Skip to main content
Log in

Cytochemical approaches to the localization of specific adenosine triphosphatases

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Albers, R. W. &Koval, G. J. (1972). Sodium-potassium-activated adenosine triphosphatase VII. Concurrent inhibition of Na+−K+-adenosine triphosphatase and activation of K+-nitrophenyl phosphatase activities.J. biol. Chem. 247, 3088–92.

    Google Scholar 

  • Bastide, F., Meissner, G., Fleischer, S. &Post, R. L. (1973). Similarity of the active site of phosphorylation of the adenosine triphosphatase for transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle.J. biol. Chem. 248, 83–5.

    Google Scholar 

  • Beeuwkes, R. &Rosen, S. (1975). Renal sodium-potassium adenosine triphosphatase: optical localization and X-ray microanalysis.J. Histochem. Cytochem. 23, 828–39.

    Google Scholar 

  • Birchmeier, W. &Singer, S.J. (1977). On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP.J. Cell Biol. 73, 647–59.

    Google Scholar 

  • Borgers, M. (1973). The cytochemical application of new potent inhibitors of alkaline phosphatases.J. Histochem. Cytochem. 21, 812–24.

    Google Scholar 

  • Bronk, J. R. (1974). The relationship of membrane adenosine triphosphatases to transport processes.Biochem. Soc. Spec. Publ. 4, 3–18.

    Google Scholar 

  • Bronk, J. R. &Leese, H. J. (1974). Accumulation of amino-acids and glucose by the mammalian small intestine.Symp. Soc. exp. Biol. 28, 283–304.

    Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1974). The use and abuse of muscle histochemistry.Ann. N.Y. Acad. Sci. 228, 121–44.

    Google Scholar 

  • Chang, H., Saccomani, S., Rabon, E., Schackmann, R. &Sachs, G. (1977). Proton transport by gastric membrane vesicles.Biochim. biophys. Acta 464, 313–27.

    Google Scholar 

  • Drickamer, L. K. (1975). The red cell membrane contains three different adenosine triphosphatases.J. biol. Chem. 250, 1952–4.

    Google Scholar 

  • Duncan, C. J. (1975). ATPases in rabbit erythrocytes: stimulation by HCO 3 and by Na+-plus-K+.Life Sci. 16, 955–66.

    Google Scholar 

  • Ellis, R. &Goertemiller, C. (1974). Cytological effects of salt-stress and localization of transport adenosine triphosphatase in the lateral nasal glands of the desert iguana,Dipsosaurus dorsalis Anat. Rec. 180, 285–97.

    Google Scholar 

  • Epstein, F. (1969). The role of sodium and potassium ATPase in renal sodium reabsorption. In:Renal Transport and Diuretics, (eds. K. Thurau & H. Jahrmarker) pp. 67–76. New York:Springer.

    Google Scholar 

  • Ernst, S. A. (1972a). Transport adenosine triphosphatase cytochemistry I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland.J. Histochem. Cytochem. 20, 13–22.

    Google Scholar 

  • Ernst, S. A. (1972b). Transport adenosine triphosphatase cytochemistry II. Cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland.J. Histochem. Cytochem. 20, 23–38.

    Google Scholar 

  • Ernst, S. A. (1973). Cytochemical localization of phosphatase activity in rat kidney cortex.J. Cell Biol. 59, (2, Part. 2) 93a.

    Google Scholar 

  • Ernst, S. A. (1975). Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex.J. Cell Biol. 66, 586–608.

    Google Scholar 

  • Ernst, S. A. &Mills, J. W. (1977). Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland.J. Cell Biol. 75, 74–94.

    Google Scholar 

  • Farquhar, M. G. &Palade, G. E. (1966). Adenosine triphosphatase localization in amphibian epidermis.J. Cell Biol. 30, 359–79.

    Google Scholar 

  • Fernández-Morán, H. (1962). Cell-membrane ultrastructure. Low temperature electron microscopy and X-ray diffaction studies of lipoprotein components in lamellar systems.Circulation 26, 1039–65.

    Google Scholar 

  • Fernández-Morán, H., Oda, T., Blair, P. V. &Green, D. E. (1964). A macromolecular repeating unit of mitochondrial structure and function. Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle.J. Cell Biol. 22, 63–100.

    Google Scholar 

  • Firth, J. A. (1974). Problems of specificity in the use of a strontium capture technique for the cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase in mammalian renal tubules.J. Histochem. Cytochem. 22, 1163–8.

    Google Scholar 

  • Firth, J. A. (1977). Cytochemical localization of the K+ regulation interface between blood and brain.Experientia 33, 1093–4.

    Google Scholar 

  • Firth, J. A. &Marland, B. Y. (1975). The significance of inhibitor-resistant alkaline phosphatase in the cytochemical demonstration of transport adenosine triphosphatase.J. Histochem. Cytochem. 23, 571–4.

    Google Scholar 

  • Flavell, R. (1972). Mitochondria and chloroplasts as descendants of prokaryotes.Biochem. Genetics 6, 275–91.

    Google Scholar 

  • Freiman, D. G. &Kaplan, N. (1960). Studies on the histochemical differentiation of enzymes hydrolysing adenosine triphosphate.J. Histochem. Cytochem. 8, 159–70.

    Google Scholar 

  • Garrahan, P. J. &Glynn, I. M. (1967). The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump.J. Physiol. (Lond.) 192, 237–56.

    Google Scholar 

  • Glynn, I. M. (1957). The action of cardiac glycosides on sodium and potassium movements in human red cells.J. Physiol. (Lond.) 136, 148–73.

    Google Scholar 

  • Gmaj, P., Nowicka, C. &Angielski, S. (1974). Oligomycin-insensitive ATPase and calcium transport in rat kidney cortex mitochondria.FEBS Letters 47, 76–80.

    Google Scholar 

  • Grisolia, S. &Mendelson, J. (1974). Location of a very active bicarbonate-dependent ATPase in the outer membrane of rat and liver mitochondria.Biochim. biophys. Res. Commun. 58, 968–73.

    Google Scholar 

  • Grossman, I. W. &Heitkamp, D. H. (1968). Electron microscopic localization of mitochondrial adenosine triphosphatase activity.J. Histochem. Cytochem. 16, 645–53.

    Google Scholar 

  • Guth, L. &Albers, R. W. (1974). Histochemical demonstration of (Na+−K+)-activated adenosine triphosphatase.J. Histochem. Cytochem. 22, 320–6.

    Google Scholar 

  • Hajós, F., Sótonyi, P., Kerpel-Fronius, S., Somogyi, E. &Bujdosó, G. (1974). The ultrastructural demonstration of mitochondrial ATPase activity by the ATP-dependent accumulation of Ca2+.Histochemistry 40, 89–95.

    Google Scholar 

  • Hasselbach, W. &Suko, J. (1974). Calcium and phosphate turnover in the sarcoplasmic membranes.Biochem. Soc. Spec. Publ. 4, 159–73.

    Google Scholar 

  • Hayashi, H., Plishker, G. A. &Penniston, J. T. (1975). Effect of carbonylcyanidem-chlorophenylhydrazone on the calcium-stimulated ATPase activity of erythrocyte ghosts.Biochim. biophys. Acta 394, 145–55.

    Google Scholar 

  • Hodgkin, A. L. &Keynes, R. D. (1955). Active transport of cations in giant axons fromSepia andLoligo.J. Physiol. (Lond.) 128, 28–60.

    Google Scholar 

  • Izutsu, K. T. &Siegel, I. A. (1972). A microsomal HCO 3 -stimulated ATPase from the dog submandibular gland.Biochim. biophys. Acta. 284, 478–84.

    Google Scholar 

  • Jacobsen, N. O. &Jørgensen, P. L. (1969). A quantitative biochemical and histochemical study of the lead method for localization of adenosine triphosphate-hydrolysing enzymes.J. Histochem. Cytochem. 17, 443–53.

    Google Scholar 

  • Katz, S. &Blostein, R. (1975). Ca2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte.Biochim. biophys. Acta 389, 314–24.

    Google Scholar 

  • Khan, M. A., Papadimitriou, J. M., Holt, P. G. &Kakulas, B. A. (1972). A modified histochemical technique for sarcoplasmic reticular-ATPase.Histochemie 30, 329–33.

    Google Scholar 

  • Khan, M. A., Papadimitriou, J. M. &Kakulas, B. A. (1975). On the specificity of the histochemical technique for sarcoplasmic reticular adenosine triphosphatase: a light and electron microscopic study.Histochemistry 43, 101–11.

    Google Scholar 

  • Kinne-Saffran, E. &Kinne, R. (1974). Presence of bicarbonate stimulated ATPase in the brush border microvillus membranes of the proximal tubule.Proc. Soc. exp. Biol. Med. 146, 751–3.

    Google Scholar 

  • Kyte, J. (1974). The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies.J. biol. Chem. 249, 3652–60.

    Google Scholar 

  • Kyte, J. (1976a). Immunoferritin determination of the distribution of (Na++K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment.J. Cell Biol. 68, 287–303.

    Google Scholar 

  • Kyte, J. (1976b). Immunoferritin determination of the distribution of (Na++K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment.J. Cell Biol. 68, 304–18.

    Google Scholar 

  • Lazarus, S. S., &Barden, H. (1962). Histochemistry and electron microscopy of mitochondrial adenosine triphosphatase.J. Histochem. Cytochem. 10, 285–93.

    Google Scholar 

  • Lazarus, S. S. &Barden, H. (1964). Ultramicroscopic localization of mitochondrial adenosine triphosphatase.J. Ultrastruct. Res. 10, 189–93.

    Google Scholar 

  • Lazarus, S. S. &Vethamany, V. G. (1966). Fine structural localization of ATPase in mitochondria.J. Histochem. Cytochem. 14, 810.

    Google Scholar 

  • Leonard, E. P. &Provenza, D. V. (1972). Comparative study of the various methods for the ultrastructural localization of alkaline phosphatase activity.Histochemie 30, 1–12.

    Google Scholar 

  • Leuenberger, P. M. &Novikoff, A. B. (1974). Localization of transport adenosine triphosphatase in rat cornea.J. Cell Biol. 60, 721–31.

    Google Scholar 

  • Luthra, M. G., Hildenbrandt, G. R. &Hanahan, D. J. (1976). Studies on an activator of the (Ca2++Mg2+)-ATPase of human erythrocyte membranes.Biochim. biophys. Acta 419, 164–79.

    Google Scholar 

  • MacLennan, D. H. &Asai, J. (1968). Studies on the mitochondrial adenosine triphosphatase system V. Localization of the oligomycin-sensitivity conferring protein.Biochem. biophys. Res. Commun. 33, 441–7.

    Google Scholar 

  • Madsen, N. B. (1963). Mercaptide-forming agents. In:Metabolic Inhibitors. A Comprehensive Treatise. (eds. R. M. Hochster & J. H. Quastel), Vol. 2, pp. 119–43. New York & London: Academic Press.

    Google Scholar 

  • Marx, J. L. (1973). Microtubules: versatile organelles.Science 181, 1236–7.

    Google Scholar 

  • Mills, J. W. &Ernst, S. A. (1975). Localization of sodium pump sites in frog urinary bladder.Biochim. biophys. Acta 375, 268–73.

    Google Scholar 

  • Mills, J. W., Ernst, S. A. &Dibona, D. R. (1977). Localization of Na+-pump sites in frog skin.J. Cell Biol. 73, 88–110.

    Google Scholar 

  • Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature 191, 144–68.

    Google Scholar 

  • Moses, H. L. &Rosenthal, A. S. (1967). On the significance of lead-catalysed hydrolysis of nucleoside phosphates in histochemical systems.J. Histochem. Cytochem. 15, 354–5.

    Google Scholar 

  • Moses, H. L., Rosenthal, A. S., Beaver, D. L. &Schuffman, S. S. (1966). Lead ion and phosphatase histochemistry II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity.J. Histochem. Cytochem. 14, 702–10.

    Google Scholar 

  • Nagayama, A. &Dales, S. (1970). Rapid purification and the immunological specificity of mammalian microtubular paracrystals possessing an ATPase activity.Proc. Natn. Acad. Sci. U.S.A. 66, 464–71.

    Google Scholar 

  • Narumi, S. &Kanno, M. (1973). Effects of gastric acid stimulants and inhibitors on the activities of HCO 3 -stimulated, Mg2+-dependent ATPase and carbonic anhydrase in rat gastric mucosa.Biochim. biophys. Acta 311, 80–9.

    Google Scholar 

  • Novikoff, A. B. (1967). Enzyme localizations with Wachstein-Meisel procedures: real or artifact.J. Histochem. Cytochem. 15, 353–4.

    Google Scholar 

  • Novikoff, A. B. (1970a). Enzyme localizations with Gomori type lead phosphate procedures: real or artifact.J. Histochem. Cytochem. 18, 366.

    Google Scholar 

  • Novikoff, A. B. (1970b). Their phosphatase controversy: love's labours lost.J. Histochem. Cytochem. 18, 916–7.

    Google Scholar 

  • Ogawa, K. &Mayahara, H. (1969). Intramitochondrial localization of adenosine triphosphatase activity.J. Histochem. Cytochem. 17, 487–90.

    Google Scholar 

  • Padykula, H. A. &Herman, E. (1955). Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques.J. Histochem. Cytochem. 3, 161–7.

    Google Scholar 

  • Palkama, A. &Uusitalo, R. (1970). The histochemical demonstration of sodium potassium-activated adenosine triphosphatase activity in rabbit ciliary body.Annls Med. exp. Biol. Fenn. 48, 49–55.

    Google Scholar 

  • Pang, D. C. &Briggs, F. N. (1973). Reaction mechanism of the cardiac sarcotubule calcium (II) dependent adenosine triphosphatase.Biochemistry 12, 4905–11.

    Google Scholar 

  • Pearse, A. G. E. (1972).Histochemistry: Theoretical and Applied Vol. 2, p. 1280. Edinburgh & London: Churchill Livingstone.

    Google Scholar 

  • Pitts, B. J. R. (1974). The relationship of the K+-activated phosphatase to the Na+, K+-ATPase.Ann. N. Y. Acad. Sci. 242, 293–304.

    Google Scholar 

  • Pullman, M. E., Penefsky, H. S., Datta, A. &Racker, E. (1960). Partial resolution of the enzymes catalysing oxidative phosphorylation I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase.J. biol. Chem. 235, 3322–9.

    Google Scholar 

  • Quinton, P. M. &Tormey, J. M. (1976). Localization of Na/K-ATPase sites in the secretory and reabsorptive epithelia of perfused eccrine sweat glands: a question to the role of the enzyme in secretion.J. Membrane Biol. 29, 383–99.

    Google Scholar 

  • Quinton, P. M., Wright, E. M. &Tormey, J. M. (1973). Localization of sodium pumps in the choroid plexus epithelium.J. Cell Biol. 58, 724–30.

    Google Scholar 

  • Quist, E. E. &Roufogalis, B. D. (1975). Calcium transport in human erythrocytes: separation and reconstitution of high and low Ca affinity (Mg+Ca)-ATPase activities in membranes prepared at low ionic strength.Archs Biochem. Biophys. 168, 240–51.

    Google Scholar 

  • Rega, A. F., Richards, D. E. &Garrahan, P. J. (1973). Calcium iondependentp-nitrophenyl phosphate phosphatase activity and calcium iondependent adenosine triphosphatase activity from human erythrocyte membranes.Biochem. J. 136, 185–94.

    Google Scholar 

  • Robinson, J. D. (1975). Specific modifications of the Na+, K+-dependent adenosine triphosphatase by dimethyl sulfoxide.Ann. N.Y. Acad. Sci. 243, 60–72.

    Google Scholar 

  • Ronquist, G. &Ågren, G. K. (1975). A Mg2+-and Ca2+-stimulated adenosine triphosphatase at the outer surface of Ehrlich ascites tumor cells.Cancer Res. 35, 1402–6.

    Google Scholar 

  • Rorive, G. &Kleinzeller, A. (1974). Ca2+-activated ATPase from renal tubular cells.Meth Enzym. 32, (B), 303–6.

    Google Scholar 

  • Rosenthal, A. S., Moses, H. L., Beaver, D. L. &Schuffman, S. S. (1966). Lead ion and phosphatase histochemistry I. Non-enzymatic hydrolysis of nucleoside phosphates by lead ion.J. Histochem. Cytochem. 14, 698–701.

    Google Scholar 

  • Rosenthal, A. S., Moses, H. L., Ganote, C. E. &Tice, L. (1969). The participation of nucleotide in the formation of phosphatase reaction product: a chemical and electron microscope autoradiographic study.J. Histochem. Cytochem. 17, 839–47.

    Google Scholar 

  • Rosenthal, A. S., Kregenow, F. M. &Moses, H. L. (1970). Some characteristics of a Ca2+-dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils.Biochim. biophys. Acta 196, 154–62.

    Google Scholar 

  • Rostgaard, J. &Behnke, O. (1965). Fine structural localization of adenosine nucleoside phosphatase activity in the sarcoplasmic reticulum and the T system of rat myocardium.J. Ultrastruct. Res. 12, 579–91.

    Google Scholar 

  • Sachs, G., Spenney, J. G. &Rehm, W. S. (1977). Gastric Secretion. In:International Review of Physiology, (ed. R. K. Crane) Vol. 12, pp. 127–71. Baltimore: University Park Press.

    Google Scholar 

  • Scarpelli, D. G. &Craig, E. L. (1963). The fine localization of nucleoside triphosphatase activity in the retina of the frog.J. Cell Biol. 17, 279–88.

    Google Scholar 

  • Schazmann, H. J. (1973). Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells.J. Physiol. (Lond.) 235, 551–69.

    Google Scholar 

  • Schatzmann, H. J. &Vincenzi, F. F. (1969). Calcium movements across the membrane of human red cells.J. Physiol. (Lond.) 201, 369–95.

    Google Scholar 

  • Shami, Y. &Radde, I. C. (1971). Calcium-stimulated ATPase of guinea-pig placenta.Biochim. biophys. Acta 249, 345–52.

    Google Scholar 

  • Simon, B., Kinne, R. &Sachs, G. (1972). The presence of a HCO 3 -ATPase in glandula submandibularis of rabbit.Pflügers Arch. ges. Physiol. 337, 177–84.

    Google Scholar 

  • Simon, B., Kinne, R. &Sachs, G. (1972). The presence of a HCO 3 ATPase in pancreatic tissue.Biochim. biophys. Acta 282, 293–300.

    Google Scholar 

  • Sommer, J. R. &Spach, M. S. (1964). Electron microscopic demonstration of adenosine triphosphatase in myofibrils and sarcoplasmic membranes of cardiac muscle of normal and abnormal dogs.Am. J. Path. 44, 491–505.

    Google Scholar 

  • Somogyi, E. &Sótonyi, P. (1969). Data to the electron microscopic demonstration of ATPase.Acta Histochem. 34, 70–85.

    Google Scholar 

  • Somogyi, E., Sótonyi, P. & Bujdosó, G. Electron-microscopic histochemical demonstration of sarcotubular ATPase in the myocardium.Acta Histochem. 43, 302–8.

  • Spenney, J. G., Strych, A., Price, A. H., Helander, H. F. &Sachs, G. (1973). Properties of ATPase of gastric mucosa. V. Preparation of membranes and mitochondria by zonal centrifugation.Biochim. biophys. Acta 311, 545–64.

    Google Scholar 

  • Stirling, C. E. (1972). Radioautographic localization of sodium pump sites in rabbit intestine.J. Cell Biol. 53, 704–14.

    Google Scholar 

  • Stirling, C. E. (1976). High-resolution autoradiography of3H-ouabain binding in salt transporting epithelia.J. Microscopy 106, 145–57.

    Google Scholar 

  • Summers, K. (1974). ATP-induced sliding of microtubules in bull sperm flagella.J. Cell Biol. 60, 321–4.

    Google Scholar 

  • Tice, L. W. (1969). Lead-adenosine triphosphate complexes in adenosine triphosphatase histochemistry.J. Histochem. Cytochem. 17, 85–94.

    Google Scholar 

  • Tice, L. W. &Engel, A. G. (1964). Histochemical studies of a cation-sensitive adenosine triphosphatase of the sarcoplasmic reticulum.J. Cell. Biol. 23, 97A.

    Google Scholar 

  • Tice, L. W. &Engel, A. G. (1966). Cytochemistry of phosphatases of the sarcoplasmic reticulum. II.In situ localization of the Mg+-dependent enzyme.J. Cell Biol. 31, 489–99.

    Google Scholar 

  • Tonomura, Y. &Inoue, A. (1974). The substructure of myosin and the reaction mechanism of its adenosine triphosphatase.Molec. Cell Biochem. 5, 127–43.

    Google Scholar 

  • Tsou, K. C., Lo, K. W. &Yip, K. F. (1975). A new method for adenosine triphosphatase adaptable for fluorescent and electron microscope application.J. Histochem. Cytochem. 23, 303–6.

    Google Scholar 

  • Tunell, G. L. &Hart, M. N. (1977). Simultaneous determination of skeletal muscle fiber, Types I, IIA, and IIB by histochemistry.Archs Neurol. 34, 171–3.

    Google Scholar 

  • Uusitalo, R. &Palkama, A. (1970). Localization of sodium-potassium stimulated adenosine triphosphatase activity in the rabbit cilary body using light and electron microscopy.Annls Med. exp. Biol. Fenn. 48, 84–8.

    Google Scholar 

  • Wachstein, M. &Meisel, E. (1957). Histochemistry of hepatic phosphatases at a physiologic pH. With special reference to the demonstration of bile canaliculi.Am. J. clin. Path. 27, 13–23.

    Google Scholar 

  • Weidekamm, E. &Brdiczka, D. (1975). Extraction and localization of a (Ca2++Mg2+)-stimulated ATPase in human erythrocyte spectrin.Biochim. biophys. Acta 401, 51–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firth, J.A. Cytochemical approaches to the localization of specific adenosine triphosphatases. Histochem J 10, 253–269 (1978). https://doi.org/10.1007/BF01007558

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007558

Keywords

Navigation