Skip to main content
Log in

The yeast,Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family

  • Special Issue: RNase MRP/RNase P Systems
  • RNase MRP
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5′-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5′-phosphate and 3′-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast,Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LRI:

long range interaction

mt:

mitochondrial

MRP:

mitochondrial RNA processing

NME:

nuclear mitochondrial endonuclease

POP:

processing of precursor

RNase:

ribonuclease

SNM:

suppressor of NME

RNP:

ribonucleoprotein

References

  1. Chang DD & Clayton DA (1987) EMBO J. 6: 409–417

    Google Scholar 

  2. Altman S, Baer M, Guerrier-Takada C & Vioque A (1986) Trends Biochem. Sci. 11: 515–518

    Google Scholar 

  3. Stark BC, Kole R, Bowman EJ & Altman S (1978) Proc. Natl. Acad. Sci. USA 75: 3717–3721

    Google Scholar 

  4. Darr SC, Brown JW & Pace NR (1992) Trends Biochem. Sci. 17: 178–182

    Google Scholar 

  5. Voique A, Arnez J & Altman S (1988) J. Mol. Biol. 202: 835–848

    Google Scholar 

  6. Guerrier-Takada C, Gardiner K, Marsh T, Pace NR & Altman S (1983) Cell 35: 849–857

    Google Scholar 

  7. Sakano H, Yamada S, Ikemura T, Shimura Y & Ozaki H (1974) Nucleic Acids Res. 1: 355–371

    Google Scholar 

  8. Lee J & Engelke DR (1989) Mol. Cell. Biol. 9: 2536–2543

    Google Scholar 

  9. Hollingsworth MJ & Martin NC (1986) Mol. Cell. Biol. 6: 1058–1064

    Google Scholar 

  10. Morales MJ, Wise CJ, Hollingsworth MJ & Martin NC (1989) Nucleic Acids Res. 17: 6865–6881

    Google Scholar 

  11. Wise CA & Martin NC (1991) J. Biol. Chem. 266: 19154–19157

    Google Scholar 

  12. Lang BF, Cedergren R & Gray MW (1987) Eur. J. Biochem. 169: 527–537

    Google Scholar 

  13. Attardi G & Schatz G (1988) Ann. Rev. Cell Biol. 4: 289–333

    Google Scholar 

  14. Rossmanith W, Tullo A, Potuschak T, Karwan R & Sbisà E (1995) J. Biol. Chem. 270: 12885–12891

    Google Scholar 

  15. Darr SC, Pace B & Pace NR (1990) J. Biol. Chem. 265: 12927–12932

    Google Scholar 

  16. Miller DL & Martin NC (1983) Cell 34: 911–917

    Google Scholar 

  17. Forster AC & Altman S (1990) Cell 62: 407–409

    Google Scholar 

  18. Morales MJ, Dang YL, Lou YC, Sulo P & Martin NC (1992) J. Biol. Chem. 89: 9875–9879

    Google Scholar 

  19. Dang YL & Martin NC (1993) J. Biol. Chem. 268: 19791–19796

    Google Scholar 

  20. Brown JW, Haas ES, Gilbert DG & Pace NR (1994) Nucleic Acids Res. 22: 3660–3662

    Google Scholar 

  21. Morales MJ, Dang YL, Lou YC, Sulo P & Martin NC (1992) Proc. Natl. Acad. Sci. USA 89: 9875–9879

    Google Scholar 

  22. Lee J., Rohlman CE, Molony LA & Engelke DR (1991) Mol. Cell. Biol. 11: 721–730

    Google Scholar 

  23. Pagán-Ramos E, Tranguch AJ, Kindelberger DW & Engelke DR (1994) Nucleic Acids Res. 22: 200–207

    Google Scholar 

  24. Lygerou Z, Mitchell P, Petfalski E, Seraphin B & Tollervey D (1994) Genes & Dev. 8: 1423–1433

    Google Scholar 

  25. Mamula MJ, Baer M, Craft J & Altman S (1989) Proc. Natl. Acad. Sci. USA 86: 8717–8721

    Google Scholar 

  26. Gold HA, Topper JN, Clayton DA & Craft J (1989) Science 245: 1377–1380

    Google Scholar 

  27. Chang DD & Clayton DA (1987) Science 235: 1178–1184

    Google Scholar 

  28. Chang DD & Clayton DA (1989) Cell 56: 131–139

    Google Scholar 

  29. Topper JN & Clayton DA (1990) Nucleic Acids Res. 18: 793–799

    Google Scholar 

  30. Yuan Y, Singh R & Reddy R (1989) J. Biol. Chem. 264: 14835–14839

    Google Scholar 

  31. Bennett JL, Jeong-Yu S & Clayton DA (1992) J. Biol. Chem. 267: 21765–21772

    Google Scholar 

  32. Schmitt ME & Clayton DA (1992) Genes & Dev. 6: 1975–1985

    Google Scholar 

  33. Baldacci G, Chérif-Zahar B & Bernardi G (1984) EMBO J. 3: 2115–2120

    Google Scholar 

  34. Stahl L & Clayton DA (1992) Mol. Cell. Biol. 12: 2561–2569

    Google Scholar 

  35. Reimer G, Raska I, Scheer V & Tan EM (1988) Exp. Cell Res. 176: 117–128

    Google Scholar 

  36. Karwan R, Bennett JL & Clayton DA (1991) Genes & Dev. 5: 1264–1276

    Google Scholar 

  37. Topper JN, Bennett JL & Clayton DA (1992) Cell 70: 16–20

    Google Scholar 

  38. Kiss T & Filipowicz W (1992) Cell 70: 11–16

    Google Scholar 

  39. Kiss T, Marshallsay C & Filipowicz W (1992) EMBO J. 10: 3737–3746

    Google Scholar 

  40. Li K, Smagula CS, Parsons WJ, Richardson JA, Gonzalez M, Hagler HK & Williams RS (1994) J. Cell Biol. 124: 871–882

    Google Scholar 

  41. Matera AG, Frey MR, Margelot K & Wolin SL (1995) J. Cell Biol. 129: 1181–1193

    Google Scholar 

  42. Schmitt ME & Clayton DA (1993) Mol. Cell. Biol. 13: 7935–7941

    Google Scholar 

  43. Chu S, Archer RH, Zengel JM & Lindahl L (1994) Proc. Natl. Acad. Sci. USA 91: 659–663

    Google Scholar 

  44. Rubin GM (1974) Eur. J. Biochem. 41: 197–202

    Google Scholar 

  45. Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S & Tollervey D (1994) EMBO J. 13: 2452–2463

    Google Scholar 

  46. Yuan Y, Tan E & Reddy R (1991) Mol. Cell. Biol. 11: 5266–5274

    Google Scholar 

  47. Rossmanith W & Karwan R (1993) Mol. Biol. Reports 18: 29–35

    Google Scholar 

  48. Schmitt ME & Clayton DA (1994) Genes & Dev. 8: 2617–2628

    Google Scholar 

  49. Schmitt ME, Bennett JL, Dairaghi DJ & Clayton DA (1993) FASEB J. 7: 208–213

    Google Scholar 

  50. Lin M, Yuan Y & Reddy R (1994) Mol. Cell. Biochem. 130: 75–82.

    Google Scholar 

  51. Burd CG & Dreyfuss G (1994) Science 265: 615–621

    Google Scholar 

  52. Potuschak T, Rossmanith W & Karwan R (1993) Nucleic Acids Res. 14: 3239–3243

    Google Scholar 

  53. Apirion D & Miczak A (1992) Bioessays 15: 113–120

    Google Scholar 

  54. Jung YH, Park I & Lee Y (1992) Biochem. Biophys. Res. Com. 186: 1463–1470

    Google Scholar 

  55. Morrissey JP & Tollervey D (1995) Trends Biochem. Sci. 20: 78–82

    Google Scholar 

  56. Clayton DA (1994) Proc. Nat. Acad. Sci. USA 91: 4615–4617

    Google Scholar 

  57. Xu B & Clayton DA (1995) Mol. Cell. Biol. 15: 580–589

    Google Scholar 

  58. Tullo A, Rossmanith W, Imre E, Sbisà E, Saccone C & Karwan RM (1995) Eur. J. Biochem. 227: 657–662

    Google Scholar 

  59. Karwan R (1993) FEBS Letters 319: 1–4

    Google Scholar 

  60. Rossmanith W, Tullo A, Imre E, Saccone C, Sbisà E & Karwan R (1995) Prog. Cell Res. 5: 143–147

    Google Scholar 

  61. Topper JN & Clayton DA (1990) J. Biol. Chem. 265: 13254–13262

    Google Scholar 

  62. Talbot SJ & Altman S (1994) Biochem. 33: 1406–1411

    Google Scholar 

  63. Chou PY & Fasman GD (1974) Biochem. 13: 222–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, T.H., Schmitt, M.E. The yeast,Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family. Mol Biol Rep 22, 87–93 (1995). https://doi.org/10.1007/BF00988711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988711

Key words

Navigation