Skip to main content
Log in

Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite—Anorthosite batholith (Karelia, Russia)

Pb-Nd-Sr Isotope, und geochemische Daten: Bedeutung für die Entstehung des 1,54–1,56 Salmi Rapakivi Granit-ANorthosit-Batholithen (Karelia, Rußland)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Salmi batholith is situated on the eastern edge of the EW-trending anorthositerapakivi granite belt of the Fennoscandian shield, at the contact between Proterozoic and Archean crustal domains. The tectonic setting and high K, Rb, Nb, Y, Zr, REE (except Eu), F, Sn, Be, and Li contents of.the Salmi batholith indicate that it represents typical subalkaline A-type and within plate granites. Gabbro-anorthosites of the batholith demonstrate a concordant U-Pb apatite age of 1563 ± 9 (2σ) Ma and a Sm-Nd internal isochron age of 1552 ± 69 Ma. Zircons from amphibole-biotite granites have an upper concordia intercept U-Pb age of 1543 ± 8 Ma. An older inherited zircon component with elevated Th/U ratio is found in zircons separated from K-feldspar ovoids. Rb-Sr internal errorchron for the granites yields an age of 1455 ± 17 Ma, probably the time of completion of postmagmatic processes within the batholith. The gabbro-anorthosites and granites show similar initial Nd, Sr, and feldspar Pb isotope compositions (ɛ Nd = - 6.5 to - 8.2;μ 2 = 8.6 to 8.9;κ 2 = 3.9 to 4.0; ISr = 0.7052 to 0.7057 for the basic rocks, andɛ Nd = -6.2 to -8.9;μ 2 = 8.1 to 9.2;κ 2 = 4.0 to 4.4; ISr = 0.7050 to 0.7072 for the granites). Two-stage neodymium TDM model ages for both assemblages range from 2.60 to 2.80 Ga. Old LREE-enriched sources with low time-integrated U/Pb and Rb/Sr and elevated Th/U ratios were involved in the formation of both the gabbroanorthosites and the granites. Bulk contamination with crustal materials cannot explain the data for the basic rocks. Selective incorporation of Pb, Sr, and Nd from Archean lower crust is needed, or else, the gabbro-anorthosites may have been derived from an isotopically anomalous subcontinental mantle source. The ascent of a mantle diapir resulted in anatexis of the lower crust and formation of the parent magma for the rapakivi granites.

Zusammenfassung

Der Salmi-Batholith ist am östlichen Rand des Ost-West streichenden Anorthosit Rapakivi-Granitgürtels des fennoskandischen Schildes am Kontakt zwischen proterozoischen und archaischen Krustenbereichen gelegen. Die tektonische Position und hohe K, Rb, Nb, Y, Zr, REE (mit Ausnahme von Eu), F, Sn, Be und Li-Gehalte des Salmi-Batholithen weisen darauf hin, daß es sich hier um einen typischen subalkalischen A-Typ und “within plate” Granit handelt. Gabbro-Anorthosite des Batholithen zeigen ein konkordantes U-Pb Apatit alter von 1563 ± 9 (2σ) Ma und ein internes Sm-Nd Isochronenalter von 1552 ± 69 Ma. Zirkone aus den Amphibolit-Biotitgraniten haben ein oberes Concordia U-Pb Alter von 1543 ± Ma. Ein ältere, ererbte Zirkonkom ponente mit erhöhtem Th/U Verhältnis kommt in Zirkonen, die von K-Feldspat Ovoi den abgetrennt wurden, vor. Eine interne Rb-Sr Errorchrone für die Granite ergibtein Alter von 1455 ± 7 Ma. Dies repräsentiert wahrscheinlich die Zeit des Abschlusses postmagmatischer Prozesse innerhalb des Batholithen. Die Gabbro-Anorthosite und Granite zeigen ähnliche Nd, Sr und Feldspat Pb Isotopenzusammensetzungen (ε Nd = −6.5 to 8.2;μ 2 = 8.6 to 8.9; K2 = 3.9 to 4.0; ISr = 0.7052 to 0.7057 für die mafischen Gesteine, undɛ Nd = −6.2 to -8.9;μ 2 = 8.1 to 9.2; K2 = 4.0 to 4.4; ISr = 0.7050 to 0.7072 für die Granite). Zweistufige Neodymium TDM Modellalter für beide Assoziationen liegen zwischen 2.60 und 2.80 Ga. Alte LREE-angereicherte Quellen mit niedrigen, zeitintegrierten U/Pb und Rb/Sr und erhöhten Th/U Verhältnissen waren bei der Bildung der Gabbro-Anorthosite und Granite involviert. Kontamination mit Krus tenmaterial kann die Daten für die basischen Gesteine nicht erklären. Entwederist dazu eine selektive Inkorporation von Pb, Sr und Nd aus der tieferen archaischen Kruste erforderlich oder man muß annehmen, daß die Gabbro-Anorthosite von einer isotopisch anomalen subkontinentalen Mantelquelle stammen. Der Aufstieg eines Mantel-Diapirs führt zu Anatexis der tieferen Kruste und zur Bildung der Ausgangsmagmen für die Rapakivi Granite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelin Yu, Beljaeu A, Larin A, Neymark L, Stepanou K (1991) Salmi batholith and Pitkäranta ore field in Soviet Karelia. In:Haapala I, Rämö OT,Salonsaari PT (eds). Geol Surv Finland Guide 33: 57

  • Anderson JL (1983) Proterozoic anorogenic granite plutonism of North America. In:Medaris LG Jr, Byers CW, Mickelson DM, Shanks WC (eds) Proterozoic geology: selected papers from an international Proterozoic symposium. Geol Soc Am Mem 161: 133–154

  • Arndt NT, Goldstein SL (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161: 201–212

    Google Scholar 

  • Ashwal LD, Wooden SL (1985) Sm-Nd isotopic studies of Proterozoic anorthosites: systematics and implications. In:Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic Provinces, pp 61–73

  • Barker F, Wones DR, Sharp WN, Desborough GA (1975) The Pikes Peak batholith, Colorado Front Range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite. Precambrian Res 2: 97–160

    Google Scholar 

  • Bridgwater D, Windley BF (1973) Anorthosites, post-orogenic granites, acid volcanic rocks and crustal development in the North Atlantic Shield during the mid-Proterozoic. Geol Soc South Africa Spec Publ 3: 307–317

    Google Scholar 

  • Emslie RF (1985) Proterozoic anorthosite massifs. In:Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic Provinces, pp 39–60

  • Faure G (1986) Principles of isotope geology, 2nd ed. 2nd ed. Wiley, New York, 589 pp

    Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet Sci Lett 87: 249–265

    Google Scholar 

  • Higgins MD, Doig R (1981) The Sept Iles anorthosite complex: field relationships, geochronology and petrology. Can J Earth Sci 18: 561–573

    Google Scholar 

  • Huhma H (1986) Sm-Nd, U-Pb and Pb-Pb isotopic evidence for the origin of the Early Proterozoic Svecokarelian crust in Finland. Geol Surv Finland Bull 337:48

    Google Scholar 

  • Kempton PD, Harmon RS, Hawkesworth CJ, Moorbath S (1990) Petrology and geochemistry of lower crustal granulites from Geronimo Volcanic Field, southeastern Arizona. Geochim Cosmochim Acta 54: 3401–3426

    Google Scholar 

  • Kolker A, Lindsley DH, Hanson GN (1990) Geochemical evolution of the Maloin Ranch pluton, Laramie anorthosite complex, Wyoming: trace elements and petrogenetic models. Am Mineral 75: 572–588

    Google Scholar 

  • Kranck EH (1969) Anorthosites and rapakivi magmas from the lower crust. In:Isachsen YW (ed) Origin of anorthosites and related rocks. NY State Mus Sci Serv Mem 18:93–97

  • Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using air abrasion technique. Geochim Cosmochim Acta 46: 637–649

    Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from Nd and Sr isotopic study. Contrib Mineral Petrol 98: 129–138

    Google Scholar 

  • Lobach-Zhuchenko SB, Chekulajev VP, Sergeev SA, Levchenkov OA, Krylov IN (1992) The oldest rocks of the Karelian granite-greenstone terraine. Precambrian Res (in press)

  • Ludwig KR (1987) PBDAT for MS-DOS. A computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data. US Geol Surv Open-File Rep 88–542, 40 pp

  • Ludwig KR (1988) ISOPLOT—a plotting and regression program for radiogenic-isotope data, for IBM-PC compatible computers, version 2. US Geol Surv Open-File Rep 88-557: 62

    Google Scholar 

  • Manhes G, Minster IF, Allégre CJ (1978) Comparative uranium-thorium-lead and rubidiumstrontium study of the Saint Severin amphoterite: consequences foe early solar system chronology. Earth Planet Sci Lett 39: 14–24

    Google Scholar 

  • Nurmi PA, Haapala I (1986) The Proterozoic granitoids of Finland: granite types, metallogeny and relation to crustal evolution. Bull Geol Soc Finland 58: 203–233

    Google Scholar 

  • Ovchinnikova GV, Lobac-Zhuchenko SB, Neymark LA, Krylov IN (1990) The petrology of the late-kinematic granites in South-East Karelia. Geol Zborn Geol Carp 41: 681–692

    Google Scholar 

  • Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78: 279–297

    Google Scholar 

  • Patchett PJ, Kouvo O (1986) Origin of continental crust of 1.9-1.7 Ga age: Nd isotopes and U-Pb zircon ages in the Svecokarelian terrain of South Finland. Contrib Mineral Petrol 92: 1–12

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983

    Google Scholar 

  • Rämö OT (1991) Petrogenesis of the Proterozoic rapakivi granites and related basic rocks of southeastern Fennoscandia: Nd and Pb isotopic and general geochemical constraints. Geol Surv Finland Bull 355, 161 pp (1991)

  • Rämö OT, Haapala I (1991) The rapakivi granites of eastern Fennoscandia: a review with insights into their origin in the light of new Sm-Nd isotopic data. In:Gower CF, Rivers T, Ryan B (eds) Mid-Proterozoic Laurentia-Baltica. Geol Ass Can Spec Paper 38: 401–415

  • Richard P, Shimizu N, AWgre CJ (1976)143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31: 269–273

    Google Scholar 

  • Rudnick RL, McDonough WF, McCulloch WF, Taylor SR (1986) Lower crustal xenoliths from Queensland, Australia: evidence for deep crustal assimilation and fractionation of continental basalts. Geochim Cosmochim Acta 50: 1099–1115

    Google Scholar 

  • Rudnick RL, Goldstein SL (1990) The Pb isotopic composition of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet Sci Lett 98: 192–207

    Google Scholar 

  • Scherbak NP et al. (1989) Geochronological scale of precambrian of the Ukrainian shield. Kiev, 144 pp (in Russian)

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26: 207–221

    Google Scholar 

  • Steiger RN, Jäger E (1977) Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 26: 359–362

    Google Scholar 

  • Suominen V (1991) The chronostratigraphy of SW Finland with special reference to the Postjotnian and Subjotnian diabases. Geol Surv Finland Bull 356, 100 pp (1991)

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford London Edinburgh Boston Palo Alto Melbourne, 312 pp

    Google Scholar 

  • Vaasjoki M (1977) Rapakivi granites and other postorogenic rocks in Finland. Their age and the lead isotopic composition of certain associated galena mineralizations. Geol Surv Finland Bull 294, 64 pp (1977)

  • Vaasjoki M, Rämö OT, Sakko M (1991) New U-Pb ages from the Wiborg rapakivi area: constraints on the temporal evolution of the rapakivi granite—anorthosite—diabase dyke association of southeastern Finland. In:Haapala I, Condie KC (eds) Precambrian granitoids—petrogenesis, geochemistry and metallogeny. Precambrian Res 51: 227–243

  • Velikoslavinskiy DA, Birkis AP, Bogatikov OA, Bukharev VP, Velikoslavinskiy SD, Gordienko LI, Zinozhenko 0V, Kivisilla JJ, Kirs JE, Kononov YV, Levitskiy YF, Niin MI, Puura VA, Khvorov MI, Shustova LE (1978) Anorthosite-rapakivi suite. Nauka, Leningrad, 296 pp (in Russian)

  • Vorma A (1976) On the petrochemistry of rapakivi granites with special reference to the Laitila massif, southwestern Finland. Geol Surv Finland Bull 285, 98 pp (1976)

  • Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45: 2311–2323

    Google Scholar 

  • Windley BF (1983) A tectonic review of the Proterozoic. In: Medaris LG Jr, Byers CW Mickelson DM, Shanks WC (eds) Proterozoic geology: selected papers from an international Proterozoic symposium. Geol Soc Am Mem 161: 1-10

  • Zartman RE, Doe BR (1981) Plumbotectonics—the model. Tectonophysics 75: 135–162

    Google Scholar 

  • Zindler A, Hart SR, Brooks C (1981) The Shabogamo Intrusive suite, Labrador: Sr and Nd isotopic evidence for contaminated mafïc magmas in the Proterozoic. Earth Planet Sci Lett 54: 217–235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neymark, L.A., Yu. Amelin, V. & Larin, A.M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite—Anorthosite batholith (Karelia, Russia). Mineralogy and Petrology 50, 173–193 (1994). https://doi.org/10.1007/BF01160146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160146

Keywords

Navigation