Skip to main content
Log in

Structure and function of H+-ATPase

  • Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

(1) Extensive studies on proton-translocating ATPase (H+-ATPase) revealed that H+-ATPase is an energy transforming device universally distributed in membranes of almost all kinds of cells. (2) Crystallization of the catalytic portion (F1) of H+-ATPase showed that F1 is a hexagonal molecule with a central hole. The diameter of F1 is about 90 Å and its molecular weight is about 380,000. (3) Use of thermophilic F1 permits the complete reconstitution of F1 from its five subunits (α, β, γ, δ, and ε) and demonstration of the gate function of the γδε-complex, the catalytic function of β (supported by α and γ), and the H+-translocating functions of all five subunits. (4) Studies using purified thermostable F0 showed that F0 is an H+-channel portion of H+-ATPase. The direct measurement of H+-flux through F0, sequencing of DCCD-binding protein, and isolation of F1-binding protein are described. (5) The subunit stoichiometry of F1 may be α3β3γδε. (6) Reconstitution of stable H+-ATPase-liposomes revealed that ATP is directly synthesized by the flow of H+ driven by an electrochemical potential gradient and that H+ is translocated by ATP hydrolysis. This rules out functions for all the hypothetical components that do not belong to H+-ATPase in H+-driven ATP synthesis. The roles of conformation change and other phenomena in ATP synthesis are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Boyer, B. Chance, L. Ernster, P. Mitchell, E. Racker, and E. C. Slater,Ann. Rev. Biochem. 46 (1977) 955–1026.

    Google Scholar 

  2. P. Mitchell,Biol. Rev. 41 (1966) 445–502.

    Google Scholar 

  3. P. L. Pedersen,Bioenergetics 6 (1975) 243–275.

    Google Scholar 

  4. N. Nelson,Biochim. Biophys. Acta 456 (1976) 314–338.

    Google Scholar 

  5. I. A. Kozlov and V. P. Skulachev,Biochim. Biophys. Acta 463 (1977) 29–89.

    Google Scholar 

  6. H. R. Kaback,J. Cell. Physiol. 89 (1976) 575–594.

    Google Scholar 

  7. F. M. Harold,Ann. Rev. Microbiol. 31 (1977) 181–203.

    Google Scholar 

  8. Y. Kagawa and E. Racker,J. Biol. Chem. 241 (1966) 2467–2474.

    Google Scholar 

  9. H. S. Penefsky, M. E. Pullman, A. Datta, and E. Racker,J. Biol. Chem. 235 (1960) 3330–3336.

    Google Scholar 

  10. Y. Kagawa and E. Racker,J. Biol. Chem. 241 (1966) 2461–2466.

    Google Scholar 

  11. Y. Kagawa,Biochim. Biophys. Acta 265 (1972) 297–338.

    Google Scholar 

  12. Y. Kagawa,Adv. Biophys. 10 (1978) 209–247.

    Google Scholar 

  13. V. Spitsberg and R. Haworth,Biochim. Biophys. Acta 492 (1977) 237–240.

    Google Scholar 

  14. T. Wakabayashi, M. Kubota, M. Yoshida, and Y. Kagawa,J. Mol. Biol. 117 (1977) 515–519.

    Google Scholar 

  15. L. M. Amzel and P. L. Pedersen,J. Biol. Chem. 253 (1978) 2067–2069.

    Google Scholar 

  16. M. Yoshida, N. Sone, H. Hirata, and Y. Kagawa,J. Biol. Chem. 252 (1977) 3480–3485.

    Google Scholar 

  17. M. Futai,Biochem. Biophys. Res. Commun. 78 (1977) 1043–1052.

    Google Scholar 

  18. N. Sone, M. Yoshida, H. Hirata, and Y. Kagawa,J. Biol. Chem. 252 (1977) 2956–2960.

    Google Scholar 

  19. Y. Kagawa, K. Ohno, M. Yoshida, Y. Takeuchi, and N. Sone,Fed. Proc. 36 (1977) 1815–1818.

    Google Scholar 

  20. H. A. Lardy and S. M. Ferguson,Ann. Rev. Biochem. 38 (1969) 991–1034.

    Google Scholar 

  21. M. Avron,Biochim. Biophys. Acta 77 (1963) 699–702.

    Google Scholar 

  22. H. Fernández-Morán, T. Oda, P. V. Blair, and D. E. Green,J. Cell Biol. 22 (1964) 63–100.

    Google Scholar 

  23. Y. Kagawa and E. Racker,J. Biol. Chem. 241 (1966) 2475–2482.

    Google Scholar 

  24. H. S. Penefsky, inThe Enzymes, Vol. 10, 3rd ed. (P. D. Boyer, ed.), Academic Press, New York (1974), pp. 375–394.

    Google Scholar 

  25. A. Abrams and J. B. Smith, inThe Enzymes, Vol. 10, 3rd ed. (P. D. Boyer, ed.), Academic Press, New York (1974), pp. 395–429.

    Google Scholar 

  26. Y. Kagawa, N. Sone, M. Yoshida, H. Hirata, and H. Okamoto,J. Boichem. 80 (1976) 141–151.

    Google Scholar 

  27. A. E. Senior,Biochem. Biophys. Acta 301 (1973) 249–277.

    Google Scholar 

  28. A. F. Knowles and H. S. Penefsky,J. Biol. Chem. 247 (1972) 6624–6630.

    Google Scholar 

  29. M. Yoshida, N. Sone, H. Hirata, Y. Kagawa and N. Ui,J. Biol. Chem. 254 (1979) 9525–9533.

    Google Scholar 

  30. W. A. Catterall, W. A. Coty, and P. L. Pedersen,J. Biol. Chem. 248 (1973) 7427–7431.

    Google Scholar 

  31. D. K. Apps and L. A. Glover,FEBS Lett. 85 (1978) 254–258.

    Google Scholar 

  32. K. Takeshige, B. Hess, M. Böhm, and H. Zimmermann-Telschou,Hoppe-Seyler's Z. Physiol. Chem. 357 (1976) 1605–1622.

    Google Scholar 

  33. B. C. Johansson and M. Baltschefsky,FEBS Lett. 53 (1975) 221–224.

    Google Scholar 

  34. P. L. Davies and P. H. Bragg,Biochim. Biophys. Acta 266 (1972) 273–284.

    Google Scholar 

  35. M. Höckel, F. W. Hulla, S. Risi, and K. Dose,Biochim. Biophys. Acta 429 (1976) 1020–1028.

    Google Scholar 

  36. H. P. Schnebli, A. E. Vatter, and A. Abrams,J. Biol. Chem. 245 (1970) 1122–1127.

    Google Scholar 

  37. M. Yoshida, N. Sone, H. Hirata, and Y. Kagawa,J. Biol. Chem. 250 (1975) 7910–7916.

    Google Scholar 

  38. P. D. Bragg, P. L. Davies, and C. Hou,Arch. Biochem. Biophys. 159 (1973) 664–670.

    Google Scholar 

  39. G. Vogel and R. Steinhart,Biochemistry 15 (1976) 208–216.

    Google Scholar 

  40. R. L. Hanson and E. P. Kennedy,J. Bacteriol. 114 (1973) 772–781.

    Google Scholar 

  41. D. J. Clarke and J. G. Morris,Biochem. Soc. Trans. 5 (1977) 140–143.

    Google Scholar 

  42. V. Riebeling and K. Jungermann,Biochim. Biophys. Acta 430 (1976) 434–444.

    Google Scholar 

  43. H. Hirata, N. Sone, M. Yoshida, and Y. Kagawa,J. Supramol. Struct. 6 (1977) 77–84.

    Google Scholar 

  44. D. L. Schneider,J. Membrane Biol. 34 (1977) 247–261.

    Google Scholar 

  45. G. DeRenzis and M. Bornancin,Biochim. Biophys. Acta 467 (1977) 192–207.

    Google Scholar 

  46. V. D. Wiebelhaus, C. P. Sung, H. F. Helander, G. Shah, A. Blum, and G. Sachs,Biochim. Biophys. Acta 241 (1971) 49–56.

    Google Scholar 

  47. I. C. Chang and J. S. Kahn,Arch. Biochem. Biophys. 117 (1966) 282–288.

    Google Scholar 

  48. R. Adolfsen and E. N. Moudrianakis,Biochemistry 10 (1971) 2247–2253.

    Google Scholar 

  49. R. Mirsky and V. Barlow,Biochim. Biophys. Acta 291 (1973) 480–488.

    Google Scholar 

  50. A Hachimori, N. Muramatsu, and Y. Nosoh,Biochim. Biophys. Acta 206 (1970) 426–437.

    Google Scholar 

  51. A. Tzagoloff, K. H. Byington, and D. H. MacLennan,J. Biol. Chem. 243 (1968) 2405–2412.

    Google Scholar 

  52. Y. Kagawa,Methods in Enzymol. 10 (1967) 505–510.

    Google Scholar 

  53. N. Sone, M. Yoshida, H. Hirata, and Y. Kagawa,J. Biol. Chem. 250 (1975) 7917–7923.

    Google Scholar 

  54. A. Tzagoloff and P. Meagher,J. Biol. Chem. 246 (1971) 7328–7336.

    Google Scholar 

  55. D. L. Stiggall, Y. M. Galante, and Y. Hatefi,J. Biol. Chem. 253 (1978) 956–964.

    Google Scholar 

  56. R. Serrano, B. I. Kanner, and E. Racker,J. Biol. Chem. 251 (1976) 2453–2461.

    Google Scholar 

  57. J. A. Berden and M. M. Voorn-Brouwer,Biochim. Biophys. Acta 501 (1978) 424–439.

    Google Scholar 

  58. P. Swanljung, L. Frigeri, K. Ohlson, and L. Ernster,Biochim. Biophys. Acta 305 (1973) 519–533.

    Google Scholar 

  59. F. S. Stekhoven, R. F. Waitkus, and H. T. B. Van Moerkerk,Biochemistry 11 (1972) 1144–1150.

    Google Scholar 

  60. I. J. Ryrie and P. F. Blackmore,Arch. Biochem. Biophys. 176 (1976) 127–135.

    Google Scholar 

  61. W. Sebald, M. Sebald-Althaus, and E. Wachter, inGenetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kauderwitz, eds.), Walter de Gruyter, Berlin (1977), pp. 433–440.

    Google Scholar 

  62. E. Wachter, W. Sebald, and A. Tzagoloff, inGenetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), Walter de Gruyter, Berlin (1977), pp. 441–449.

    Google Scholar 

  63. H. Okamoto, N. Sone, H. Hirata, M. Yoshida, and Y. Kagawa,J. Biol. Chem. 252 (1977) 6125–6131.

    Google Scholar 

  64. D. H. MacLennan and A. Tzagoloff,Biochemistry 7 (1968) 1603–1610.

    Google Scholar 

  65. N. Sone, M. Yoshida, H. Hirata, and Y. Kagawa,Proc. Natl. Acad. Sci. USA 75 (1978) 4217–4223.

    Google Scholar 

  66. B. I. Kanner, R. Serrano, M. A. Kandrach, and E. Racker,Biochem. Biophys. Res Commun. 69 (1976) 1050–1056.

    Google Scholar 

  67. E. Racker, L. L. Horstman, D. Kling, and J. M. Fessenden-Raden,J. Biol. Chem. 244 (1969) 6668–6674.

    Google Scholar 

  68. E. Muñoz, J. H. Freer, D. J. Ellar, and M. R. J. Salton,Biochim. Biophys. Acta 150 (1968) 531–533.

    Google Scholar 

  69. B. A. Baird and G. G. Hammes,J. Biol. Chem. 251 (1976) 6953–6962.

    Google Scholar 

  70. G. J. Verschoor, P. R. Van der Sluis, and E. C. Slater,Biochim. Biophsy. Acta 462 (1977) 438–449.

    Google Scholar 

  71. P. D. Bragg and C. Hou,Arch. Biochem. Biophys. 167 (1975) 311–321.

    Google Scholar 

  72. I. A. Kozlov and H. N. Mikelsaar,FEBS Lett. 43 (1974) 212–214.

    Google Scholar 

  73. R. B. Beechey, inMembrane ATPases and Transport Processes, Biochem. Soc. Spec. Publ. 4 (J. R. Bronk, ed.), Biochemical Society, London (1974), pp. 63–88.

    Google Scholar 

  74. J. R. Bronk,Membrane ATPases and Transport Processes Biochem. Soc. Spec. Publ. 4, Biochemical Society, London (1974), pp. 1–197.

    Google Scholar 

  75. A. Abrams, D. Morris, and C. Jensen,Biochemistry 15 (1976) 5560–5566.

    Google Scholar 

  76. R. J. Berzborn,Hoppe-Seyler's Z. Physiol. Chem. 353 (1972) 693.

    Google Scholar 

  77. H. S. Penefsky and R. C. Warner,J. Biol. Chem. 240 (1965) 4694–4702.

    Google Scholar 

  78. G. Forrest and S. J. Edelstein,J. Biol. Chem. 245 (1970) 6468–6470.

    Google Scholar 

  79. F. Farron,Biochemistry 9 (1970) 3823–3838.

    Google Scholar 

  80. M. Futai, P. C. Sternweis, and L. A. Heppel,Proc. Natl. Acad. Sci. USA 71 (1974) 2725–2729.

    Google Scholar 

  81. P. C. Sternweis and J. B. Smith,Biochemistry 16 (1977) 4020–4025.

    Google Scholar 

  82. E. Racker,A New Look at Mechanisms in Bioenergetics Academic Press, New York (1976).

    Google Scholar 

  83. B. A. Baird and G. G. Hammes,J. Biol. Chem. 252 (1977) 4743–4748.

    Google Scholar 

  84. R. Enns and R. S. Criddle,Arch. Biochem. Biophys. 183 (1977) 742–752.

    Google Scholar 

  85. A. E. Senior,Biochemistry 14 (1975) 660–664.

    Google Scholar 

  86. M. Yoshida, N. Sone, H. Hirata, and Y. Kagawa,Biochem. Biophys. Res. Commun. 84 (1978) 117–122.

    Google Scholar 

  87. A. Abrams, C. Jensen, and D. H. Morris,Biochem. Biophys. Res. Commun. 69 (1976) 804–811.

    Google Scholar 

  88. M. G. Douglas, Y. Koh, M. E. Dockter, and G. Schatz,J. Biol. Chem. 252 (1977) 8333–8335.

    Google Scholar 

  89. K. Dose, M. Hockel, F. W. Hulla, M. Schmitt, and S. Risi,Hoppe-Seyler's Z. Physiol. Chem. 358 (1977) 1385–1386.

    Google Scholar 

  90. J. L. M. Muller, J. Rosing, and E. C. Slater,Biochim. Biophsy. Acta 462 (1977) 422–437.

    Google Scholar 

  91. P. C. Sternweis,J. Biol. Chem. 253 (1978) 3123–3128.

    Google Scholar 

  92. S. J. Ferguson, W. J. Lloyd, G. K. Radda, and E. C. Slater,Biochim. Biophys. Acta 430 (1976) 189–193.

    Google Scholar 

  93. D. H. MacLennan and J. Asai,Biochem. Biophys. Res. Commun. 33 (1968) 341–347.

    Google Scholar 

  94. D. H. MacLennan,Current Topics in Membrane Transport 1 (1970) 177–232.

    Google Scholar 

  95. Y. Kagawa, inThe Enzymes of Biological Membranes, Vol 4 (A. Martonosi, ed.), Plenum Press, New York (1976), pp. 125–142.

    Google Scholar 

  96. L. K. Russell, S. A. Kirkley, T. R. Kleyman, and S. H. P. Chan,Biochem. Biophys. Res. Commun. 73 (1976) 434–447.

    Google Scholar 

  97. A. Vadineanu, J. A. Berden, and E. C. Slater,Biochim. Biophys. Acta 449 (1977) 468–479.

    Google Scholar 

  98. A. F. Knowles, R. J. Guillory, and E. Racker,J. Biol. Chem. 246 (1971) 2672–2679.

    Google Scholar 

  99. H. M. Younis, G. D. Winget, and E. Racker,J. Biol. Chem. 252 (1977) 1814–1818.

    Google Scholar 

  100. M. Yoshida, H. Okamoto, H. Sone, H. Hirata, and Y. Kagawa,Proc. Natl. Acad. Sci. USA 74 (1977) 936–940.

    Google Scholar 

  101. U. D. Schmidt and H. H. Paradies,Biochem. Biophys. Res. Commun. 78 (1977) 1043–1052.

    Google Scholar 

  102. U. D. Schmidt and H. H. Paradies,Biochem. Biophys. Res. Commun. 78 (1977) 383–392.

    Google Scholar 

  103. R. Panet and D. R. Sanadi,Current Topics in Membrane Transport 8 (1976) 99–160.

    Google Scholar 

  104. J. B. Smith and P. C. Sternweis,Biochemistry 16 (1977) 306–311.

    Google Scholar 

  105. M. E. Pullman and G. C. Monroy,J. Biol. Chem. 238 (1963) 3762–3769.

    Google Scholar 

  106. F. W. Hulla, M. Hoeckel, M. Rack, S. Risi, and K. Dose,Biochemistry 17 (1978) 823–828.

    Google Scholar 

  107. S. Philosph, A. Binder, and Z. Gromet-Elhanan,J. Biol. Chem. 252 (1977) 8747–8752.

    Google Scholar 

  108. Y. Kagawa,J. Cell. Physiol. 89 (1976) 561–566.

    Google Scholar 

  109. M. F. Perutz and H. Raidt,Nature 255 (1975) 256–259.

    Google Scholar 

  110. G. Biesecker, J. I. Harris, J. C. Thierry, J. E. Walker, and A. J. Wonacott,Nature 266 (1977) 328–333.

    Google Scholar 

  111. K. Yutani, K. Ogasawara, Y. Sugino, and A. Matsushiro,Nature 267 (1977) 274–275.

    Google Scholar 

  112. J. A. Ayala and M. Nieto,Biochem. J. 169 (1978) 371–380.

    Google Scholar 

  113. M. T. Gomez-Puyou, A. Gomez-Puyou, and J. Cerbon,Arch. Biochem. Biophys. 187 (1978) 72–77.

    Google Scholar 

  114. P. C. Hinkle and L. L. Horstman,J. Biol. Chem. 246 (1971) 6024–6028.

    Google Scholar 

  115. E. Racker,J. Membrane Biol. 10 (1972) 221–235.

    Google Scholar 

  116. V. Schipakin, E. Chuchlova and Y. Evtodienko,Biochem. Biophys. Res. Commun. 69 (1976) 123–127.

    Google Scholar 

  117. M. D. Brand and A. L. Lehninger,Proc. Natl. Acad. Sci. USA 74 (1977) 1955–1959.

    Google Scholar 

  118. B. Raynafarje, M. D. Brand, and A. L. Lehninger,J. Biol. Chem. 251 (1976) 7442–7451.

    Google Scholar 

  119. P. Mitchell,Fed. Proc. 26 (1967) 1370–1379.

    Google Scholar 

  120. K. J. Cattell, C. R. Lindop, I. G. Knight, and R. B. Beechey,Biochem. J. 125 (1971) 169–177.

    Google Scholar 

  121. R. H. Fillingame,J. Biol. Chem. 251 (1976) 6630–6637.

    Google Scholar 

  122. K. Altendorf,FEBS Lett. 73 (1977) 271–275.

    Google Scholar 

  123. N. Nelson, E. Eytan, B. E. Notsani, H. Sigrist, K. Sigrist-Nelson, and C. Gitler,Proc. Natl. Acad. Sci. USA 74 (1977) 2375–2378.

    Google Scholar 

  124. W. Sebald,Biochim. Biophys. Acta 463 (1977) 1–27.

    Google Scholar 

  125. F. Gibson, G. B. Cox, J. A. Downie, and J. Radik,Biochem. J. 164 (1977) 193–198.

    Google Scholar 

  126. S. Krasne, G. Eisenman, and G. Szabo,Science 174 (1971) 412–415.

    Google Scholar 

  127. Y. Kagawa and T. Ariga,J. Biochem. 81 (1977) 1161–1165.

    Google Scholar 

  128. R. Wagner and W. Junge,Biochem. Biophys. Acta 462 (1977) 259–272.

    Google Scholar 

  129. M. Schönfeld and J. Neumann,FEBS Lett. 73 (1977) 51–54.

    Google Scholar 

  130. P. Mitchell,Nature 191 (1961) 144–148.

    Google Scholar 

  131. P. Mitchell,Biochem. Soc. Trans. 4 (1976) 399–430.

    Google Scholar 

  132. H. Rottenberg,Bioenergetics 7 (1975) 61–74.

    Google Scholar 

  133. N. Sone, M. Yoshida, H. Hirata, H. Okamoto, and Y. Kagawa,J. Membrane Biol. 30 (1976) 121–131.

    Google Scholar 

  134. E. P. Bakker and K. Van Dam,Biochim. Biophys. Acta 339 (1974) 157–163.

    Google Scholar 

  135. A. A. Jasaitis, V. V. Kuliene, and V. P. Skulachev,Biochim. Biophys. Acta 234 (1971) 177–181.

    Google Scholar 

  136. S. Schuldiner, H. Rottenberg, and M. Avron,Eur. J. Biochem. 25 (1972) 64–70.

    Google Scholar 

  137. L. A. Drachev, A. A. Jasaitis, H. Mikelsaar, I. B. Nemeček, A. Y. Semenov, E. G. Semenova, I. I. Severina, and V. P. Skulachev,J. Biol. Chem. 251 (1976) 7077–7082.

    Google Scholar 

  138. Y. Kagawa and E. Racker,J. Biol. Chem. 246 (1971) 5477–5487.

    Google Scholar 

  139. Y. Kagawa, A. Kandrach, and E. Racker,J. Biol. Chem. 248 (1973) 676–684.

    Google Scholar 

  140. C. Carmeli, Y. Lifshitz, and A. Gepshtein,Biochim. Biophys. Acta 376 (1975) 249–258.

    Google Scholar 

  141. A. T. Jagendorf and E. Uribe,Proc. Natl. Acad. Sci. USA 55 (1966) 170–177.

    Google Scholar 

  142. R. S. Cockrell, E. J. Harris, and B. C. Pressman,Nature 215 (1967) 1487–1488.

    Google Scholar 

  143. W. S. Thayer and P. C. Hinkle,J. Biol. Chem. 250 (1975) 5336–5342.

    Google Scholar 

  144. E. Racker and A. Kandrach,J. Biol. Chem. 248 (1973) 5841–5847.

    Google Scholar 

  145. E. Racker and W. Stoeckenius,J. Biol. Chem. 249 (1974) 662–663.

    Google Scholar 

  146. D. E. Griffiths, R. L. Hyams, and E. Bertoli,FEBS Lett. 74 (1977) 38–42.

    Google Scholar 

  147. T. Tsuchiya and B. P. Rosen,J. Bacteriol. 127 (1976) 154–161.

    Google Scholar 

  148. Y. Kagawa,Biochim. Biophys. Acta 505 (1978) 45–93.

    Google Scholar 

  149. I. J. Ryrie and a. T. Jagendorf,J. Biol. Chem. 247 (1972) 4453–4459.

    Google Scholar 

  150. R. E. McCarty and J. Fagan,Biochemistry 12 (1973) 1503–1507.

    Google Scholar 

  151. T. M. Chang and H. S. Penefsky,J. Biol. Chem. 248 (1973) 2746–2754.

    Google Scholar 

  152. R. M. Bertina, P. I. Schrier, and E. C. Slater,Biochim. Biophys. Acta 305 (1973) 503–518.

    Google Scholar 

  153. S. Ohta, M. Nakanishi, M. Tsuboi, M. Yoshida, and Y. Kagawa,Biochem. Biophys. Res. Commun. 80 (1978) 929–935.

    Google Scholar 

  154. J. Rosing, C. Kayalar, D. J. Smith, and P. D. Boyer,Biochem. Biophys. Res. Commun. 70 (1976) 1283–1289.

    Google Scholar 

  155. D. J. Smith and P. D. Boyer,Proc. Natl. Acad. Sci. USA 73 (1976) 4314–4318.

    Google Scholar 

  156. D. A. Harris and E. C. Slater,Biochim. Biophys. Acta 387 (1975) 335–348.

    Google Scholar 

  157. H. T. Witt, E. Schlodder, and P. Gräber, inBioenergetics of Membranes (L. Packer, G. C. Papageorgiou, and A. Trebst, eds.), Elsevier, Amsterdam (1977), pp. 447–457.

    Google Scholar 

  158. S. Ohta, M. Yoshida, and Y. Kagawa, unpublished observation.

  159. C. F. G. C. Gerales and R. J. P. Williams,Eur. J. Biochem. 85 (1978) 463–470.

    Google Scholar 

  160. F. S. Esch and W. S. Allison,Fed. Proc. 37 (1978) 1519.

    Google Scholar 

  161. G. Giraut, J. M. Galmiche, M. Michel-Villaz, and J. Theiry,Eur. J. Biochem. 38 (1973) 473–479.

    Google Scholar 

  162. H. T. Witt, E. Schlodder, and P. Gräber,FEBS Lett. 69 (1976) 272–276.

    Google Scholar 

  163. M. Rögner, K. Ohno, T. Hamamoto, N. Sone and Y. Kagawa,Biochem. Biophys. Res. Commun. (1979) in press..

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, Y., Sone, N., Hirata, H. et al. Structure and function of H+-ATPase. J Bioenerg Biomembr 11, 39–78 (1979). https://doi.org/10.1007/BF00743196

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743196

Keywords

Navigation