochwald, G. M., Ransohoff, J., Neonatal hydrocephalus treated by compressive headwrapping. Lancet7804 (1972), 634–636.

    Google Scholar 

  16. Faulhauer, K., Donauer, E., Permanent ventriculostomy in cats. Technical note. Acta Neurochir. (Wien)46 (1979), 169–172.

    Google Scholar 

  17. Faulhauer, K., Kremer, G., Lehmann, H., Untersuchungen über die HÄufigkeit und klinische Bedeutung des ventilunabhÄngigen, zum Stillstand gekommenen Hydrozephalus. Klin. PÄdiatrie187 (1975), 432–441.

    Google Scholar 

  18. Gardner, W. J., Hydrodynamic mechanisms of syringomyelia. Its relationship to myelocele. J. Neurol. Neurosurg. Psychiat.28 (1965), 247–259.

    PubMed  Google Scholar 

  19. Gardner, W. J., Rupture of the neural tube? Clin. Neurosurg.15 (1968), 55–79.

    Google Scholar 

  20. Hall, P. V., Müller, J., Campbell, R. L., Experimental hydrosyringomyelia, ischaemic myelopathy, and syringomyelia. J. Neurosurg.43 (1975), 464–470.

    PubMed  Google Scholar 

  21. Hammerstad, J. P., Lorenzo, A. V., Culler, R. W. P., Iodide transport from the spinal subarachnoidal fluid in the cat. Amer. J. Physiolog.216 (1969), 353–358.

    Google Scholar 

  22. Hayden, P. W., Rudd, T. G., Dizmang, D., Loeser, J. D., Shurtleff, D. B., Evaluation of surgically treated hydrocephalus by radionuclide clearance studies of the cerebrospinal shunt. Dev. Med. Child. Neurol. (Suppl)32 (1974), 72–77.

    Google Scholar 

  23. Hiratsuka, H.,et al., Evaluation of periventricular hypodensity in experimental hydrocephalus by metrizamide CT ventriculography. J. Neurosurg.56 (1982), 235–240.

    PubMed  Google Scholar 

  24. Hochwald, G. M., Lux, W. E., Sahar, A., Ransohoff, J., Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch. Neurol.26 (1972), 120–129.

    PubMed  Google Scholar 

  25. Hochwald, G. M., Nakamura, S., Camins, M. B., The rat in experimental obstructive hydrocephalus. Z. Kinderchir.34 (1981), 403–410.

    PubMed  Google Scholar 

  26. Hochwald, G. M., Boal, R. D., Marlin, A. E., Kumar, A. J., Changes in regional blood-flow and water content of brain and spinal cord in acute chronic experimental hydrocephalus. Dev. Med. Child Neurol.17 (1975), 42–50.

    Google Scholar 

  27. Hochwald, G. M., Sahar, A., Sadik, A. R., Ransohoff, J., Cerebrospinal fluid production and histological observations in animals with experimental hydrocephalus. Exp. Neurol.25 (1969), 190–199.

    PubMed  Google Scholar 

  28. Holtzer, G. J., de Lange, S. A., Shunt independent arrest of hydrocephalus. J. Neurosurg.39 (1973), 698–701.

    PubMed  Google Scholar 

  29. James, A. E., Flor, W. J., Novak, G. R., Strecker, E. P., Burns, B., Evaluation of the central canal of the spinal cord in experimentally induced hydrocephalus. J. Neurosurg.48 (1978), 970–974.

    PubMed  Google Scholar 

  30. James, A. E., Jr., Strecker, E. P., Sperber, E., An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement. Radiol.111 (1974), 143–146.

    Google Scholar 

  31. Joffroy, A., Achard, C., De la myélite cavitaire. Arch. Physiol. Norm. Path.10 (1887), 435–472.

    Google Scholar 

  32. Kuwamura, K., McLone, D. G., Raimondi, A., The central (spinal) canal in congenital murine hydrocephalus: Morphological and physiological aspects. Child's Brain4 (1978), 216–234.

    PubMed  Google Scholar 

  33. McLaurin, R. L., Bailey, O. T., Schurr, P. H., Ingraham, F. D., Myelomalacia and multiple cavitation of spinal cord secondary to adhesive arachnoiditis. Arch. Pathol.57 (1954), 138–146.

    Google Scholar 

  34. Nakamura, S., Camins, M. B., Hochwald, G. M., Pressure absorption responses to the infusion of fluid into the spinal cord central-canal of kaolin hydrocephalic-cats. J. Neurosurg.55 (1983), 198–203.

    Google Scholar 

  35. Torvik, A., Bhatia, R., Nyberg-Hansen, R., The pathology of experimental obstructive hydrocephalus. Neuropath. App. Neurobiol.2 (1976), 41–52.

    Google Scholar 

  36. Torvik, A., Murthy, V. S., The spinal cord central canal in kaolin induced hydrocephalus. J. Neurosurg.47 (1972), 397–402.

    Google Scholar 

  37. Welch, K., Pollay, M., The spinal arachnoid villi of the monkeys cerepithecus aethiops sabaeus and Macaca irus. Anat. Record.145 (1963), 43–46.

    Google Scholar 

  38. Williams, B., The distending force in the production of communicating syringomyelia. Lancet2 (1969), 189–193.

    PubMed  Google Scholar 

  39. Williams, B., Bentley, J., Experimental communicating syringomyelia in dogs after cisternal kaolin injection. Part I. Morphology. J. Neurol.48 (1980), 93–107.

    Google Scholar 

  40. Williams, B., Timperley, W. R., The distending force in communicating syringomyelia (Letter). Lancet2(1970), 41–42.

    PubMed  Google Scholar 

  41. Williams, B., Subarachnoid pouches of the posterior fossa with syringomyelia. Acta Neurochir. (Wien)47 (1979), 187–217.

    Google Scholar 

  42. Woodward, J. S., Freeman, L. W., Ischaemia of the spinal cord. An experimental study, J. Neurosurg.13 (1956), 63–72.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulhauer, K., Donauer, E. Experimental hydrocephalus and hydrosyringomyelia in the cat. Acta neurochir 74, 72–80 (1985). https://doi.org/10.1007/BF01413282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01413282

Keywords

Navigation