Skip to main content
Log in

Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes incryptomonas maculata following nutrient deficiency

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The photosynthetic pigments of the marine algaCryptomonas maculata are decreased under energy fluence rates of 4.4 Wm−2 (high light=HL). That this is a result of nitrogen deprivation following an increased cell growth rate triggered by high light in comparison to the control under 1.28 Wm−2 (low light=LL) is evident from combined pigment, growth rate and nutrient analyses. Fine structural studies by electron microscopy revealed that the electron opaque material in the thylakoid lumen of the plastid is lost under high light treatment parallel to the severe loss of almost 90% phycoerythrin-545. The reduction of chlorophylla andc is accompanied by a reversible disorganization of the thylakoid packing and the thylakoid membranes.

In a combined freeze fracture study of HL and LL cells ofCryptomonas maculata it is demonstrated that the exoplasmic fracture face of the thylakoid membranes in HL cells possessed only 10 to 15% of the particles of the LL control; the 12.5 nm particle class was almost lacking, whereas particle populations with main sizes of 10 and 7.5 nm are preserved.

The protoplasmic face, on the other hand, was less severely affected with only slight reduction in the particle frequency and a shift of the particle size from two populations with peaks at 10 and 7.5 nm to one class centred around 7.0 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antia, N. J., Chorney, V., 1968: Nature of the nitrogen compounds supporting phototrophic growth of the marine cryptomonadHemiselmis virescens. J. Protozool.15, 198–201.

    Google Scholar 

  • Berkaloff, C., Duval, J. C., Hauswirth, N., Rousseau, B., 1983: Freeze fracture study of thylakoids ofFucus serratus. J. Phycol.19, 96–100.

    Google Scholar 

  • Bisalputra, T., 1974: Plastids. In: Algal physiology and biochemistry (Stewart, W. D. P., ed.), pp. 124–160. Oxford-London-Edinburgh-Melbourne: Blackwell Scientific Publ.

    Google Scholar 

  • Boussiba, S., Richmond, A. E., 1980: C-phycocyanin as a storage protein in the blue-green algaSpirulina platensis. Arch. Microbiol.125, 143–147.

    Google Scholar 

  • Bowen, M. S., Ward, H. B., 1979: Laboratory culture ofCryptomonas ovata andChroomonas sp. (Cryptophyceae). Microbios. Lett.6, 77–84.

    Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N. B., Karnowsky, M. J., Moor, H., Muehlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L. A., Steere, R. L., Weinstein, R. S., 1975: Freeze-etch nomenclature. Science190, 54–56.

    Google Scholar 

  • Brown, T. E., Richardson, F. L., 1968: The effect of growth environment on the physiology of algae: light intensity. J. Phycol.4, 38–54.

    Google Scholar 

  • Christensen, T., 1962: Alger. In: Systematisk botanik 2 (Böcher, T. W., Lange, M., Sörensen, T., eds.), pp. 1–178. Copenhagen: Munksgaard.

    Google Scholar 

  • Chu, Z.-X., Anderson, J. M., 1984: Modulation of light-harvesting assemblies in chloroplasts of a shade plantAlocasia macrorrhiza. Photobiochem. Photobiophys.8, 1–10.

    Google Scholar 

  • Cloern, J. E., 1977: Effects of light intensity and temperature onCryptomonas ovata (Cryptophyceae) growth and nutrient uptake. J. Phycol.13, 389–395.

    Google Scholar 

  • Dodge, J. D., 1969: The ultrastructure ofChroomonas mesostigmalica Butcher (Cryptophyceae). Arch. Microbiol.69, 266–280.

    Google Scholar 

  • Dwarte, D. M., Vesk, M., 1983: A freeze-fracture study of cryptomonad thylakoids. Protoplasma117, 130–141.

    Google Scholar 

  • Faust, M. A., Gantt, E., 1973: Effect of light intensity and glycerol on the growth, pigment composition and ultrastructure ofChroomonas sp. J. Phycol.9, 489–495.

    Google Scholar 

  • Gantt, E., 1981: Phycobilisomes. Ann. Rev. Plant Physiol.32, 327–347.

    Google Scholar 

  • —,Edwards, M. R., Provasoli, L., 1971: Chloroplast structure of theCryptophyceae. Evidence for phycobiliproteins within intrathylakoidal space. J. Cell Biol.48, 280–290.

    Google Scholar 

  • GDCh, 1975: Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlamm-Untersuchung, 3. Aufl. 1975 (Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker, ed.). Weinheim: Verlag Chemie.

    Google Scholar 

  • Gibbs, S. P., 1970: The comparative ultrastructure of the algal chloroplast. Am. N. Y. Acad. Sci.175, 454–473.

    Google Scholar 

  • Golecki, J. R., Drews, G., 1982: Supramolecular organization and composition of membranes. In: The biology of cyanobacteria (Carr, N. G., Whitton, B. A., eds.), pp. 125–141. Oxford-London-Edinburgh: Blackwell Scientific Publ.

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F., 1975: New spectrophotometric equations for determining Chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen167, 191–194.

    Google Scholar 

  • Köst, H.-P., Senser, M., Wanner, G., 1984: Effect of nitrate and sulphate starvation onPorphyridium cruentum cells. Z. Pflanzenphysiol.113, 231–249.

    Google Scholar 

  • Lichtlé, C., 1979: Effects of nitrogen deficiency and light of high intensity onCryptomonas rufescens (Cryptophyceae). I. Cell and photosynthetic apparatus transformations and encystment. Protoplasma101, 283–293.

    Google Scholar 

  • —,Thomas, J. C., 1976: Etude ultrastructurale des thylacoides des algues à phycobiliprotéines, comparaison des résultats obtenus par fixation classique et cryodécapage. Phycologia15, 393–404.

    Google Scholar 

  • Lucas, I. A. N., 1970b: Observations on the fine structure of theCryptophyceae. I. The genusCryptomonas. J. Phycol.6, 30–38.

    Google Scholar 

  • Luft, J. H., 1961: Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol.9, 409–414.

    Google Scholar 

  • MacColl, R., Berns, D. S., Gibbons, O., 1976: Characterization of cryptomonad phycoerythrin and phycocyanin. Arch. Biochem. Biophys.177, 265–275.

    Google Scholar 

  • Miller, K. R., Cushman, R. A., 1979: A chloroplast membrane lacking photosystem II. Thylakoid stacking in the absence of the photosystem II particle. Biochim. Biophys. Acta546, 481–497.

    Google Scholar 

  • Mörschel, E., Mühlethaler, K., 1983: On the linkage of exoplasmatic freeze-fracture particles to phycobilisomes. Planta158, 451–457.

    Google Scholar 

  • —,Wehrmeyer, W., 1977: Multiple forms of phycoerythrin-545 fromCryptomonas maculata. Arch. Microbiol.113, 83–89.

    Google Scholar 

  • Nultsch, W., Benedetti, P. A., Gualtieri, P., 1983: Microspectrophotometric investigations of photobleaching inAnabaena variabilis cells and heterocysts and its prevention by sodium azide. Z. Pflanzenphysiol.111, 327–332.

    Google Scholar 

  • Provasoli, L., Mclaughlin, J. J., Droop, M. R., 1957: The development of artificial media for marine algae. Arch. Microbiol.25, 392–428.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol.17, 208–212.

    Google Scholar 

  • Schmetterer, G., Peschek, G. A., Sleytr, U. B., 1983: Thylakoid degradation during photooxidative bleaching of the cyanobacteriumAnacystis nidulans. Protoplasma115, 202–207.

    Google Scholar 

  • Staehelin, L. A., Arntzen, C. J., 1983: Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J. Cell Biol.97, 1327–1337.

    Google Scholar 

  • Stevens, S. E. Jr., Balkwill, D. L., Paone, D. A. M., 1981: The effects of nitrogen limitation on the ultrastructure of the cyanobacteriumAgamenellum quadruplicatum. Arch. Microbiol.130, 204–212.

    Google Scholar 

  • Sweeney, B. M., 1981: Freeze-fractured chloroplast membranes ofGonyaulax polyedra (Pyrrophyta). J. Phycol.17, 95–101.

    Google Scholar 

  • TandeaudeMarsac, N., 1983: Phycobilisomes and complementary chromatic adaptation in cyanobacteria. Bulletin de l'Institut Pasteur81, 201–254.

    Google Scholar 

  • Thinh, L.-V., 1983: Effect of irradiance on the physiology and ultrastructure of the marine cryptomonadCryptomonas strain Lis (Cryptophyceae). Phycologia22, 7–11.

    Google Scholar 

  • Vesk, M., Jeffrey, S. W., 1977: Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J. Phycol.13, 280–288.

    Google Scholar 

  • Wehrmeyer, W., 1970: Zur Feinstruktur der Chloroplasten einiger photoautotropherCryptophyceen. Arch. Mikrobiol.71, 367–383.

    Google Scholar 

  • —,Schneider, H., 1975: Elektronenmikroskopische Untersuchungen zur reversiblen Veränderung der Chloroplastenfeinstruktur vonRhodella violacea bei Stickstoffmangel. Biochem. Physiol. Pflanzen168, 519–532.

    Google Scholar 

  • Yamanaka, G., Glazer, A. N., 1980: Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation inSynechococcus sp. Arch. Microbiol.124, 39–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhiel, E., Mörschel, E. & Wehrmeyer, W. Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes incryptomonas maculata following nutrient deficiency. Protoplasma 129, 62–73 (1985). https://doi.org/10.1007/BF01282306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282306

Keywords

Navigation